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Titre: Mesure de la masse du boson W avec le détecteur ATLAS au LHC

Mots clés: Interactions électrofaibles, Ajustement électrofaible, Masse du W

Résumé: Le présent travail montre l’état actuel

de la mesure de la masse du boson W en utilisant

les données du LHC en collisions proton-proton

collectées par le détecteur ATLAS à 5.02, 7 et

13 TeV. Pour ce faire, des procédures de calibra-

tion dédiées du Détecteur Interne (DI) et du Spec-

tromètre à Muons (SM) d’ATLAS ont été conçues

et appliquées, et la stratégie de la mesure a été

optimisée.

La procédure de calibration du DI prend en

compte les biais possibles dans la flèche de la trace

du muon, les déformations géométriques et les dis-

torsions du champ magnétique. Dans le cas du

SM, les résidus d’alignement entre le DI et le SM

ont été étudiés, et le champ magnétique toroïdal

résiduel présent dans les calorimètres a été réé-

valué. Une calibration dédiée de l’impulsion du

muon a été mise en œuvre. Après ces correc-

tions, l’accord entre les données et la simulation

est trouvé au niveau du pour mille, et les incerti-

tudes correspondantes sont propagées à la mesure

de la masse du boson W .

Le présent travail comprend également une

étude détaillée de la stratégie d’ajustement de

la masse du boson W . Un ajustement de type

profil de vraisemblance (profile likelihood) analy-

tique dans la limite gaussienne a été mis en œu-

vre, permettant une décomposition adéquate des

incertitudes de l’ajustement, améliorant les “im-

pacts” habituels. Dans ce scénario, nous sommes

en mesure de déterminer la contribution réelle de

chaque source systématique à l’incertitude finale

de la mesure. Les données de mesure résultantes

peuvent alors être utilisées de manière cohérente

pour d’autres combinaisons et ajustements.

L’ajustement analytique a été utilisé pour

obtenir une mesure de la masse du boson W à

7 TeV avec une valeur de 80366.5 ± 15.9 MeV, en

bon accord avec les ajustements numériques. Pour

l’ensemble de données à faible empilement (low

pile-up), la calibration améliorée et la stratégie

d’ajustement optimisée aboutissent à une préci-

sion attendue de 14.3 MeV. En combinant avec les

données à 7 TeV, une précision finale de 10.3 MeV

est attendue.

La compatibilité et la combinaison des mesures

de la masse du boson W avec la nouvelle mesure

ATLAS 2024 à 7 TeV et d’autres mesures (LEP,

CDF, D0, LHCb) ont été étudiées. La combi-

naison donne mW = 80388.4 ± 10.3 MeV avec

0.2% de compatibilité en incluant CDF, et mW =

80366.1 ± 11.7 MeV avec 92% sans CDF, différant

du résultat CDF par 3.8σ.



Title: Measurement of the W -boson mass with the ATLAS detector at the LHC

Keywords: Electroweak interactions, Electroweak fit, W boson mass

Abstract: The present work shows the current

status of the determination of the W boson mass,

using the LHC datasets in proton-proton colli-

sions collected by the ATLAS detector at 5.02,

7 and 13 TeV. To achieve this, dedicated calibra-

tion procedures of the ATLAS Inner Detector (ID)

and Muon Spectrometer (MS) have been designed

and applied, and the W boson mass measurement

strategy has been optimised.

The ID calibration procedure considers possi-

bles biases in the muon track sagitta, geometri-

cal deformations and magnetic field distortions.

In the case of the MS, the alignment residuals

between the ID and MS have been investigated,

and the residual toroidal magnetic field present in

the calorimeters has been re-evaluated. A dedi-

cated muon momentum calibration has been im-

plemented. After these corrections, the data-to-

simulation agreement is found to be at the per

mile level, and the corresponding uncertainties are

propagated to the W -boson mass measurement.

The present work also includes a detailed

study of the W -boson mass fitting strategy. An

analytical Profile Likehood fit in the Gaussian

limit has been implemented, allowing a proper

decomposition of the fit uncertainties, improving

over the usual “impacts”. In this scenario, the ac-

tual contribution of each systematic source to the

final measurement uncertainty can be determined.

The resulting measurement data can then be used

consistently for further combinations and fits.

The analytical fit was used to obtain a W

mass measurement at 7 TeV with value 80366.5 ±

15.9 MeV, in good agreement with numerical fits.

For the low pile-up dataset, the improved calibra-

tion and optimised fitting strategy result in an ex-

pected precision of 14.3 MeV. Combining with the

7 TeV data an ultimate precision of 10.3 MeV can

be obtained.

The compatibility and combination of the

world W -boson mass using the new ATLAS 2024

measurement at 7 TeV with other measurements

(LEP, CDF, D0, and LHCb) was studied. The

combination yields mW = 80388.4 ± 10.3 MeV

with 0.2% compatibility when CDF is included,

and mW = 80366.1±11.7 MeV with 92% compat-

ibility when CDF is removed, differing from the

CDF result by 3.8σ.



Titel: Messung der W -boson-Masse mit dem ATLAS-Detektor am LHC

Schlüsselwörter: Elektroschwache Wechselwirkungen, Elektroschwache Anpassung, W -boson-Masse

Zusammenfassung: Die vorliegende Arbeit

zeigt den aktuellen Stand der W -Boson-Masse

unter Verwendung der LHC-Datensätze in Proton-

Proton-Kollisionen, die vom ATLAS-Detektor bei

5.02, 7 und 13 TeV gesammelt wurden. Um dies

zu erreichen, wurden spezielle Kalibrierungsver-

fahren für den ATLAS Inner Detector (ID) und

das Muon Spectrometer (MS) entwickelt und

angewendet und die Anpassungsstrategie wurde

optimiert.

Das ID-Kalibrierungsverfahren berücksichtigt

mögliche Verzerrungen in der Muonenspur-

Sagitta, geometrische Verformungen und Magnet-

feldverzerrungen. Im Fall des MS wurden die

Ausrichtungsresiduen zwischen ID und MS un-

tersucht und das verbleibende toroidale Magnet-

feld in den Kalorimetern neu bewertet. Eine

spezielle Kalibrierung des Muonenimpulses wurde

implementiert. Nach diesen Korrekturen wird

festgestellt, dass die Übereinstimmung zwischen

Daten und Simulation auf Promilleebene liegt und

die entsprechenden Unsicherheiten auf die W -

Boson-Massenmessung übertragen werden.

Die vorliegende Arbeit enthält auch

eine detaillierte Studie der W -Boson-

Massenanpassungsstrategie. Eine analytis-

che Profil-Likelihood-Anpassung im gaußschen

Grenzbereich wurde implementiert, die eine ord-

nungsgemäße Zerlegung der Anpassungsunsicher-

heiten ermöglicht und gegenüber den üblichen

“Impacts” verbessert. In diesem Szenario kann der

tatsächliche Beitrag jeder systematischen Quelle

zur endgültigen Messunsicherheit bestimmt wer-

den. Die resultierenden Messdaten können dann

konsistent für weitere Kombinationen und Anpas-

sungen verwendet werden.

Die analytische Anpassung wurde verwendet,

um eine W -Massenmessung bei 7 TeV mit einem

Wert von 80366.5 ± 15.9 MeV zu erhalten, die

gut mit numerischen Anpassungen übereinstimmt.

Für den Datensatz mit geringer Stapelung resul-

tieren die verbesserte Kalibrierung und die op-

timierte Anpassungsstrategie in einer erwarteten

Genauigkeit von 14.3 MeV. Durch Kombination

mit den 7 TeV-Daten wird eine Genauigkeit von

10.3 MeV erreicht.

Die Kompatibilität und Kombination der W -

Boson-Masse unter Verwendung der neuen AT-

LAS 2024-Messung bei 7 TeV mit anderen Mes-

sungen (LEP, CDF, D0, LHCb) wurde unter-

sucht. Die Kombination ergibt mW = 80388.4 ±

10.3 MeV mit 0.2% Kompatibilität bei Ein-

beziehung von CDF und mW = 80366.1 ±

11.7 MeV mit 92% ohne CDF, abweichend vom

CDF-Ergebnis um 3.8σ.
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Résumé

Le Modèle Standard (“Standard Model”, SM) de la physique des particules est un cadre théorique

élégant pour étudier les particules élémentaires et les interactions fondamentales qui régissent

l’univers, à l’exception de la gravité. Dans la nature, il existe deux types de particules : les fermions

et les bosons. Les premiers ont un spin demi-entier et existent en trois générations, divisées en deux

groupes : les leptons et les quarks. Il existe six types (saveurs) de leptons : électron, muon et tau,

avec une charge électrique de -1, chacun étant associé à un neutrino électriquement neutre. D’autre

part, il existe six saveurs de quarks : up, charm et top avec une charge électrique de +2/3, et down,

strange et bottom avec une charge électrique de -1/3. Les bosons ont un spin entier : les bosons de

spin non-nul sont les vecteurs des forces permettant aux particules d’interagir entre elles; enfin, il

existe un boson de spin nul, le boson de Higgs, à l’origine des masses des autres particules du SM.

Le SM décrit trois interactions ou “forces” connues : l’interaction électromagnétique, l’interaction

forte et l’interaction faible. L’interaction électromagnétique implique un boson jauge avec une masse

nulle connu sous le nom de photon (γ), l’interaction forte comprend huit bosons jauge avec une

masse nulle connus sous le nom de gluons (g), et l’interaction faible a trois bosons jauge massifs :

un neutre, connu sous le nom de Z, et deux chargés électriquement, W+ et W−. Dans le cadre du

SM, le mécanisme de Brout-Englert-Higgs (BEH) explique comment les particules acquièrent leur

masse après brisure spontanée de symétrie (SSB) et prédit l’existence du boson de Higgs, dernière

pièce du SM et découvert en 2012.

Le Modèle Standard comporte 25 paramètres pour décrire les masses des quarks, des leptons et

des neutrinos, le boson de Higgs, ainsi que les paramètres de la matrice de mélange des quarks et les

couplages entre les particules. Parmi eux, la masse du boson W (mW ) est un paramètre essentiel,
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déterminé théoriquement au premier ordre à partir de la masse du boson Z, de la constante de

structure fine (α) et de la constante de Fermi (GF ). Aux ordres supérieurs, les corrections radiatives

impliquant d’autres particules du Modèle Standard, telles que le quark top et le boson de Higgs,

affectent la valeur de mW . Ces corrections radiatives ne se limitent pas nécessairement au SM, et

peuvent impliquer de nouvelles particules ou interactions. La mesure de mW constitue donc un test

de la validité du SM, et une recherche indirecte de nouvelle physique.

Depuis sa découverte en 1983, la masse du boson W a été mesurée dans divers collisionneurs.

La première mesure a été réalisée au collisionneur proton-antiproton du CERN avec une valeur

de mW = 81 ± 5 GeV. Suivie par différentes expériences telles que D0, ATLAS, LHCb et CDF

conduisant à une valeur moyenne mondiale combinée de mW = 80369 ± 13 MeV, soit une précision

relative de moins de 0,01%. Ce niveau de précision est crucial pour tester les prédictions du SM

et pour explorer les limites des prédictions théoriques ainsi que pour éclairer d’éventuels scénarios

au-delà du Modèle Standard, tels que la Supersymétrie, la Matière Noire, etc.

En collisions hadroniques, la précision de mesure est limitée par la description théorique de la

production et la désintégration du boson W , ainsi que par la configuration expérimentale. Au LHC,

la production des bosons W dépend principalement des quarks de mer, nécessitant une connaissance

précise des fonctions de structure du proton qui sont l’une des principales sources systématiques.

D’autre part, la reconstruction des particules est un défi en raison du grand nombre d’interactions

inélastiques simultanées, ou empilement, limitant les analyses aux désintégrations leptoniques des

bosons W , W → ℓν. Dans ces scénarios, les neutrinos ne peuvent pas être détectés directement,

mais ils peuvent être identifiés par un déséquilibre de l’impulsion mesurée dans le plan transverse au

faisceau. Cela introduit d’importantes incertitudes systématiques, notamment dans la modélisation

du moment transverse du boson W , pWT .

Pour déterminer mW , un ajustement des données aux différentes distributions cinématiques

obtenues par simulation dans les canaux de désintégration (canaux muoniques et électroniques)

et dans plusieurs catégories cinématiques est effectué. Ces distributions sont les distributions du

moment transverse des leptons chargés, pℓT , et de la masse transverse du boson W , mT . D’autres

distributions peuvent être considérées comme des régions de contrôle telles que l’énergie transverse
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manquante, Emiss
T , le recul hadronique, uT ou la rapidité du lepton, ηℓ. Ensuite, la valeur de mW

peut être obtenue directement à partir des données en utilisant la méthode des templates. Cette

méthode implique la génération d’échantillons simulés pour différentes hypothèses de valeurs de

mW et la comparaison des distributions de ces échantillons avec celles observées dans les données.

L’échantillon qui correspond le mieux aux données est utilisé pour déterminer la valeur mesurée de

mW .

Cette thèse discute de l’état actuel et des perspectives pour la mesure de la masse et de la

largeur du boson W en utilisant les données du détecteur ATLAS au LHC. Deux lots de données,

correspondant à la première prise de données Run 1 à 7 TeV, et au Run 2 (2017 et 2018) à 5,02 TeV

et 13 TeV sont exploités. Le premier bénéficie d’une grande précision statistique avec un fort

taux d’empilement, tandis que le second correspond à un faible empilement, offrant une meilleure

résolution dans la mesure du recul hadronique au prix d’une statistique plus faible. Ceci permet

une modélisation précise du moment transverse du boson W contrairement à l’approche habituelle.

Diverses calibrations expérimentales, liées aux sous-détecteurs et au champ magnétique d’ATLAS,

ainsi que l’étalonnage de la mesure de l’impulsion des muons, sont discutées. Une méthode statis-

tique, le profil de vraisemblance (PLH), est introduite pour la première fois dans l’estimation des

paramètres du W , ainsi qu’une nouvelle approche pour évaluer les composantes d’incertitude dans

un tel ajustement. À cela s’ajoute une nouvelle modélisation pour le moment transverse du boson

W dans le faible empilement. Ces considérations contribuent de manière significative à la précision

de la détermination de mW .

Le traitement statistique de ce travail repose sur le profil de vraisemblance, qui consiste à max-

imiser la fonction de vraisemblance par rapport aux paramètres d’intérêt (la masse et la largeur

du W ) tout en profilant sur les paramètres de nuisance (les sources d’incertitude sytématique),

qui ne sont pas d’intérêt direct mais affectent la mesure. L’interprétation du profil de vraisem-

blance est l’un des principaux défis de cette méthode statistique, ainsi que l’incertitude et ses

composantes statistique et systématiques. La première est évaluée dans le contexte des ajustements

de vraisemblance et une différence claire avec les ajustements purement statistiques est établie,

montrant que l’incertitude d’un ajustement purement statistique n’est pas égale à la composante
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statistique d’un ajustement PLH compremenant des nuisance, et est strictement inférieure. D’autre

part, l’incertitude systématique et la contribution de chaque source systématique à l’incertitude

systématique totale sont l’un des points centraux du présent travail.

Dans la communauté de la physique des hautes énergies, la contribution d’une source systé-

matique est déterminée habituellement par la méthode dite “d’impact”, qui consiste à calculer

l’incertitude totale d’un ajustement, σtotal, puis à retirer la source systématique pour recalculer

l’incertitude totale, σ′
total < σtotal. Si la contribution de cette source systématique est significative,

on s’attend à ce que σ′
total soit plus petit que σtotal, et la composante “d’impact” ou systématique

est déterminée comme la différence quadratique
√
σtotal − σ′

total. Cette approche conduit à des in-

certitudes qui ne récupèrent pas entièrement l’incertitude systématique totale. Cette discussion non

seulement explique pourquoi le concept d’impacts est incorrect, mais propose également une méth-

ode précise pour évaluer les composantes d’incertitude réelles en utilisant la méthode des observables

décalées.

De plus, dans le contexte où toutes les incertitudes sont distribuées selon une loi normale, la

solution analytique complète est discutée avec une décomposition directe de l’incertitude qui peut

être utilisée dans les ajustements et combinaisons ultérieurs. Cette stratégie d’ajustement a été

mise en œuvre non seulement pour les études de la masse du boson W mais aussi dans les études

de calibration des muons.

Pour réaliser une mesure précise de mW , une bonne calibration de pℓT est requise, principalement

influencée par la calibration des leptons chargés. Pour obtenir une bonne calibration, des résonances

connues sont utilisées pour ajuster la simulation, de sorte que les données observées soient bien

reproduites. En particulier, le présent travail se concentre sur la calibration des muons en utilisant

le méson J/ψ ainsi que le boson Z dans l’état final à deux muons, c’est-à-dire J/ψ → µµ et Z → µµ.

Dans le détecteur ATLAS, les candidats muons sont reconstruits indépendamment en utilisant des

informations provenant du Détecteur Interne (ID) et du Spectromètre à Muons (MS). Ensuite, un

candidat muon combiné (CB) est obtenu par une combinaison statistique des pistes ID et MS. Pour

cette raison, garantir une bonne calibration MS/ID améliore la reconstruction CB, et donne par

conséquent une meilleure modélisation de la distribution de pℓT .
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La procédure de calibration commence par corriger les biais possibles liés à la flèche de la trace

des muons dans les données. Il s’agit d’un effet dépendant de la charge du muon et qui affecte le

moment transverse des muons et avant correction, à une valeur moyenne d’environ 0,05 TeV−1,

introduisant un décalage d’environ 80 MeV dans la masse de W . Pour le corriger, la flèche est

évaluée dans l’espace (η, ϕ) en minimisant la variance de la distribution de masse invariante. Après

correction, le biais est réduit à une valeur moyenne de 2 × 10−4 TeV−1. Cela permet d’améliorer

les performances du moment transverse avec un gain en résolution dans les résonances telles que le

boson Z et le méson J/ψ.

L’alignement de l’ID est réalisé en utilisant une minimisation des résidus χ2 entre les traces

mesurées et les points de mesure. Cependant, certains biais systématiques peuvent échapper à cette

procédure, entraînant des biais résiduels connus sous le nom de modes faibles, qui nécessitent un

traitement différent. La reconstruction de pT dans l’ID peut être affectée par différentes sources

telles que la connaissance incomplète de la quantité de matière dans le détecteur, la mauvaise

modélisation du champ magnétique et les déformations géométriques résiduelles après l’alignement

de l’ID. Ces distorsions peuvent être soit des distorsions réelles du détecteur, soit des déformations

artificielles introduites par la procédure d’alignement elle-même.

Ces biais sont présents dans les données, produisant un effet d’échelle global et des modulations

dans la masse invariante du système dimuon par rapport à la simulation, avec une différence de

0,2%. Pour corriger cela, différents modèles de distorsion géométrique sont proposés. Ceux-ci

prennent en compte les distorsions radiales et longitudinales possibles du détecteur ainsi que les

erreurs de modélisation du champ magnétique. Le modèle radial affecte uniquement la composante

transverse du moment, pT , produisant des modulations dans la masse invariante. Le modèle de

distorsion longitudinale affecte uniquement la composante longitudinale du moment, pZ , générant

une échelle globale et des modulations. Le modèle de distorsion du champ magnétique affecte

les deux composantes du moment, entraînant un effet d’échelle globale dans la masse invariante.

Ces modèles ont été simulés pour produire des modèles à appliquer sur les données à travers un

ajustement analytique dans des intervalles de rapidité. Les résultats ont montré que pour décrire

les données, un modèle à deux paramètres est requis. Dans ce travail, un modèle de distorsion
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magnétique-radial a été considéré dans chaque ajustement, permettant la création d’une carte de

biais en fonction de la rapidité du J/ψ, menant à un biais relatif final dans la région centrale de

⟨εB⟩ = −1.5×10−3 et ⟨εR⟩ = 1.0×10−3 pour les distorsions magnétiques et radiales, respectivement.

Après correction, un accord entre données et simulation au niveau du pourmille a été trouvé pour

ces facteurs d’échelle.

Pour le Spectromètre à Muons (MS), l’alignement est effectué par un système d’alignement

optique qui surveille la position des chambres à muons les unes par rapport aux autres et par

rapport aux marques fiduciaires dans le détecteur. Cependant, le système d’alignement optique

corrige l’alignement interne du MS mais ne voit pas de déplacement global entre le MS et l’ID.

Cela introduit des résidus entre les paramètres des trace ID et MS, d’environ 1,5 millimètres dans

le paramètre d’impact longitudinal, z0, et de quelques milliradians dans l’angle polaire, θ, en plus

d’un effet de charge lié au champ magnétique toroïdal. Pour l’effet dépendant de la charge, une

correction de la force du champ magnétique d’environ 25% dans la région du calorimètre tile est

proposée, corrigeant avec succès les asymétries de charge tandis qu’une carte de correction détaillée

a également été obtenue. Pour corriger le biais associé aux secondes coordonnées, (z0, θ), une carte

des premières coordonnées, (d0, ϕ), a été calculée et injectée comme fonction de correction de la

trace. Après les corrections, un bon accord entre données et simulation a été trouvé.

Une fois les distorsions de l’ID traitées dans les données, une calibration dédiée du moment des

muons (MMC) a été implémentée dans la simulation. Cela vise à corriger les effets d’échelle et de

résolution liés aux imprécisions dans la description de l’intégrale du champ magnétique et des effets

de diffusion multiple. Cela a été réalisé en classant les muons dans différents intervalles de rapidité

et en effectuant un ajustement de la masse invariante des dimuons pour les paramètres d’échelle

et de résolution, où le bruit de fond a été modélisé à l’aide de fonctions analytiques et considéré

comme une source systématique. Les résultats de l’ajustement ont été traités par un ajustement

analytique pour récupérer les paramètres de calibration finaux en fonction de la rapidité du muon.

Après correction, un accord au niveau du pourmille a été trouvé entre données et simulation. Le

résidu après correction entre données et simulation est considéré comme une source d’incertitude

systématique.
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Le présent travail présente enfin une étude détaillée de la masse du boson W , mW , à différentes

énergies de centre de masse et la première mesure de la largeur du boson W , ΓW , réalisée par

ATLAS. Les premières études à 7 TeV ré-évaluent le résultat publié en 2017 avec un ajustement de

profil de vraisemblance, au lieu de la méthode utilisée initialement, ce qui donne une amélioration

de la précision. Un ajustement analytique dans la limite gaussienne a été mis en œuvre, permet-

tant une évaluation correcte des composantes d’incertitude et la décomposition des incertitudes de

l’ajustement dues aux sources systématiques, une amélioration par rapport aux “impacts” habituels.

La valeur de mW a été évaluée avec différents ensembles de PDF, avec une forte dépendance. Cet

effet est réduit lorsque les incertitudes pré-ajustement sont suffisamment agrandies. Pour la largeur

du boson W , la même stratégie d’ajustement et de décomposition des incertitudes a été mise en

œuvre ainsi qu’une étude dédiée de la dépendance PDF. Contrairement à mW , la largeur ne montre

pas une forte dépendance avec les incertitudes de PDF. La valeur finale pour mW est cohérente avec

le résultat précédemment publié par ATLAS avec une amélioration de la précision et est donnée

par,

mW = 80366.5 ± 9.8(stat.) ± 12.5(syst.) MeV = 80366.5 ± 15.9 MeV. (1)

La largeur mesurée,

ΓW = 2202 ± 32(stat.) ± 34(syst.) MeV = 2202 ± 47 MeV. (2)

est en accord avec l’attente du Modèle Standard dans la limite de deux déviations standard.

Actuellement, la collaboration ATLAS travaille à améliorer la précision de mW et les perspectives

de la nouvelle mesure ont également été évaluées en utilisant les jeux de données à faible empilement

à 5.02 TeV et 13 TeV. L’intérêt pour ces jeux de données réside dans les conditions expérimentales

qui permettent d’optimiser la résolution sur le recul hadronique tout en maintenant un signal im-

portant. À cet effet, une campagne de simulation dédiée a été menée pour émuler les conditions

à faible empilement. Différentes sources systématiques ont été évaluées, certaines extrapolées du

régime à fort empilement au régime à faible empilement, et le bruit de fond multijet a été estimé par

une méthode basée sur les données. Une différence remarquable dans cette analyse est la nouvelle
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modélisation de pWT , qui représente l’une des plus grandes sources d’incertitudes. Communément,

cette quantité est modélisée en extrapolant le moment transverse du boson Z, pZT , ce qui introduit

des incertitudes théoriques. Dans le cas à faible empilement, une mesure directe de pWT a été réalisée

en implémentant une déconvolution itérative des effets de détecteur, améliorant cette source sys-

tématique. Deux observables, pℓT et mT sont considérées et une stratégie d’ajustement conjointe a

été mise en œuvre où les corrélations statistiques sont prises en compte par des pseudo-expériences

dans leurs catégories cinématiques respectives. Le résultat conjoint final donne une précision de,

m5.02 + 13 TeV
W = XY Z ± 12.0(stat.) ± 7.7(syst.) MeV = XY Z ± 14.3 MeV. (3)

où la valeur centrale est cachée par la procédure d’ajustement. La précision future a également été
étudiée en exploitant tous les jeux de données ATLAS à fort et faible empilement, c’est-à-dire 5.02

+ 7 + 13 TeV. Cet ajustement conjoint tient compte des corrélations systématiques possibles entre

les différents jeux de données fournissant un résultat final,

m5.02 + 7 + 13 TeV
W = XY Z ± 8.0(stat.) ± 6.5(syst.) MeV = XY Z ± 10.3 MeV. (4)

On s’attend à ce que ce résultat soit encore amélioré une fois que le jeu de données à faible em-
pilement prendra en compte d’autres sources systématiques et de nouvelles variables qui pourraient

potentiellement aider à réduire la précision finale.

Finalement, la compatibilité et la combinaison entre le nouveau résultat d’ATLAS à 7 TeV (ce

travail Eq. (1)) et les autres mesures (LHCb, CDF, D0 et LEP) ont été étudiées avec différents

ensembles de PDFs, avec le PDF CT18 comme référence. Deux combinaisons de toutes les mesures,

incluant CDF (w/ CDF) et sans CDF (w/o CDF), ont été réalisées. La combinaison donne les

moyennes suivantes,

m
w/ CDF
W = 80388.4 ± 10.3 MeV,

m
w/o CDF
W = 80366.1 ± 11.7 MeV.

(5)

où une compatibilité de 0.2% est obtenue lorsque CDF est inclus, et une compatibilité de 92% est
obtenue lorsque CDF est retiré, avec une différence de 3.8σ par rapport à CDF.
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Chapter 1

Theoretical framework

One of the main objectives of physics is to develop a theory of everything that is capable of describing

the world from the sub-atomic scales to the large scales of the universe encoding the four fundamental

interactions: electromagnetic, weak, strong, and gravity. However, up to now, our understanding of

reality can be modelled by two remarkable theories: the General Relativity (GR) and the Quantum

Physics. GR is one of the most sophisticated theories capable of describing the universe at large

scales, predicting exotic objects like black holes and supernovas. The theoretical framework of GR

is based on classical field theory, where space and time are combined into a single concept called

space-time. Its dynamics are described by Einstein’s field equations, which involve a not necessarily

flat metric.

On the other hand, the subatomic world is governed by the Quantum Physics, which has evolved

from Quantum Mechanics to the well-tested Quantum Field Theory (QFT). In particular, several

QFT models are studied and proposed by the theoretical community. However, the most well-

tested theoretical framework to date is the so-called “Standard Model (SM) of Particle Physics”.

The Standard Model encapsulates all the interactions seen in daily lives into three interactions

between particles, resulting as perturbations of quantum fields. The SM has been tested over

many years by collaborations around the world, such as LHC, LEP, Tevatron, etc., demonstrating

a precision never seen before. Despite its numerous successes, intriguing questions persist, with

particular emphasis on the elusive Dark Matter, which constitutes approximately a quarter of the
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universe’s composition.

This chapter is organized as follows, section 1.1 provides a brief review of the Standard Model

theoretical framework providing insights of the latest developments in particle physics. Section 1.2

covers the the W and Z boson production in colliders such as the W boson cross section and different

Parton Distribution Function (PDF) sets. Finally, section 1.3 presents the current results of the W

boson mass, the prediction in the SM and physics beyond the SM.

1.1 The standard model

The Standard Model (SM) [1–4] is probably the most successful theory that describes the fundamen-

tal particles in nature and the interactions between them. The SM encapsulates three interactions,

the electromagnetic and weak interactions are well understood through the electroweak theory (EW)

while the flavour and colour dynamics is modelled by the quantum chromodynamics theory (QCD).

The main elements of the SM are the particles that exchange and carry the interactions that are

found in two kind, the fermions and the bosons. Fermions are particles with half-integer spin values

that obey Fermi-Dirac statistics, which govern their distribution in a system of particles. At the

same time, they are considered the basic building blocks of matter which are divided in two types:

quarks and leptons. Quarks are particles that carry two types of charges, the electric charge and the

color charge, which allows them to interact via the electromagnetic, weak, and strong interactions.

At the same time, they can form composite particles called hadrons, such as protons and neutrons.

On the other hand, leptons are another type of fermions that can interact by electroweak interaction.

Here particles like the electron, muon, neutrinos, etc., are present. Fermions consist of six quarks,

six leptons, and their corresponding antiparticles, organized into three generations with different

masses. Each generation includes three charged leptons (electron e, muon µ, tau τ) with neutral

neutrinos (νe, νµ, ντ ). Additionally, there are two sets of quarks: those with a positive charge (+2/3,

namely up, charm, and top) and those with a negative charge (-1/3, namely down, strange, and

bottom).

As an addition to the fermions, the SM also predicts the existence of elementary bosonic particles.
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For the electromagnetic interaction there is one massless vector boson known as photon (γ) that

carries a zero electric charge and with spin 1. For the strong interaction, there exist 8 massless

vector bosons known as gluons with colour charge, spin 1 and they are the responsible of binding

the quarks to form hadrons (mesons and baryons). Finally, for the weak interaction, several studies

lead to the Glashow, Weinberg and Salam (GWS) theory that predicts the existence of three massive

vector bosons known as Z0, W+ and W−. One of the greatest successes of the GWS theory was its

unification of the electromagnetic interaction with the weak interaction, forming the Electroweak

(EW) theory. Moreover, to give mass to the bosonsW± and Z, the inclusion of a new Gauge field was

needed with a new boson of spin 0 known as the Higgs boson which arises by the Brout-Englert-Higgs

mechanism known as the Spontaneous Symmetry Breaking (SSB). However, the masses predicted

by the theory were so large that powerful colliders were required to study these new particles. The

W and Z bosons were discovered at CERN in 1983 by the UA1 and UA2 collaborations with masses

of about 80 GeV and 91 GeV, respectively. On the other hand, The Higgs boson was the last piece of

the Standard Model puzzle and it was finally discovered at CERN in 2012 by the ATLAS and CMS

collaborations with a mass of 125 GeV [5, 6]. The elementary particles of the SM is summarized in

Fig. 1.1.

Figure 1.1: Elementary particles of the Standard Model (SM) with their respective mass, electric
charge and spin [7].
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1.1.1 The SM lagrangian

The SM is a Quantum Field Theory (QFT) that encompasses three symmetry groups,

SU(3)C ⊗ SU(2)L ⊗ U(1)Y (1.1)

where SU(3)C is the special unitary group that generates the Quantum ChromoDynamics (QCD)

and is the responsible of the strong interactions from which the gauge fields are known as gluons

that carry colour charge. On the other hand, the SU(2)L ⊗ U(1)Y is the group that generates

the Electromagnetic and Weak (Electroweak, EW) interactions mediated by four gauge bosons, one

massless (γ photon) and three massive (W±, Z). In a general landscape, the SM can be summarized

as the sum of the Lagrangians of each interaction, given by,

LSM = LQCD + LEW + LHiggs, (1.2)

where the first two Lagrangians corresponds to the QCD and EW interactions and LHiggs (de-

scribed in subsection 1.1.2) is the Higgs boson Lagrangian. For an arbitrary symmetry group, the

Lagrangian can be expressed as,

L = −1
4F

a
µνF

aµν

+ iψ̄γµDµψ + h.c.

+ ψ̄iyijψjϕ+ h.c.

+ (Dµϕ)†(Dµϕ) − V (ϕ),

(1.3)

with F a
µν the field strength tensor given by,

F a
µν = ∂µA

a
ν − ∂νA

a
µ + gfabcAbµA

c
ν , (1.4)
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where Aaµ are the gauge fields, g is the coupling constant and fabc are the structure constant of the

group. γµ are the gamma matrices and Dµ is the covariant derivative given by,

Dµ = I∂µ − igT aAaµ, (1.5)

where I and T a are the identity matrix and the generators of the Lie group, respectively. The

covariant derivative shows that Gauge bosons are coupled directly with the fermions to the so-

called tree level Feynman diagram while Eq. (1.4) shows that for more than one generator of a

non-abelian group the gauge field can interact with itself.

In Eq. (1.3) the first term describes the dynamic of the gauge bosons with a running over all

the gauge fields, the second term is the kinematics of the fermions that encodes also the interaction

between the matter(anti-matter) fields ψ (ψ̄) and the gauge bosons. The third term is the so-called

Yukawa sector that describes the interaction between the Higgs field ϕ and the fermions ψ and is

the responsible to give the mass to the fermions via the SSB. Finally, the fifth term corresponds to

the kinematics of the Higgs field while the last one is the potential term of the Higgs through which

it acquires its mass and is given by,

V (ϕ) = −µ2|ϕ|2 + λ|ϕ|4, µ, λ > 0 (1.6)

From Eq. (1.3) all the interactions can be obtained by setting the appropriate groups. For example,

the electromagnetism can be described by the abelian group U(1),

LQED = −1
4FµνF

µν + ψ̄(iγµDµ −m)ψ. (1.7)

with only one generator and that is invariant under a local gauge transformation,

ψ → eiθ(x)ψ, Aµ → Aµ + ∂µθ(x), (1.8)

that at the same time, it imposes the condition to a massless gauge boson, this is, the photon.
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The QCD lagrangian can be obtained by introducing a non-abelian Lie group SU(3) leading to,

LQCD = −1
4G

a
µνG

aµν + ψ̄i(iγµ(Dµ)ij − δijm)ψ. (1.9)

where ψi(x) is the quark field in the fundamental representation of the SU(3) gauge group with i

running 1 to 3. In this case, the generators are given by T a = λa/2 with λa the Gell-Mann matrices

for a = 1, 2, ..., 8. This leads to 8 massless gauge fields Aaµ known as gluons. Since this is a non-

abelian theory the strength tensor involves the terms AbµAcν which imply self-interactions between

the gluons and the kinematic term also implies the triplet and quartic self-interactions. QCD also

predicts the coupling to be small at short distances such that the quarks behave as free particles

within hadrons. In the perturbative regime, it is possible to establish QCD Feynman rules, while

for the non-perturbative regime, the lattice QCD studies are implemented.

The ElectroWeak (EW) interaction can be obtained by introducing the SU(2)L×U(1)Y symme-

try. Here the U(1) has only one generator, Y , corresponding to the weak hypercharge while SU(2)

has three generators Ta = σa/2 (a = 1, 2, 3) where σa are the Pauli matrices. Then, the lagrangian

is given by,

LEW = −1
4W

µν
a W a

µν − 1
4F

µνFµν

+ ψ̄Liγ
µDµψL + ψ̄Riγ

µDµψR

(1.10)

where W a
µν = ∂µA

a
ν − ∂νA

a
µ + gfabcAbµA

c
ν and F µν = ∂µBν − ∂νBµ are the field strength tensor

for the SU(2) and U(1) gauge fields, respectively. Notice that W a
µν is non-abelian and it contains

self-interaction terms between the weak gauge bosons.

Different results [8–10] have shown that the weak interaction has a chirality nature, leading to

the differentiation of left-handed and right-handed particles. Then ψL, ψR are the left-handed and

right-handed lepton doublet and charged lepton singlet, respectively, as follows,

ψL → EL =

 e

νe


L

, QL =

 u

d


L

, (1.11)
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with Y = −1/2 and Y = +1/6, respectively. While for the right-handed field there are eR and

uR with Y = −1 and Y = +2/3, respectively. This implies that the right-handed and left-handed

particles do not transform in the same way, such that the mass term ψ̄LψR + ψ̄Rψ̄L is no longer

invariant under SU(2)L×U(1)Y and is necessary a new mechanism to provide mass to the fermions.

1.1.2 Spontaneously Symmetry Breaking

The described EW lagrangian works only for massless bosons which is not the case according to the

experimental observations. To fix this, the electroweak symmetry should be spontaneously broken

from SU(2)L × U(1)Y to U(1)EM group by the so-called Brout-Englert-Higgs mechanism [11, 12].

For this, a SU(2) doublet ϕ is introduced,

ϕ =

 ϕ+

ϕ0

 , (1.12)

where ϕ+ and ϕ0 are positive and neutral electric charged fields. The lagrangian for ϕ is given by,

LHiggs = (Dµϕ)†(Dµϕ) − V (ϕ), (1.13)

with

Dµ = ∂µ − ig
σa
2 A

a
µ − ig′Y

2 Bµ. (1.14)

Where g, g′ are the coupling constants to Aaµ and Bµ, respectively. The potential V (ϕ) is given

by Eq. (1.6) with a non-trivial minimum of value v ≈ 246GeV called “vaccuum expectation value

(v.e.v)” such that ϕ can be expanded around the v.e.v giving place to a physical particle known as

the Higgs boson with mass,

mH =
√

2λv. (1.15)
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Figure 1.2: Different couplings between the Higgs boson and the EW Gauge bosons predicted by
the SM [13].

From the covariant derivative, the mass of the Gauge bosons can be obtained to be,

mW± = vg

2 ,

mZ = v

2

√
g2 + g′2.

mγ = 0.

(1.16)

This not only predicts the existence of the Higgs boson but also how it interacts with the electroweak

gauge bosons (W±, Z) and itself as shown in Fig. 1.2. To provide mass to the fermions via this

mechanism, an extra term needs to be introduced, this is, the Yukawa lagrangian given by,

LYuk,e = −YeĒL · ϕ eR + h.c. (1.17)

for the leptons while for the quarks,

LYuk,q = −YdQ̄L · ϕ dR − YuQ̄L · ϕ̃ uR + h.c. (1.18)

where ϕ̃ is the conjugate of the Higgs doublet. In this way, the mass of the fermions is given by,

mf = 1√
2
Yfv. (1.19)
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The Higgs field, through spontaneous symmetry breaking (SSB), is the mechanism responsible for

providing mass to the particles in the Standard Model (SM), and they are coupled to the Higgs

boson through Yukawa couplings. These phenomena have been experimentally verified by the

ATLAS and CMS collaborations, which officially announced the discovery of the Higgs boson in

2012 [5, 6]. Since its discovery, the SM has undergone extensive testing, particularly regarding the

coupling of the Higgs boson to SM particles. These findings are illustrated in Fig. 1.3.

(a) (b)

Figure 1.3: (a) Distribution of candidate Higgs events in H → ZZ∗ → 4ℓ at 13 TeV. The excess of
events around 125 GeV is consistent with SM predictions for the Higgs boson [14] (b) Measurements
of the coupling of the Higgs-boson to fermions and vector bosons as a function of the particle mass
compared to the SM expectation [15].

Despite numerous experimental tests and predictions still awaiting discovery, the Standard Model

(SM) remains incomplete. Eq. (1.3) fails to explain all observed natural phenomena. For example,

the mechanism detailed above do not explain why the particles have the mass they have, the origin

of the neutrino mass and the order of magnitude, dark matter candidates, matter anti-matter

asymmetry, etc. Furthermore, it cannot be reconciled with General Relativity.
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1.1.3 The W -boson mass in the SM

The SM lagrangian predicts the massive electroweak bosons originated after Spontaneous Symmetry

Breaking with a mass resulting from the Higgs sector. A simple relation among the Z and W boson

is known as the custodial symmetry,

mZ = mW/ cos θW , (1.20)

where θW is the Weinberg angle given by tan θW = g′/g. The significance of custodial symmetry

lies in its role in constraining the masses of the W and Z bosons relative to each other. In theories

where custodial symmetry is exact, the masses of the W and Z bosons are degenerate, meaning they

are equal. However, in reality, custodial symmetry is broken by quantum corrections. Nevertheless,

the degree to which custodial symmetry is broken can still provide insights into physics beyond the

Standard Model. Taking into account the quantum corrections, the W boson mass can be expressed

as,

m2
W

(
1 − m2

W

m2
Z

)
= πα√

2GF

(1 + ∆r) ⇒ m2
W = m2

Z

(
1
2 +

√
1
4 − απ√

2GFm2
Z(1 − ∆r)

)
(1.21)

where α is the fine-structure constant, GF is the Fermi constant and ∆r represents radiative correc-

tions to the electroweak interactions. Notice that mW at the leading order depends in well known

parameters that have been measured with high precision such asmZ = 91.1876±0.0021 GeV [16, 17],

GF = 1.1663787(6) × 10−5 GeV−2(0.5ppm) [18] and α−1 = 137.035999206(11) [19] as shown in

Fig. 1.4.

This means that the main source of uncertainty is carried in the radiative corrections ∆r that

accounts for quantum corrections in the SM (and extensions of it) arising from virtual particle

loops in Feynman diagrams, particularly those involving the exchange of photons γ and Z bosons.

These corrections can arise from the renormalization of parameters and can affect the predictions

of certain observables in electroweak processes. At the one loop level, the quantum corrections
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(a) (b)

(c)

Figure 1.4: Precise measurements of mZ , muon lifetime and fine-structure constant: (a) Z− peak
cross section observed by LEP in e+e− → hadrons and compared with the complete Standard
Model prediction [17]. (b) Time dependence of the muon arrival rate (upper panel) and decay
positron counts (lower panel) to determine GF [18]. (c) Precision measurements of the fine-structure
constant [19].
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involving fermionic contributions in ∆r allows to find the expression,

∆r = ∆α− cos θ2
W

sin θ2
W

∆ρ+ ... (1.22)

where ∆α ∝ logmf is the shift in the fine-structure constant, ∆ρ involves contributions coming

from the leading contribution to the ρ = m2
W/m

2
Z cos2 θW parameter, which relates to the isospin

symmetry breaking in the Higgs sector of the Standard Model. It represents the difference between

the measured value of sin2 θW and its tree-level prediction in the Standard Model. In other words,

it accounts for quantum corrections higher order corrections (beyond the tree-level approximation)

that are quadratically dependent on the top quark mass, mt, and Higgs mass mH effects. The

leading order terms in ∆ρ for mW ≪ mH is given in Eq. (1.23) [20].

∆ρ = 3GFm
2
W

8
√

2π2

[
m2
t

m2
W

− sin2 θW
cos2 θW

(
ln
(
m2
H

m2
W

)
− 5

6

)
+ . . .

]
(1.23)

However, up to date, Higher QCD corrections in O(ααs), O(αα2
s) and O(αα3

s) are known [21–24].

While the full electroweak two-loop contribution in ∆r has been fully calculated [25–28] and beyond

the two-loop up to four-oop only fermionic contributions are known [29]. Most recent calculations for

the leading three-loop contributions of O(G3
Fm

6
t ) and O(G2

Fαsm
4
t ) have been obtained for arbitrary

values of the Higgs mass (expansions around mH = mt and mH ≪ mt) [30].

In this way, the calculation of ∆r = ∆r(mW ,mZ ,mH ,mt, ...) to obtain the W boson mass

needs to be obtained by iterative procedures since it depends of mW itself. This allows to not only

obtain the W mass but also to set constraints in the Higgs boson mass that can be modified due

to the uncertainties in the experiments, physics modelling, theory prediction, etc. Taking this into

account, the prediction of the W boson mass has been carried out by the GFitter group [31, 32]

using the least squares χ2 method considering NNLO theoretical predictions, prospects for the LHC

and ILC, new kinematic of the top quark and W boson mass measurements from the LHC, sin2 θℓeff

(effective leptonic weak mixing angle) result from the Tevatron, and a new evaluation of the hadronic
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contribution to α(M2
Z). This leads to an updated result in 2018 of the W boson mass to be,

mW = 80.3535 ± 0.0027mt ± 0.0030δtheomt

± 0.0026MZ
± 0.0026αs

± 0.0024∆αhad ± 0.0001MH
± 0.0040δtheoMW

GeV

= 80.354 ± 0.007tot GeV,

(1.24)

that corresponds to a numerical approximation of the theoretical expression with the largest un-

certainties due to mt and mZ , respectively. Result from the GFitter group is shown in Fig. 1.5

Figure 1.5: Contours at 68 and 95% CL obtained from scans of mW versus mt for the fit including
(blue) and excluding the Higgs boson mass mH measurement (grey), as compared to the direct
measurements (green vertical and horizontal 1σ bands, and two-dimensional 1σ and 2σ ellipses)
and compared to the direct measurements of mW and mt [31].

1.1.4 Physics Beyond the SM

Even though the W boson mass can be predicted with high precision in the SM framework, this is

not fully complete since several limitations to current problems are still open like neutrino mass,

matter anti-matter asymmetry, dark matter, etc. For this reason, several scenarios propose new
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alternatives to the SM like Grand Unified Theories (GUTs), Loop Quantum Gravity, String Theory

and Extra Dimensions, etc. While others are extensions of the SM like SUpersymmetry (SUSY),

Dark Matter, Composite Higgs, etc.

In particular, SUSY is an extension of the Standard Model that proposes a symmetry between

fermions and bosons, introducing supersymmetric partners to each particle in the SM. Since these

new particles are out of the SM and they are so massive, they cannot be observed with the current

experiments. However, in the current energy regime indirect effects of SUSY could be manifested

through radiative corrections, ∆r, that potentially could affect the running of the Higgs boson mass

parameter affecting the W boson mass indirectly.

SUSY has been largely studied through the years with well established theoretical results. The

simplest one is known as the Miniminal Super Symmetric Model (MSSM) in which each particle has a

superpartner with a spin differing by 1/2, such as electrons with selectrons and quarks with squarks.

The model also includes two Higgs doublets, resulting in five physical Higgs bosons. To prevent

rapid proton decay and stabilize the lightest supersymmetric particle (LSP), often the neutralino

and a dark matter candidate, R−parity is introduced. Supersymmetry is broken through soft

SUSY-breaking terms, allowing sparticles to have distinct masses. The MSSM addresses issues like

the hierarchy problem and unifies forces, with potential observable signatures at particle colliders

and implications for cosmology. In this framework, the radiative corrections to the mW include

contributions from sfermions, charginos, neutralinos and the Higgs bosons that enter at one-loop

level. Recent study in Ref. [33] evaluates the W boson mass in the MSSM considering a full one-loop

calculation, all available MSSM two-loop corrections as well as the full Standard Model result. The

mass shift δmW arising from changing ∆r by the amount ∆rSUSY is given by,

δmW = −mref
W

2
s2
W

c2
W − s2

W

∆rSUSY. (1.25)

with ∆rSUSY the MSSM contribution and mref
W = 80.425 GeV. In the MSSM the higgs field and

the scalar superpatners are related through the triliniear Higgs-t̃, b̃ coupling At,b and the different

Higgs are mixed through the Higgs mixing parameter µ. To these, physical phases ϕAt + ϕµ and
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Figure 1.6: Contour lines of the squark contributions to δmW in the plane of (ϕAb
+ ϕµ) and |µ|,

where ϕA ≡ ϕAt = ϕAb
[33].

ϕAb
+ ϕµ can be associated such that the variation of ϕA + ϕµ can affect the shift in mW by more

than 20 MeV as shwon in Fig. 1.6. As in the SM, mW has a dependency with the top quark mass

and the MSSM can be scanned to see the values of mW as shown in figure 1.7

SUSY is not the only BSM extension that has studied the indirect search through mW , since

other scenarios such as Dark Matter (DM), shed light on the W boson mass anomalies. One

scenario is to consider the U(1) dark sector as an extension of the SM [34] in which DM candidates

with mass ranging from several hundred GeV to TeV can mix up with the SM particles. These

new particles are capable of producing shifts in the W mass value for at most 10 MeV while more

complex extensions can easily shift mW by 77 MeV. These extensions allow the Z boson to mix up

with the DM candidates giving place to a massive Z ′ gauge boson that can shift mW by,

∆m2
W = c2

Wm
2
Z

c2
W − s2

W

(
δ2s2

W c
2
W

) (mZ

mZ′

)2
, (1.26)

with δ the kinetic mixing parameter [35]. These parameter allows to scan the DM impact in the W

boson mass as shown in Fig. 1.8 in which the red region is ruled by experimental constraints while
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Figure 1.7: Prediction for mW in the MSSM and the SM as a function of mT in comparison with
the experimental results for mW and mT for Tevatron / LHC and the ILC. [33].

for achieving δmW ∼ 77 MeV larger values of the kinetic term are required leading also to a more

massive Z ′.

Although the MSSM and DM are good candidates, they are not the only one. Other models

that extend the SM can provide new signatures that can potentially affect mW such as Axion-like

particles, vector-like leptons, leptoquarks, etc [36–38]. These hypothetical particles could contribute

into higher order loops and modify the radiative corrections in ∆r that could be measured in

experiments. However, many of these new candidates are currently out of the range of detection

that experiments like the LHC can achieve but probably new experiments such as FCC or CEPC

could potentially detect [39–41].

1.2 W and Z boson production in colliders

The SM shows that the weak vector gauge bosons couple to the fermions at the tree level such that

they can be produced by quark anti-quark annihilation,

qq̄′ → W, qq̄ → Z/γ. (1.27)
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Figure 1.8: W boson mass enhancement generated by the dark U(1) extension of the SM with the
Z ′ dark boson [35].

However, due to the QCD confinement, it is not possible to have quarks independently and for

that reason is necessary to use hadrons, h, to generate the processes as in (1.27). For this, hadron

colliders such as the LHC, play a crucial role by colliding proton beams at high energy leading to

the production of vector bosons, V , plus several other particles, X, in the final state,

h1(p1) + h2(p2) → V +X, (1.28)

with p1 and p2 the momenta of the hadrons. A difficulty of the colliders is that hadrons are composite

objects with quarks and gluons commonly called partons. In the case of the LHC, this implements

protons as hadrons. Protons are composite states of two up quarks and one down quark (uud)

known as the valence quarks that interact by the gluon exchange. However, the complexity of the

QCD nature inside the proton leads to the gluon-gluon self-interaction producing more gluons but

also the production of quarks known as sea quarks. To describe the internal structure of the proton,

the so-called Parton Distribution Functions (PDFs) are used.
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1.2.1 Parton Distribution Functions

To understand the proton-proton collisions is necessary to disentangle the dynamic inside of the

composite states as a function of its partons. Several studies [42–45] have performed lepton-proton

Deep Inelastic Scattering (DIS) to study the distribution of proton’s momentum among the partons

through the so-called DGLAP evolution equations [46–50] as a function of the energy scale Q2.

These equations are given by,

∂fi(x,Q2)
∂ lnQ2 =

∑
j

∫ 1

x

dz

z
Pij(z, αs(Q2))fj

(
x

z
,Q2

)
. (1.29)

Where fi(x,Q2) is the so-called Parton Distribution Function (PDF) that represents the probability

density to find a parton i carrying momentum fraction x at energy scale Q. In Eq. (1.29), ∑j

runs over all possible parton types j. It indicates that the evolution of the PDF for parton type

i depends on contributions from all other parton types j. ∂fi(x,Q2)
∂ lnQ2 represents the evolution of the

parton distribution function (PDF) for parton type i with respect to the logarithm of the momentum

transfer scale Q2. The integral
∫ 1
x
dz
z

is taken over the variable z, which represents the fraction of

the parton’s momentum after splitting. The integration limits are from x to 1, covering all possible

values of z such that x/z remains a valid fraction (between 0 and 1). Pij(z, αs(Q2)) are the splitting

functions (or kernels) which describe the probability of a parton of type j splitting into a parton

of type i carrying a fraction z of the original parton’s momentum. The splitting functions depend

on the strong coupling constant αs(Q2), which varies with the scale Q2. fj
(
x
z
, Q2

)
is the parton

distribution function for parton type j evaluated at the scaled momentum fraction x/z and the

same scale Q2. It represents the distribution of parton j before splitting [47–50].

Due to the complexity of the problem, an exact analytical solution cannot be found to study

the dependence of x as a function of Q2. However, some perturbative analytical solutions for small

values of x can be obtained in the Mellin space as shown in [51–53] that is not only useful for

particular scenarios but it also allows to constrain the uncertainties analytically.

In the general case, several PDFs sets [54–62] can be generated by performing global fits to the

data from a wide range of high-energy particle collisions, such as deep inelastic scattering (DIS),
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inclusive jet production, vector boson production and hadron collider experiments. They aim is to

directly extract the parton distributions that best describe the experimental measurements, such

that the experimental uncertainties are propagated through the fitting procedures to provide the

uncertainties in the PDF. For this, a function form with free parameters at the starting scale (low

Q2) is chosen and the evolution is performed using the DGLAP equations to evolve the PDFs to

the scales of the data adjusting the free parameters to have an agreement with it. Examples include

the NNPDF (NNPDF3.0, NNPDF3.1) PDF [61, 62] that implements neural networks to efficiently

fit and interpolate PDFs from a wide range of experimental data, the CTEQ (CTEQ6, CTEQ6.1)

PDF [59] which utilizes perturbative QCD calculations and parameterizations based on specific

models, among others.

The PDFs fitting machinery is described in Fig. 1.9 while in Fig. 1.10 the PDFs for Q2 = 10 GeV2

andQ2 = 104 GeV2 are shown. These plots illustrate the behavior of parton distribution functions as

a function of the momentum fraction x at different energy scales Q2. They show how different parton

species contribute to the internal structure of the proton, with gluons and sea quarks dominating at

low x and valence quarks being more significant at higher x. The evolution of these distributions with

Q2 is governed by the DGLAP equations, reflecting the changing dynamics of parton interactions

at different energy scales.

Figure 1.9: Scheme of the PDF fitting machinery scheme [63].
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Figure 1.10: MSTW2008 parton distribution functions for Q2 = 2 GeV2 and Q2 = 104 GeV2 [64].

1.2.2 W and Z boson cross section

The cross section (σ) is a measure of the probability that a particular interaction will occur when

two particles collide. It represents the effective area presented by a target particle for an interaction

to take place. Two types of cross section are of interest: the total cross section, σ, represents

the probability of any interaction happening between the colliding particles including all possible

outcomes. On the other hand, the differential cross section, dσ, gives the probability of a specific

outcome occurring within a certain range of angles, energies, or momenta. It provides more detailed

information about the interaction process.

In hadron colliders, two QCD regimes can take place, known as hard QCD and soft QCD. The

hard QCD regime typically refers to processes involving high momentum transfers or high-energy

collisions. In these processes, the momentum transfer Q2 between the initial and final-state particles

is large, typically on the order of the energy scale of the process itself. For that reason, perturbative

QCD (pQCD) calculations are usually applicable in the hard regime, where the strong coupling

constant is small, allowing for reliable perturbative expansions.

On the other hand, the soft QCD regime, involves processes with low momentum transfers or

low-energy interactions. This means, the momentum transfer is small compared to the energy scale

Q2 of the process, and particles typically have momenta comparable to or smaller than the QCD
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scale, ΛQCD. These regime often involve non-perturbative effects of QCD, where the strong coupling

constant is large and perturbative methods are not applicable.

To produce vector bosons like the W boson in hadron colliders, the large momentum transfer

Q2 between the partons is needed, i.e. hard QCD. For this, the ability to separate the short

distance physics and the long distance physics is the key to study the perturbartive QCD known as

factorization theorem. This establishes that it exists a “factorization scale µF ” (that separates

the hard QCD and soft QCD regimes) for which the cross section can be factorized into separate

parts containing the long distance effects in the PDFs and the hard scatter process of the partons on

its sub-cross section σab→V . The sub-cross section σ̂ab→V is computable at a renormalisation scale

µR. Taking this into account, the cross section of the hadron-hadron collision process in (1.28) can

be written as,

σh1h2→V+X =
∑
ab

∫ 1

0
dxadxbfa/h1

(
xa, µ

2
F

)
fb/h2

(
xb, µ

2
F

)
σ̂ab→V (µF , µR), (1.30)

where fa,h1 and fb,h2 are the PDFs of the parton a in hadron h1 and parton b in hadron h2, respec-

tively. Moreover, due to the factorization theorem the parton cross section can be expressed in terms

of the strong coupling, µR. Both PDFs and the σab→V can be computed at Leading-Order (LO),

Next-to-Leading-Order (NLO) or Next-to-Next-to-Leading-Order (NNLO). For this, is convenient

to express the partonic cross section as a series in the strong coupling constant, αs, and choosing

the factorization scale equal to the renormalization scale and equal to the vector boson mass, i.e.

µF = µR = mW/Z . In this way, the cross section can be express as follows,

σh1h2→V+X =
∑
ab

∫ 1

0
dxadxbfa/h1

(
xa, µ

2
F

)
fb/h2

(
xb, µ

2
F

)
×
[
σ̂0 + αs

(
µ2
R

)
σ̂1 + α2

s

(
µ2
F

)
σ̂2 + ...

]
ab→V

,

(1.31)

Several experiments have measured the cross sections of different particles and processes. The

results performed by the ATLAS collaboration are shown in Fig. 1.11 while the SM cross section

prediction at different centre-of-mass energy
√
s is shown in Fig. 1.12.

It is convenient to express the cross section as a function of kinematic variables such as the
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Figure 1.11: cross-section measurements in pp collisions at
√
s = 7, 8, 13 TeV for a variety of SM

processes by the ATLAS collaboration [65].

rapidity, y, of the boson given by,

y = 1
2 log

(
E + pz
E − pz

)
. (1.32)

and the parton momentum fraction,

xa = M√
s
ey, xb = M√

s
e−y, (1.33)

where M is the boson mass and
√
s the centre-of-mass energy of the colliding hadrons. Therefore,

different values of M and y probe different values of x and Q2. Using this, the lowest order of the

differential cross section in the perturbative expansion can be expressed as a function of the boson

rapidity to be,
dσ

dY
= 1
s

∑
ab

fa/h1
(
xa,M

2
)
fb/h2

(
xb,M

2
)

× σ̂0(M)|ab→V , (1.34)

in which the rapidity distribution at LO depends directly to the PDFs. In this way, by measuring

Eq. (1.34) for Q2 = M2 the PDFs can be constrained for a given x. Similarly, using the boson

rapidity distributions could also provide additional information to constrain the parton density

functions. Fig. 1.13 shows the theory predictions of the rapidity distributions at LO, NLO and
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Figure 1.12: Standard Model cross sections at the Tevatron and LHC colliders as function of the
centre-of-mass energy

√
s [66].
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NNLO for the W± and Z bosons at
√
s = 14 TeV. The significant reduction in the uncertainty

bands from LO to NNLO indicates that higher-order corrections greatly enhance the precision of

these predictions. This increased precision is crucial for reducing theoretical uncertainties in the

cross-section measurements, thereby allowing for more accurate comparisons with experimental

data.

(a) (b)

Figure 1.13: Theory predictions at LO, NLO and NNLO of the rapidity distributions for (a) W
and (b) Z boson production in proton-proton collisions at

√
s = 14 TeV. The bands indicate

the factorization and renormalization scale uncertainties, obtained by scale variations in the range
mW/Z/2 ≤ µ ≤ 2mW/Z [67].

Next to the rapidity, one of the interesting quantities to look at is the boson transverse momen-

tum, pT . At the Leading Order (LO) the pT of the boson with respect to the beam axis is expected

to be zero. However, in the Next-to-Leading-Order case the partons can contribute to the pT in two

scenarios. The low pT scenario is generated by multiple soft or almost collinear partons, while the

high pT scenario is dominated by the emission of one or multiple hard partons. The relevant NLO

processes are qq̄ → V g, qg → V q, etc. Similarly, the NNLO processes like the gluon fusion can be

included and convoluted with the PDFs to obtain the differential cross section as shown in [68].

In particular, for large momentum scenario pT ≫ M the differential cross section can be obtained

while for the low pT case several divergences appear that can be treated in perturbation theory by

the resummation formalism. In this way, an expression can be found but without including the
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emission of multiple gluons.

In practice, to model the transverse momentum of the vector bosons, pVT , numerical approaches

are required. For example, the modelling of the low pT regime can be carried out by ResBos [69, 70]

by resumming the next-to-next-to-leading-logarithms (NNLL). Another approach is by the tunning

of the parton shower Monte Carlo generators and analytical resummation free parameters to match

the pT in data through programs like DYTurbo [71], Pythia [72], Herwig [73] and Sherpa [74].

Recent study in Ref. [75] developed by the ATLAS collaboration have performed the precise mea-

surement of the transverse momentum of the W and Z bosons at
√
s = 5 and 13 TeV with low

pile-up.

1.3 Status of W -boson mass measurements

The W boson mass, mW , can be measured by different statistical methods and using different

observables. One of the usual approaches is through the lepton transverse momentum, pℓT , as it is

less sensitive to the pile-up and provides a good resolution. However, pℓT is sensitive to the modelling

of the W boson transverse momentum pWT . An alternative observable and directly related to the W

boson mass is the transverse mass, mT , that is less sensitive to the pWT variations but its statistical is

more sensitive to the pile-up. Other observables as the lepton rapidity, ηℓ, and the hadronic recoil,

uT , can also be included to constrain the fits and to reduce the systematic uncertainties such as

the ones related to the PDFs. Other approaches include simultaneous fits to the q/pT distrbutions

of the boson candidates. In principle, a good determination of mW would exploit all the possible

variables to reduce the systematic uncertainties that could possible bias the final result. However,

it is well known that each experiment has its own limitations and it can only access to specific

information. Fig. 1.14 shows the pℓT , mT and q/pT distributions in W → µν decay channel used

by the ATLAS [76], LHCb [77] and CDF [78] collaborations, respectively to determine the most

accurate values of the W boson mass.

The first experiments that measured the W boson mass were the UA1 and UA2 collaborations

located at CERN’s Super Proton Synchrotron (SPS) using proton anti-proton collision pp̄ → W±+X
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(a) (b)

(c)

Figure 1.14: The (a) pℓT , (b) q/pT and (c) mT distributions for W events in the muon decay channel
by the ALTAS [76], LHCb [77] and CDF [78] collaborations.
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during the 1980s. These experiments were crucial in the discovery of the W and Z bosons, which

confirmed the electroweak theory and led to Nobel Prizes for Carlo Rubbia and Simon van der Meer

in 1984. However, while these experiments played an important role in establishing the existence of

the W and Z bosons, they did not measure the W boson mass with the precision achieved by later

experiments, their result was [79],

mUA
W = 81+5

−5 GeV. (1.35)

After UA, The LEP (Large Electron-Positron Collider) experiments, including DELPHI, ALEPH,

L3, and OPAL, were conducted at CERN from 1989 to 2000. LEP was a predecessor to the LHC

and operated at energies up to 209 GeV, making it the most powerful electron-positron collider of

its time. While the LEP experiments focused on a wide range of physics topics, including precision

tests of the Standard Model, searches for the Higgs boson, and studies of electroweak interactions,

they also made measurements of the W boson mass. The primary method LEP used to measure

the properties of the W boson involved the process of “radiative return” in the production of W

boson pairs. In e+e− collisions at high energies, the electron and positron can annihilate to produce

a virtual photon (γ∗), which subsequently decays into a pair of particles, such as a W± boson or

Z boson. This process is known as radiative return because the virtual photon is radiated off the

initial e+e− pair. In the case of W boson studies, the aim is focused on the virtual photon decay

into W+W− pairs that later on produce observable final states, such as charged leptons (electrons,

muons, or taus) and their corresponding neutrinos, or quarks. LEP detectors, such as those in

the ALEPH, DELPHI, L3, and OPAL experiments, were designed to measure the properties of

the particles produced in the W+W− decay allowing them to reconstruct the kinematic properties

of the W bosons, such as their momentum and energy. The primary type of measurement LEP

performed regarding the W boson production was the measurement of its production cross section

σWW . By comparing the observed production rate of W+W− pairs to theoretical predictions based

on the Standard Model, LEP experiments could extract information about the W boson’s mass,

coupling strengths, and other properties. The result from LEP [80] was,

mLEP
W = 80375 ± 25(stat.) ± 22(syst.) MeV = 80376 ± 33 MeV (1.36)
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The next W mass measurement was carried out by the Tevatron collaboration, which consisted

primarily of the CDF (Collider Detector at Fermilab) and D0 experiments that made significant

contributions to the measurement of the W boson mass using proton-antiproton collisions. This

collider at Fermilab accelerated protons and antiprotons to high energies and collided them head-

on at the center of the CDF and D0 detectors. These collisions produced a variety of particles,

including W bosons. The primary production channels for W bosons involved quark-antiquark

annihilation (qq̄ → W ). The most common decay modes of the W boson are into a charged lepton

(electron or muon) and a neutrino (W → ℓν). These leptonic decay channels were particularly

useful for the measurement of the W boson mass because they provided clean and well-identified

final states. Since neutrinos are weakly interacting particles that escape detection, their presence

was inferred indirectly from the missing transverse momentum in the detector. By balancing the

momentum in the transverse plane (perpendicular to the beam direction), researchers estimated

the momentum of the neutrino and thus reconstruct the full kinematics of the W boson decay.

CDF and D0 employed sophisticated event reconstruction algorithms to identify and reconstruct

the decay products of the W boson in their detectors. By analyzing large datasets of collision events,

researchers selected candidate events consistent with the production and decay of W bosons and

applied statistical techniques to extract the W boson mass. The Tevatron experiments measured

the production cross section of W bosons and compared it to theoretical predictions. Additionally,

they performed template fits to the observed kinematic distributions of W boson decay products,

such as the transverse mass distribution, to extract the W boson mass and its uncertainty to be [81],

mTeVatron
W = 80387 ± 16 MeV, (1.37)

that including measurements obtained in electron-positron collisions at LEP yields the world average

mWorld Avg
W = 80385 ± 15 MeV. (1.38)
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In 2017 the ATLAS collaboration performed the W boson mass measurement at
√

7 TeV [76] to be,

mATLAS 2017
W = 80370 ± 19 MeV. (1.39)

followed up by the LHCb mW measurement in 2022 [77],

mLHCb
W = 80354 ± 32 MeV. (1.40)

However, the most precise mW measurement published up to date is the CDFII 2022 [78] result,

mCDFII
W = 80434 ± 9 MeV, (1.41)

which is in tension with the SM prediction up to 7σ.

The compatibility and combination of the world W -boson mass measurements using ATLAS,

LHCb, CDF, and D0 results have been largely studied in [82] where for all mW values available up

to date are combined to obtain the following mW value,

mW = 80395 ± 12 MeV. (1.42)

with a 0.5% compatibility while a 91% compatibility is obtained when the CDF measurement is

removed, leading to,

mW = 80369 ± 13 MeV. (1.43)

which differs by 3.6σ from the CDF result. The latest mW obtained by the global analysis of

electroweak data in the Standard Model [83] using state-of-the art experimental and theoretical

results, including a determination of the electromagnetic coupling at the electroweak scale based on

recent lattice calculations leads to a SM value of,

mSM
W = 80355 ± 6 MeV. (1.44)
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Figure 1.15: Current status of the W boson mass including the latest world average with and
without CDF II (2022) result.

The current status of the W boson mass is shown in Fig. 1.15. Another parameter of the W boson

that, unlike the W boson mass, has not been extensively measured by different collaborations is

the W boson width, ΓW . This can be calculated in the SM and the GFitter group computed the

predicted value [31] to be,

ΓW = 2091 ± 1 MeV. (1.45)

While the latest global electroweak fit [83] provides the SM value to be,

ΓSM
W = 2088 ± 1 MeV. (1.46)

The value of mW in (1.44) and ΓW in (1.46) are taken as the SM reference value for the present

work. Recently, the ATLAS collaboration has performed the measurement of both mW and ΓW

using the
√
s = 7 TeV dataset [84] and the results are largely discussed in section 6.6.

30



Chapter 2

The ATLAS detector at the CERN LHC

The Large Hadron Collider (LHC) stands as the most advance machine of particle acceleration

developed by the European Organization for Nuclear Research (CERN) and currently with a large

worldwide network in several countries of the world [85]. Based near Geneva, it occupies an average

depth of 100 meters within a 26.7 km circumference tunnel originally constructed for its predecessor,

the Large Electron-Positron Collider (LEP). The LHC is engineered to accelerate protons to energies

reaching 7 TeV and heavy ions to 2.56 TeV per nucleon. Within its structure, particles are collided

at four distinct interaction points, where specialized detectors are located: the Large Ion Collider

Experiment (ALICE) [86], the Large Hadron Collider beauty (LHCb) [87], the Compact Muon

Solenoid (CMS) [88], and the A Toroidal LHC ApparatuS (ATLAS) [89]. ALICE’s is focused on

several heavy ions studies from which the quark-gluon plasma is probably one of the main core of

studies. The LHCb is devoted to flavour physics such as those with b−quarks to unravel the matter-

antimatter asymmetry, lepton flavour universality violation, etc. On the other, CMS and ATLAS

are considered as multipurpose and versatile instruments, with a broad spectrum of research such

as precision measurements of the standard model (SM), physics Beyond the SM (BSM), etc.

The following chapter is organized a follows, section 2.1 provides a description of the CERN

accelerator complex. Section 2.2 describes the ATLAS detector and its sub-detectors such as the

Inner Tracker Detector (ID), Muon Spectrometer (MS), magnetic field system, calorimeters and

trigger system and data acquisition. Finally, Section 2.3 introduces the concept of luminosity, low
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pile-up and a quick description of the events suitable for physics recorded by ATLAS.

2.1 CERN accelerator complex and the LHC

The CERN accelerator complex is responsible for guiding protons through a series of accelerators

that will collect data for future analyses. This begins with the ionization of hydrogen atoms and the

initial boost to 750 keV using Radio Frequency (RF) cavities, the protons progress through LINAC 2,

reaching around 50 MeV. From there, they are guided to the Proton Synchrotron Booster (PSB),

where their energy increases up to 1.4 GeV. Subsequently, they enter the Proton Synchrotron (PS)

and the Super Proton Synchrotron (SPS), boosting their energy to 26 GeV and 450 GeV, respec-

tively. Finally, they are into the LHC all this with one of the most complex magnetic fields systems

and superconducting technologies that include an array of magnets, such as dipole magnets for

bending the accelerated beams along curved trajectories and quadrupole magnets for precise focus-

ing, ensuring optimal collision probabilities. Approximately 80% of the arc sections are occupied by

dipole magnets, augmented by sextupole, octupole, and decapole magnets strategically positioned

to correct for nonlinear beam dynamics. These superconducting systems among others, are sup-

ported by cryogenics constant supply of liquid helium to maintain its operational temperature of 1.9

K (-271.3◦C), rendering it the largest cryogenic facility worldwide. The dipoles themselves, crafted

from niobium-titanium (NbTi) alloys, boast a novel 2-in-1 design, accommodating two separate

beam apertures within the existing tunnel infrastructure. The LHC CERN complex is shown in

Fig. 2.1.

2.2 The ATLAS detector

The ATLAS (A Toroidal LHC AparatuS) detector [89] is a multipurpose particle detector with a

forward–backward symmetric cylindrical geometry. It consists of an Inner Detector (ID), electro-

magnetic and hadronic calorimeters, and a Muon Spectrometer (MS) plus one of the most complex

magnetic systems in the world.

ATLAS uses a right-handed coordinate system with its origin at the nominal interaction point
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Figure 2.1: CERN accelerator complex [90]

(IP) in the centre of the detector and the z−axis along the beam pipe. The x−axis points from

the IP to the centre of the LHC ring, and the y−axis points upwards. Cylindrical coordinates

(r, ϕ) are used in the transverse plane with ϕ being the azimuthal angle around the z−axis. The

pseudorapidity η is defined in terms of the polar angle θ as η = − ln tan(θ/2) such that the differences

in pseudorapidity ∆η is a Lorentz invariant. Angular distance is commonly measured in units of

∆R =
√

(∆η)2 + (∆ϕ)2. The scheme of the ATLAS coordinate system is shown in Fig. 2.2. In the

detector, three sections are considered,

• Barrel section covering the central pseudorapidity range |η| < 1

• End-Cap section covering ranges for 1 < η < 2.5 name End-Cap fordward and the End-Cap

backward covering −2.5 < η < −1.

For the Run 3, the ATLAS experimental setup has undergone enhancements through the re-

placement of the Small Wheel by the New Small Wheel (NSW) and the implementation of updates

in the muon trigger systems [92].
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Figure 2.2: Coordinate system implemented in the ATLAS detector [91].

2.2.1 Inner detector

The ID system [93, 94] is a track charged particle detector for |η| < 2.5 with a 2 T solenoid magnetic

field. It consists in 3 layers of Pixel Sensors, 4 layers of silicon strips Semi-Conductor Tracker (SCT)

and 72 straw layers of Transition Radiation Tracker (TRT) modules as shown in Fig. 2.3.

Figure 2.3: Inner tracker detector of the ATLAS detector with its subsystems [95].

Pixel detector: The Pixel Detector [96], situated at the core of the inner detector, is designed

to provide the trajectory of charged particles originating from collision events with a minimum

required of three data points. Its active area consists of a six disk layers of three concentric layers in

the barrel section and three layers at each end. Each layer formed by modular units comprises several
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elements such as silicon sensors, front-end electronics, and flex-hybrids integrated with control

circuits. The spanned active surface is around 1.7m2 with approximately 67 million pixels in the

barrel and 13 million in the endcaps. The Pixel Detector achieves a spatial resolution of 10 µm per

layer in the R− ϕ plane perpendicular to the beam and 115 µm along the z−axis. To mitigate the

sensitivity loss from radiation damage the Insertable B-Layer (IBL), positioned as the innermost

layer, was installed during the shutdown between Run 1 and Run 2 of the LHC. Comprising 8

million pixels, the IBL enhances spatial resolution to 8 µm in the R − ϕ plane and 40 µm along

the z−axis. This highly improves the impact parameter reconstruction for tracks, vertexing, and

b−tagging performance while ensuring a robust reconstruction against pile-up effects.

Semiconductor Tracker (SCT): The Semiconductor Tracker [97] located within the midsec-

tion of the inner detector and covering a pseudorapidity region |eta| < 2.5, is a precision silicon

microstrip detector. Its barrel region design incorporates four double layers of silicon strip sensors

and nine disks in each endcap. Each layer or disk is equipped with strips arranged to provide

two measurements at a stereo angle, that later are translated to space-points. Typically, the SCT

furnishes eight strip measurements (equivalent to four space-points) for particles originating near

the beam-interaction zone. This simplifies the trajectory reconstruction with a spatial resolution of

17 µm in the R − ϕ plane and 580 µm along the z−axis.

Transition Radiation Tracker (TRT): The Transition Radiation Tracker (TRT) [98] forms

the outermost layer of the inner detector within the ATLAS system, extending its coverage to

|η| < 2.0. Comprising 370,000 cylindrical drift tubes, each with a diameter of 4 mm. The TRT

is filled with a mixture of Xenon (Xe), Carbon Dioxide (CO2), and Oxygen (O2). This unique

composition enhances the drift velocity of electrons while also quenching photons.

The TRT works as a standalone component that a offers robust tracking capabilities with pattern

recognition. This contributes to an improved momentum resolution by providing track measurement

points up to the radius of the solenoid. Additionally, it plays an important role in the fast level-

2 trigger system. Leveraging the distinctive transition radiation signature, the TRT facilitates

standalone electron/pion separation, improving the detector’s particle identification capabilities

and overall its performance.
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2.2.2 Muon spectrometer

The Muon Spectrometer (MS) [99], is a muon tracking detector with cylindrical shape detector of

22 m in diameter and 45 m in length covering the pseudorapidity range |η| < 2.7 with a 0.6 T toroidal

magnetic field. The MS is equipped with a large number of precision chambers like Monitored Drift

Tube (MDT) chambers and Cathode Strip Chambers (CSC). Trigger chambers like 3 layers of

Resistive Plate Chambers (RPC) and 3 layers of Thin Gap Chambers (TGC) as shown in Fig. 2.4.

The field integral of the toroids ranges between 2.0 and 6.0 Tm across most of the detector with

one of the most complex magnet systems in the world.

  

Large sector

Small sector

Figure 2.4: Muon Spectrometer of the ATLAS detector with its sub-components [89].

Monitored Drift Tube (MDT): The MDTs are multi-wire detectors devoted to a precise

measurement of the timing of the current pulses generated by the wires. Considering the time

required for ions to drift towards the nearest wire, one can deduce the distance at which a particle

passed the wire. The ATLAS Monitored Drift Tube (MDT) chambers are configured with six layers

of drift tubes, with three layers mounted on each side of a supporting structure. Each MDT unit

consists of a 3 cm diameter drift tube housing a stretched wire within a gas-filled volume. As a muon

or any charged particle traverses the volume, it ionizes the gas, generating an electric current in the

wire. These MDT chambers offer precise tracking capabilities for charged particles within the plane

defined by the beam axis (z) and the radial distance to the beam (r) within the pseudorapidity

range |η| < 2.7. In the innermost wheel of the end-cap region, where the particle flux exceeds 100
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Hz/cm2 for |η| ranging from 2.0 to 2.7, cathode strip chambers are deployed due to their higher

granularity.

Cathode Strip Chambers (CSC): The Cathode Strip Chambers (CSCs) are complements to

the MDT chambers within the region of 2.0 < |η| < 2.7. They offer enhanced muon tracking capa-

bilities in the higher-rate area with an improved timing resolution compared to the MDT chambers.

This system comprises two endcaps, with 16 chambers situated in each endcap. Each chamber is

equipped with four precision layers and four transverse layers, enabling a spatial resolution of 60

µm in the CSC plane and 5 mm in the non-bending direction.

Resistive Plate Chambers (RPC): Resistive Plate Chambers (RPCs) provides a rapid track-

ing information within the central region of |η| < 1.05. Within the ATLAS detector, RPCs are

primarily tasked with first-level muon triggering and measuring coordinates in the non-bending

direction within the barrel region of the muon spectrometer. In the middle station of the barrel,

two RPCs are deployed to facilitate low−pT triggering, while an additional chamber is positioned in

the outer barrel to support high−pT triggering. Operating on a principle akin to that of the Thin

Gap Chambers (TGCs), both RPCs and TGCs contribute to muon information collection in the

non-bending direction.

Thin Gap Chambers (TGC): The Thin Gap Chambers (TGCs) is one of the main compo-

nents for swift tracking information within the region |η| < 2.4. Its role is crucial for triggering

purposes and azimuthal coordinate determination of muons. Each TGC unit operates as a multi-

wire proportional chamber, comprising two parallel cathode plates filled with a highly quenching

gas mixture of CO2 and n − C5H12, with wires positioned in between serving as anodes. A poten-

tial of 2.9 kV is applied across these wires. When a muon pass through the TGC, gas ionization

occurs, leading to the acceleration and collection of resulting ions and electrons by the electric field

towards the nearest wire. The signals generated by these interactions across different wires are

used to reconstruct the trajectories of muons. Notably, TGCs offer the advantage of a high gain

mode, producing large saturated signals that remain relatively insensitive to mechanical variations,

thereby facilitating the construction of large, highly efficient detectors. Furthermore, TGCs exhibit

a narrow time spread of signals, enabling a remarkable timing resolution of approximately 4 ns,
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enhancing the precision of event reconstruction and analysis within the ATLAS detector.

Magnet systems: The ATLAS magnet systems is probably one of the most complex parts

of the detector. It is designed to bend the trajectories of the particles which allows to a precise

measurement of the momentum. It is composed by two parts, the first one is the Central Solenoid

(CS) magnet that surrounds the inner tracker detector and the second one is a toroidal magnet

system that can be separated in an air-core Barrel Toroid (BT) and two End Cap Toroids (ECT)

foward and backward, as shown in Fig. 2.5. Each component consists in eight coils with an average

field of 4 T in the muon spectrometer. All the magnet system has been radially and symmetrically

assembled around the beam axis.

Figure 2.5: ATLAS magnet system: Central Solenoid, Barrel Toroid and End Cap Toroids [100].

2.2.3 Calorimetry

Calorimeters are designed to capture and quantify the energy carried by particles resulting from

collisions. When a particle pass through a calorimeter, its interaction within the detector initiates

a cascade of secondary particles, leading to the deposition of energy. This energy, deposited by

charged particles within the active region of the calorimeter, is then detectable either in the form

of light or charge, allowing for precise measurement of the incident particle’s energy.

Two type of calorimeters are implemented in ATLAS detector: electromagnetic and hadronic.

Electromagnetic calorimeters are designed to measure the energy of electrons and photons by their
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electromagnetic interactions, while hadronic calorimeters specialize in quantifying the energy of

hadrons through their strong interactions

In ATLAS, energy measurements are performed using a sampling calorimeter system, which

consists of alternating layers of high-density absorbing material and active medium. This system

is what composed the Liquid Argon (LAr) Calorimeter, designed to absorb electrons, photons,

and hadrons, alongside the Tile Hadronic Calorimeter. Its designed is focused on hadrons such as

protons and neutrons.

Two type of showers (electromagnetic or hadronic) can be produced depending on the nature of

the incoming particle. The electromagnetic showers is primarily influenced by bremsstrahlung and

electron-positron pair production. This phenomenon can be characterized by the radiation length

(Xo), which is the mean length (in cm) to reduce the energy of an electron by the factor 1/e. This

distance can be described by the following equation,

X0 = 716.4
Z · (Z + 1) ln

(
287√
Z

)g · cm−3, (2.1)

where Z is the atomic number of the nucleus. The relative resolution of calorimeters can be expressed

as a function of the total energy E as,

σE
E

= N

E
⊕ S√

R
⊕ C, (2.2)

where N , S and C correspond to the noise of the measurements, the stochastic uncertainty and the

non-uniformities of the detector, respectively.

Electromagnetic (EM) calorimeter: The electromagnetic calorimeter (ECAL) allows precise

measurements of the energy of electrons and photons through their electromagnetic interactions.

Positioned at the heart of the detector, the ECAL comprises layers of lead absorber plates inter-

spersed with sensitive detecting elements, typically made of liquid argon (LAr) or lead tungstate

(PbWO4) crystals. This is divided into two identical half-barrels covering |η| < 1.475 regions and

two end-caps covering 1.375 < |η| < 2.5 regions. The ECAL is longitudinally segmented into three

layers called strip, middle and back to optimize the energy resolution and facilitate precise localiza-
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Figure 2.6: Scheme of the calorimeter at the ATLAS detector [95].

tion of energy deposits. Each layer features fine granularity, allowing for an accurate reconstruction

of electromagnetic showers and discrimination against background signals. For example, the middle

layer is equipped with ∆η × ∆ϕ = 0.025 × 0.025 while the strip layer has 8 times finer granularity.

In contrast, the back layer has a twice coarse granilarity in η adn the same ϕ segmentation as the

middle layer.

Figure 2.7: Scheme of the barrel region for the LAr calorimeter layers [89].

Hadronic calorimeter: The hadronic calorimetry within the ATLAS detector encompasses a

diverse array of components constructed using various techniques and devices. Specifically, in the

range of |η| < 1.6, the barrel and extended barrel Tile calorimeters use the iron-scintillating-tiles
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technique, while for 1.5 < |η| < 3.9, the LAr technique is employed. A critical parameter for these

hadronic calorimeters is their thickness, which must be sufficiently large to contain hadronic showers

and mitigate the penetration of punch-through hadrons into the muon system.

To achieve these objectives, the total thickness is carefully selected to be approximately 11

interaction lengths. This configuration ensures optimal performance in terms of resolution for high-

energy jets while effectively capturing and measuring the energy of hadronic particles.

The Tile calorimeter: The Tile calorimeter [101] is positioned behind the EM barrel calorime-

ter, serving as the next layer for energy measurement within the ATLAS detector. Its design incor-

porates scintillating tiles as the active material, while iron serves as the absorber. These scintillating

tiles, 3 mm thick, are arranged perpendicular to the beam-pipe. Each period of the calorimeter

contains a total iron thickness of 14 mm. Comprising both barrel and extended barrel components,

the Tile calorimeter features an inner radius of 2.28 m and an outer radius of 4.23 m. Longitudinally,

it is sampled into three layers, with the granularity corresponding to ∆η × ∆ϕ = 0.1 × 0.1 in the

first two layers and ∆η × ∆ϕ = 0.2 × 0.1 in the last layer. To accommodate the passage of cables

from the Inner Detector (ID) and the EM calorimeter, a vertical gap, 68 cm wide, is strategically

positioned between the barrel and extended barrel regions. However, it’s important to note that

the electronic noise in the cells of the Tile calorimeter amounts to approximately 20 MeV.

Figure 2.8: Scheme of the Tile Calorimeter readout system [89].

The Liquid Argon Calorimeter: The Liquid Argon (LAr) calorimeters [102] covers the end-
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cap and forward regions, this is, 1.5 < η < 4.9. It measures the energy of electrons, photons and

hadrons using liquid argon as active material. The detector is structured by layers of metal that

absorb the incoming particles that later on produce a particle shower. The secondary particles

ionise the LAr that is located in between the metal layers that results in ionised charges that are

transalated into signal in the electrodes.

Four parts can be identified in the LAr detector, The hadronic end-cap calorimeter (HEC), the

forward calorimeter (FCAL), the electromagnetic barrel (EMB) and the electromagnetic endcap

calorimeter (EMEC). The HEC comprises two independent wheels, each featuring absorber plates

of different thickness: one wheel contains 25 mm absorber plates, while the other uses 50 mm

absorber plates, with copper being the absorber material. Within the HEC, a gap equipped with

three electrodes divides it into four drift spaces, each measuring 1.8 mm. Longitudinally, the

HEC is segmented into front, middle, and back sections, with respective electronic noise values of

approximately 250, 350, and 800 MeV. The outer radius of the copper plates in the HEC is 2.03 m,

while the inner radius is 0.475 m. The Forward Calorimeter (FCAL) is positioned approximately 5

meters from the interaction point. This high-density detector comprises three longitudinal sections:

the first section utilizes copper, while the subsequent two sections employ tungsten. The HEC and

FCAL with the Tile caloriemter formed the ATLAS Hadronic calorimeter (HCAL) thart covers the

regions 1.5 < |ηHEC| < 3.2 and 3.1 < |ηFCAL| < 4.9.

The EMB and the EMEC formed the elemectromagnetic calorimenter (ECal) that covers the

region |η| < 3.2 and is designed with an accordion geometry alternating the lead layers as the

absorber and liquid argon as the active medium. The relative resolution of the ECal in the barrel

and end-cap regions are measured as,

σE
E

∣∣∣∣
barrel

= 10.1%√
E

⊕ 0.2%, σE
E

∣∣∣∣
End-Cap

= 12.1%√
E

⊕ 0.4%. (2.3)

LAr serves as the sensitive material within these sections, with gap sizes of 250, 375, and

500 microns in the first, second, and third sections, respectively. These gap sizes facilitate rapid

signal collection in the forward region, where significant pileup effects are anticipated. In terms

42



of granularity, the hadronic LAr calorimeter exhibits ∆η × ∆ϕ = 0.1 × 0.1 for 1.5 < η < 2.5 and

∆η × ∆ϕ = 0.2 × 0.2 for 2.5 < η < 3.2. Conversely, the forward calorimeter features a granularity

of 0.2 × 0.2. Notably, the forward calorimeters possess the capability to reconstruct electrons in

addition to their primary function in hadronic energy measurement.

2.2.4 Trigger system and data acquisition

The ATLAS detector’s trigger system [103] plays one of the most important roles in managing the

large amount of data generated by proton-proton (pp) collisions ensuring that only events of interest

are recorded for further analysis. This system is based on three levels known as L1 (hardware-based),

L2 and Event Filter (software-based) that employ distinct methodologies to achieve efficient event

selection.

The L1 trigger, uses information from the calorimeter and muon spectrometer. Within 2.5

microseconds of a collision, specialized electronics identify regions of interest (ROI) in the η − ϕ

plane and make rapid decisions to reject background events based on hit coincidences in various

subdetector layers within predefined windows. As a complement, the L1 trigger uses information

from the inner detector (ID) to do the selections followed by a software-based High Level Trigger

(HLT). The L1 trigger system is responsible for reducing the event rate to 100kHz and the HLT

reduces the rate further down to around 1kHz.

Subsequent to L1, the second (L2) and third (Event Filter, EF) levels employ software-based

systems, integrating information from all sub-detectors. These levels verify if specific trigger con-

ditions are met for each bunch crossing, based on hundreds of predefined criteria. Triggers are

established by identifying combinations of physics objects such as electrons, photons, muons, jets,

and b-jets, as well as global event properties like missing transverse energy and summed transverse

energy. Events selected by the EF are then directed to mass storage for further analysis, with an

average processing time of approximately 4 seconds. To manage event rates effectively, “prescaled

triggers” are employed when necessary, selecting only random events for storage.

In the context of data acquisition, stringent quality control measures are implemented to ensure

the integrity of collected data. If mechanical or read-out issues occur during data acquisition, only
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data from operational sub-detectors and magnet systems are used for analysis. The condition of

the detector, referred to as data quality, is continuously monitored during data acquisition, with

relevant information stored in the condition database for each data-taking period or luminosity

block.

2.2.5 Sectors definition

The ATLAS detector is divided in sixteen sectors of different angular sizes that overlap between

them. For that reason, there is not a unique way to define the surface covered by a sector. In this

work, a sector is defined as those regions in ϕ, where the tracks are able to cross three MDT layers

having their wires in the same direction. For this, sectors are considered to be centered at 22.5◦

with respect to the sector number,

center = 22.5◦ · (n− 1) for n = 1, 2, ..., 16.

Where the even n−values correspond to small sectors (2, 4, ..., 16) and the odd n−values are large

sectors (1, 3, ..., 15). Large sectors are considered to have an angular size of ±12.5◦ and the small

sectors an angular size of ±10◦ with respect to the center. The previous definition does not take

into account the overlap between the sectors. A detailed view from the detector is shown in Fig. 2.9

2.2.6 Pseudorapidity regions and magnetic field

In the present work, three main regions were considered for the studies. The barrel region for

|η| ≤ 1, the intermediate region 1 < |η| ≤ 1.7 and the ECT 1.7 < |η| ≤ 2.5 forward for positive

values of η and backward for negative values of η. This is showed in Fig. 2.10 and the main reason

to study these three regions is due to the material influence and the role with the magnetic field.

The interest in the barrel region lies in the tile calorimenter (TileCal), the intermediate due to the

finger and Shielding disk and ECT for the outer part of the shielding disk. Finally, Fig. 2.11 shows

the convolution between magnetic field and Detector description that implies a charge asymmetry

between µ+ and µ−.
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Figure 2.9: Scheme of the sixteen ATLAS detector sectors for large and small chambers [104].

Figure 2.10: ATLAS detector scheme with different η projections [105].
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Figure 2.11: Convolution between magnetic field and detector description in ATLAS [105].

2.3 Integrated luminosity

One of the main characteristics of the particle colliders is their beam energy and the quantity that

describes the ability of a particle accelerator to produce the required number of interactions is called

luminosity, L. This is, the number of collisions events that can be delivered to the experiments and

it stands as the proportional factor between the rate of events per time dN/dt and the cross section,

σ, such that,
dN

dt
= L · σ, (2.4)

where the total number of events can be obtained integrating in time, which results in the so-called

“integrated luminosity L =
∫
Ldt”. This is measured in inverse barns (1b= 10−24cm−2). In the case

where the protons in a beam are Gaussian-distributed an expression for L can be obtained and is

given by,

L = N2
b · nb · frev · γ

2πϵnβ∗ · F (ϕ), (2.5)

where Nb is the number of particles per bunch, nb is the number of bunches per beam, frev is the

revolution frequency of the accelerated protons, γ is the Lorentz factor. ϵn is the beam emittance

defined as the smallest opening that a beam can be squeezed, β∗ os the so-called amplitude function,

defined by the weidth of the beam the emittance. F is a geometric factor due to the crossing angle

ϕ between the beams at the interaction point (IP).
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The Large Hadron Collider (LHC) is outfitted with specialized luminometers for continuous

monitoring of luminosity conditions. This allows to determine the amount of integrated luminosity

delivered by the LHC and the one recorded by ATLAS and deemed suitable for physics studies.

ATLAS experiment employs several detectors for luminosity measurement, among these LUCID-2 is

considered as the primary monitor. Due to the fact, that the LHC’s is a high luminosity experiment,

multiple interactions per bunch crossing occurs. These are categorized into the hard scatter (HS)

process and multiple soft interactions, known as pile-up.

Consequently, when the event reconstruction is done, signals from different interactions may

be captured, termed pile-up, which can be either in-time, involving soft interactions within the

same bunch crossing, or out-of-time, originating from neighboring bunches. The Out-of-time pile-

up correlates with the average interactions per bunch crossing, while in-time pile-up relates to the

reconstructed number of primary vertices (PV).

In 2011, the LHC conducted the Run 1 data taking using proton-proton (pp) collisions at a

centre-of-mass energy of
√
s = 7 TeV. The ATLAS detector with all relevant detector systems

operational managed to collect a dataset that correspond to approximately 4.6 fb−1 and 4.1 fb−1 of

integrated luminosity in the electron and muon channels, respectively [106]. The total integrated

luminosity per day in 2011 and the recorded luminosity as a function of the mean number of

interactions per crossing during the LHC Run 1 are shown Fig. 2.12a and Fig. 2.12b, respectively.

This dataset has been implemented in section 6.6 to perform a new measurement of the W boson

mass [107] and to contrast with the previous measurement released in 2018 [76].

The Run 2 of the LHC took place during 2015 to 2018 collecting data at different pile-up and

centre-of-mass energy. In particular, for 2017 and 2018 the LHC carried out a low pile-up run with

an average number of pp interactions, ⟨µ⟩, of about two, as compared to ⟨µ⟩ ∼ 34 for the nominal

LHC Run 2. The low pile-up datasets correspond to an integrated luminosities of 254.9±2.6 pb−1 at
√
s = 5.02 TeV and 338.1 ± 3.1 pb−1 at

√
s = 13 TeV [108]. The low pile-up dataset is of particular

interest since it can provide a good hadronic recoil resolution for which the thresholds applied to

suppress noise in the reconstruction of clusters of energy in the calorimeters were lowered [108–110].

The total integrated luminosity and the recorded luminosity as a function of the mean number of
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interactions per crossing during the LHC Run 2 are shown Fig. 2.12c and Fig. 2.12d, respectively. In

particular, Fig. 2.12d shows a small distribution around ⟨µ⟩ ∼ 2 that corresponds to the low pile-up

dataset. This dataset is of particular interest for the present work since it has been implemented to

study the prospects of the precision physics in mW as described in section 6.7 but it also corresponds

to the one used in the most recent precision measurement of transverse momentum of the W and

Z bosons in Ref. [75].

Currently the LHC is performing the Run 3 data-taking, for which several updates have been

carried out such as the replacement of the small wheel by the new small wheel (NSW) [92] and the

implementation of updates in the muon trigger systems. The total integrated luminosity and the

recorded luminosity as a function of the mean number of interactions per crossing during the LHC

Run 3 are shown Fig. 2.12e and Fig. 2.12f, respectively.
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Figure 2.12: (left) Total integrated luminosity per year and (right) mean number of interactions
per crossing for (top) Run 1 [111], (middle) Run 2 [112] and (bottom) Run3 [113].
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Chapter 3

Event reconstruction

In the ATLAS detector, particles generated in proton-proton collisions are detected through energy

deposits in the calorimeters and hits in the trackers. These signals serve as a basis for reconstructing

various physics objects like jets, photons, electrons, and muons. However, some particles, such as

neutrinos, escape detection, contributing to an imbalance in the total transverse momentum, which

is compensated by incorporating their momenta into the missing transverse momentum.

Event reconstruction in the ATLAS detector involves combining electronic signals produced as

particles traverse the detector layers. These signals are processed to discern the types of particles

present in the collision. Monte Carlo simulations play a crucial role in evaluating theoretical pre-

dictions from both the Standard Model and Beyond the Standard Model physics with respect to

the observed data. These simulations are essential for developing and refining the reconstruction,

identification, and simulation techniques necessary for analyzing the physics objects relevant to the

research presented in this thesis.

The ATLAS detector is designed with dedicated sub-detector systems tailored to exploit distinct

physics properties for particle discrimination and identification. These systems enable the differen-

tiation of particles like electrons, muons, taus, photons, and the categorization of quark or gluon

decay products, known as jets. Following the measurement of all detectable objects, the energy

imbalance in an event originating from imperceptible processes is quantified through the missing

transverse momentum.
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The reconstructed objects are divided into two types: basic objects including tracks, vertices

and topological clusters (topoclusters), and composite physics objects as electrons, muons, and jets.

The basic objects are used as inputs for the reconstruction of the composite objects.

This chapter summarises the ATLAS reconstruction procedure for each of these objects and is

organized as follows, Section 3.1 describes the tracks and vertices reconstruction introducing the

track parameters for the ID and MS and the concepts of primary and secondary vertex. Section 3.2

describes the object reconstruction related to the muon and electron reconstruction as well as their

selection and working points categorized by their efficiencies for the analysis and finally a description

of the Hadronic recoil reconstruction procedure.

3.1 Tracks and vertices

When a particle crosses through the detector, it leaves a signal in the components. By connecting

the hits in the different layers of the Inner Detector and/or Muon Spectrometer, it is possible to

reconstruct its trajectory. Specifically, tracks containing at least three hits in the ID are of interest.

These tracks reconstruct the trajectories of charged primary particles using hits in the pixel detector

and SCT layers as seeds for the algorithm. The silicon tracks obtained are then combined with the

TRT information using what is called the “inside-out extrapolation algorithm”.

For the secondary particles or photons, a similar procedure is applied but starting from the TRT

information and applying the backward procedure on what is known as the “outside-in extrapolation

algorithm”. The ID reconstruction scheme is shown in Fig. 3.1 [114].

In the case of the Muon Spectrometer [116–119] the reconstruction is carried out taking into

account the Resistive Plate Chambers (RPC), Thin Gap Chambers (TGC), and Monitored Drift

Tubes (MDT) where the RPC and TGC provide fast triggering capabilities, while the MDT offers

precise position measurements. Muons are triggered if at least one hit in the RPC/TGC chambers

exists since muons ionize gas in the RPC and TGC, this leads to the detection of their passage with

fast timing resolution. On the other hand, the MDT uses the drift of electrons in gas to determine

the muon’s precise trajectory. This next to the strong magnetic field within the spectrometer that
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Figure 3.1: Illustration of the track reconstruction in the Inner Detector [115].

bends the trajectories of the muons, enables the determination of their momenta based on the

curvature of their paths. This can be described by the relation,

1
p

= 8s
BL2 , (3.1)

where p is he momentum of the muon, B is the strength of the magnetic field through which the

muon passes, L is the length of the muon’s path within the magnetic field and s is known as the

sagitta, which is the maximum perpendicular distance between the curved trajectory of the muon

and the straight-line path it would have followed in the absence of a magnetic field. Eq. (3.1) shows

direct relation between the momentum determination and the sagitta from which a good resolution

is required. The final muon’s trajectory is obtained by combining information from RPC, TGC and

MDT through a dedicated χ2−fit. This reconstruction allows to obtain an accurate determination

of the muon’s momentum and direction.

Once the tracks are obtained, they are parametrized by five parameters (d0, z0, θ, ϕ, q/p) as shown
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Figure 3.2: Perigee representation in the ATLAS track parameterization [120].

in Fig. 3.2 and they are required to have a transverse momentum pT > 400 MeV and pseudorapidity

|η| < 2.5.

Track parameters are obtained from particles originating at the interaction point, characterized

by vertices. These vertices represent the positions where particles are produced or decay during

collisions. Two main types of vertices are identified:

Primary Vertex: The Primary Vertex (PV) is the most important vertex in an event. It

corresponds to the point where the hard collision occurred, typically the interaction point between

the colliding protons. Since the protons consist of many quarks and gluons, the collision may

produce several high-energy particles, each leaving behind a track in the detector. The primary

vertex is reconstructed by combining these tracks, providing information about the location of the

collision and allowing to study the properties of the particles produced.

Secondary Vertex: Secondary vertices are additional vertices that can be formed within the

detector when particles produced in the primary collision decay or interact further. For example,

heavy particles like b−quarks or τ leptons may travel a short distance before decaying into lighter

particles, creating secondary vertices along their paths. Secondary vertices are crucial for identifying

specific particle decays, such as those involving bottom or charm quarks, and for studying the
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properties of short-lived particles.

The vertices reconstruction is done in two steps: the vertex finding and the vertex fitting. In the

vertex finding, a set of vertex candidates are defined from the tracks and all vertices are required to

have at least two tracks. Then, the precise z-coordinate is obtained from an iterative χ2−fit. The

vertex with the largest sum of squared transverse momenta ∑ p2
T of all tracks associated is referred

to as the primary vertex (PV).

3.2 Object reconstruction

3.2.1 Muon reconstruction

In the case of the muons, these are identified and reconstructed by combining the ID and MS infor-

mation. About 96% of muons are reconstructed by fitting hits from ID and MS tracks. Intuitively

two track types are obtained by the ID and the MS, these are the ID tracks containing only the

Inner Detector information and the MS tracks using Muon Spectrometer information. In addition,

the ID and MS information can be statistically combined to improve the momentum resolution and

to provide a better rejection of muons from secondary interactions. The muon types are: Combined

(CB) muons are obtained by performing a global refit of the ID and MS tracks through the so-called

STACO algorithm. Segment-tagged (ST) muons consist of a fitted ID track and a MS segment.

Calorimeter-tagged (CT) muons consist of a fitted ID track and an energy deposit in the calorime-

ters. Extrapolated or Muon Spectrometer Only Extrapolated (MSOE) muons consist of only MS

track information. Muon track types are shown in Fig. 3.3.

After reconstruction, muon candidates are selected by a set of requirements on the number of

hits in the ID sub-detectors and MS stations as well as the track fit properties and on variables that

test the compatibility of the individual measurements in the two detector systems. A given set of

requirements is referred to as a Working Point (WP) according to purity level and kinematics and

they are defined as,

Loose muons: provide high efficiency but less purity and larger systematics. It is designed to

maximise the reconstruction efficiency while providing good-quality muon tracks. All track types
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Figure 3.3: Scheme of the different muon reconstruction types using the different ATLAS sub-
detectors [121].

are used but those η regions with poor MS efficiency are discarded.

Medium muons: provide a suitable efficiency and purity with low systematics. In this case,

only the CB and ME tracks are used are they are used as the default Working Point. A loose re-

quirement on the compatibility between ID and MS momentum measurements is applied to suppress

the contamination due to objects misidentified as muons.

Tight muons: provide the highest purity with an improved background rejection at the cost

of a few percent efficiency loss. Here, only Medium CB muons with hits in at least two stations of

the MS can be defined as tight.

High−pT muons: are selected to maximise the momentum resolution of tracks with pT >

100 GeV. CB muons also passing the medium selection and with at least three hits in three MS

stations are selected.

Low−pT muons: are selected to optimize and to maintain high purity for pT ≲ 5 GeV

Muons from prompt decays of SM bosons or hypothetical BSM particles can be discriminated

from muons from hadronic sources by measuring the amount of hadronic activity in their vicinity

and therefore an isolation is required. The muon isolation is either track-based or calorimeter-based.
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Track-based isolation is defined as the scalar sum of the transverse momenta of the ID tracks

associated with the primary vertex in an η−ϕ cone of a given size ∆R around the muon, excluding

the muon track itself. Depending on the isolation criteria, ∆R is either 0.2, labelled as pcone20
T , or

min(10 GeV/pµT , 0.3), labelled as pvarcone30
T .

On the other hand, Calorimeter-based isolation, labelled as Econe20
T is defined as the sum of

the transverse energy of cell clusters in a cone of size ∆R = 0.2 around the position of the muon,

extrapolated to the calorimeters after subtracting the contribution from the energy deposit of the

muon.

The track-based or calorimeter-based isolation is defined as the transverse energy (or momentum

if considering only tracks) reconstructed in a cone of size ∆R around a muon and divided by the

muon transverse momentum (pT ). Several WPs are defined combining track-based and calorimeter-

based isolation resulting in better performance. Some of these WPs use a particle-flow based

algorithm to evaluate the neutral component of the energy deposit [116]. To determine the efficiency

of a certain algorithm in both data and simulation the Tag-and-Probe method is applied to Z → µµ

and J/ψ → µµ. In this algorithm, one particle, called the “tag”, is identified with high confidence

using specific criteria tailored to the particle of interest. This tagged particle serves as a reference

to select a sample of other particles, known as “probes”, for further analysis as described in [116].

The deviation of the simulation from the detector behaviour in data is estimated by a Scale Factor

(efficiencies ratio) that is used to correct the simulation.

3.2.1.1 Muon Selection

The present work implements the following selection for the di-muon resonances Z → µµ and

J/ψ → µµ,

• Both muons pT cut (for Z only): pT > 25 GeV.

• Both muons pT cut (for J/ψ only): pT > 6.5 GeV.

• Resonances mass:

– For Z: 75 < mZ < 105 GeV.
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– For J/ψ: 2.6 < mJ/ψ < 3.6 GeV.

• Medium quality.

• Combined muons (Spectrometer + ID track).

• Vertexing cut: |d0|/σ(d0) < 3 and |z0 sin θ| < 0.5 [mm].

The following triggers were applied:

• For Z → µµ candidate events, the selection process implements unprescaled single-muon

trigger chains with the lowest kinematic thresholds available in each data sample. Events

are required to have at least one muon with pT >20 GeV that also satisfies a loose isolation

criterion based on the scalar sum of the pT of tracks within a cone around the muon candidate

track. Additionally, events are retained if they meet the criteria of a second chain, which

requires at least one muon with pT >40 GeV without any isolation requirement. [117].

• For J/ψ → µµ candidate events, triggers requiring at least two muons per event are consid-

ered. These triggers also perform common vertex fits on pairs of oppositely charged muon

candidates, ensuring at least one fitted vertex meets quality criteria and has an invariant mass

consistent with a J/ψ resonance. Both muons must have pT >5 GeV to satisfy the trigger

requirements [117].

3.2.2 Electron reconstruction

The reconstruction of electrons and photons in the ATLAS detector involves a meticulous process

designed to accurately identify and measure the properties of these particles. These process is

divided in four main steps, the cluster reconstruction, track association, track refit and the final

candidate reconstruction as shown in Fig. 3.4.

Initially, electrons and photons interact with the calorimeter layers, depositing energy primarily

in the electromagnetic calorimeter (ECAL) for photons and both the ECAL and hadronic calorime-

ter (HCAL) for electrons. The energy deposited (E) by particles in the calorimeter cells forms
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clusters, where neighboring cells with significant energy deposits are combined. Here, the seed clus-

ter reconstruction is carried out in the η×ϕ space of the EM calorimeter that is divided into a grid

of 200 × 256 elements known as towers with a granularity of size ∆η× ∆ϕ = 0.25 × 0.25. The total

energy tower is then computed as the sum of the energy deposits on each element. To seed the

electromagnetic-energy cluster candidates a summed transverse energy above 2.5 GeV is required

by a sliding-window algorithm [122] with a windows size of 3 × 5 towers in η × ϕ. Finally, the

duplicated seed clusters are removed. For electrons, this clustering process is crucial for identifying

electromagnetic showers characteristic of electron interactions. Electromagnetic showers occur when

high-energy electrons or photons interact with the material in the calorimeter, producing a cascade

of secondary particles through bremsstrahlung and pair production processes. The energy (E) of

the clusters is then used to determine the particle’s energy. Additionally, energy calibration corrects

for detector effects, ensuring precise energy measurements. This calibration involves adjusting the

measured energy (Emeasured) to account for factors such as energy loss in the detector material and

non-uniformities in detector response. The calibrated energy (Ecalibrated) is then used in the identi-

fication and selection of electrons and photons based on specific criteria, such as energy consistency

and track association.

One the clusters are defined and the track reconstruction has been performed in the ID, the

clusters are associated with at least one well-reconstructed track of the ID with the following re-

quirements for a sucessful matching, |∆η| < 0.05 and |∆ϕ| < 0.01. In the case that several tracks

are matched with the EM cluster, the selection criteria targets the tracks with silicon hits and those

with the smallest ∆R =
√

∆η2 + ∆ϕ2 that later on are refined by taking into account the solenoid

magnetic field and the energy losses due to bremsstrahlung. The track is also required to be close

to the IP with d0/σ0 < 5 and |z0 sin θ| < 0.05 mm to reject electrons originated from photon con-

versions. In the case a track cannot be matched, the cluster is classified as an unconverted photon

candidate.

Once the track-association was performed successfully, the candidate reconstruction is carried

out by the formation of extended clusters around the seed clusters in a window of size 3×7 and 5×5

in the η − ϕ plane for the barrel and the ECT, respectively. Then, the cluster energy is calibrated
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by multivariate techniques using data and simulation. The final track parameters of the electrons

are taken from the track best matched to the original seed cluster while the final energy is obtained

from the calibrated energy of the extended-window cluster.

Similarly as the muon, different Working Points (WP) for the electrons are defined as loose,

medium and tight.

Loose: considers electrons for |η| < 2.47 with cuts on the shower shape variables of the first

and second layers of the Electromagnetic Calorimeter (ECal) and the hadronic leakage variables.

Medium: takes electrons with cuts on the track quality that verify that the hits in the Pixel

Detector is larger or equal to one. The total number of hits in the pixel detector and SCT is required

to be larger or equal than 7 and the transverse impact parameter |d0| < 5 mm. For the track-cluster

matching ∆η < 0.01 between the cluster position in the strip layer and the extrapolated track is

required. This includes also loose selection.

Tight: the cuts in the track quality are a tighter transverse impact parameter, this is, |d0| < 1

mm, total number of hits in the TRT and ratio of the number of high-threshold hits to the total

number of hits in the TRT. For the track cluster matching a ∆ϕ < 0.02 between the cluster position

in the middle layer and the extrapolated track is required. For the photon conversion variables

the number of hits in the b-layer are requested to be larger or equal to one and the veto electron

candidates matched to reconstructed photon conversions. This includes also medium selection.

3.2.2.1 Electron selection

On what follows, electrons are required to pass the tight identification and to have pT > 15 GeV

and |η| < 2.4 excluding the region 1.2 < |η| < 1.82. For the background rejection the requirement

of absence of an activity around electron tracks is applied. To keep an isolation efficiency of 97% for

track-based and 98% for calorimeter-based variables the track-based and calorimeter-based isolation

cuts are considered to be pcone40
T and Econe20

T , respectively. Where cone40 and cone20 refers to

∆R < 0.4 and ∆R < 0.2 around the electron.

In the case of the low pile-up, the data was collected with unprescaled triggers that require at

least one electron with transverse momentum thresholds of pT > 15 GeV with Loose identification
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Figure 3.4: Illustration of the path of an electron through the detector. The red trajectory shows
the hypothetical path of an electron, which first traverses the tracking system (pixel detectors, then
siliconstrip detectors and lastly the TRT) and then enters the electromagnetic calorimeter. The
dashed red trajectory indicates the path of a photon produced by the interaction of the electron
with the material in the tracking system [123]

criteria and no isolation selection.

3.2.3 Hadronic Recoil

In general leptons or photons can be directly reconstructed using the procedures already described.

However, this is not the general case for all particles in the ATLAS detector since some of them can

escape unseen, such as, neutrinos, BSM particles, etc. However, kinematically they should produce

an imbalance in the total transverse momentum of the visible particles that could be measured,

e.g. the W/Z Gauge bosons. This quantity is known as missing transverse momentum, Emiss
T , and

the neutrino transverse momentum p⃗νT can be directly related to it. It can be obtained by the

momentum conservation as the negative of the vector sum of the visible particle momenta,

p⃗νT = E⃗miss
T = −

∑
i

p⃗T,i (3.2)

where i runs over the visible particles. This concept is crucial in analyses as the W and Z bosons in

which neutrinos are involved in their decays. At Leading Order, the transverse momentum of the

bosons is expected to be zero but at higher orders, contributions for the QCD effects are expected.

This, defines the Hadronic Recoil (HR), u⃗T , as the sum of the transverse momenta of the partons
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from initial state radiation,

u⃗T = −
∑

ppartons
T . (3.3)

Based on this, the neutrino transverse momentum can be expressed as a function of the HR and

the lepton transverse momentum p⃗ℓT ,

p⃗νT = E⃗miss
T = −

(
u⃗T + p⃗ℓT

)
. (3.4)

In practice, Emiss
T can obtained experimentally by dividing it into two components known as the

hard component, Emiss, hard
T , and the soft component, Emiss, soft

T . Where Emiss, hard
T is defined as the

vector sum of the reconstructed particles in the event while, Emiss, soft
T , is the vector sum of all the

tracks that cannot be matched to a physical object. The soft term can be computed by two ways,

either using the Calorimeter-based Soft Terms (CST) that correspond to the calorimeter signals

that are not matched to a physical object or by the Track-based Soft Term (TST) defined as low

momentum tracks that matched the PV but not a physical object.

The hadronic recoil described above is a vector quantity that can be projected along the trans-

verse momentum vector to obtain scalar quantities known as the parallel component, u∥, and the

perpendicular component, u⊥. In an ideal scenario, u∥ = −pVT and u⊥ = 0 is expected where pVT is

the magnitude of the vector boson momentum. In the case of the W → ℓν (Fig. 3.5a), the hadronic

recoil relies in the direction of the charged lepton due to the neutrino in the decay product,

uW⊥ = |p⃗ℓT × u⃗T |
pℓT

,

uW∥ = p⃗ℓT · u⃗T
pℓT

,

(3.5)

while for the Z boson (Fig. 3.5b), the momentum is represented by the di-lepton transverse mo-

mentum p⃗ℓℓT and the HR components are,

uZ⊥ = |p⃗ℓℓT × u⃗T |
pℓℓT

,

uZ∥ = p⃗ℓℓT · u⃗T
pℓℓT

,

(3.6)
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(a) (b)

Figure 3.5: Scheme of the (a) W and (b) Z bosons decay in the transverse plane [124].

In average, u⊥ is expected to compatible with zero and with an spread reflecting the hadronic

recoil resolution in this direction. On the other hand, at LO the boson transverse momentum is

expected to be zero implying u∥ = −pℓℓT . However, other effects like particles escaping detection,

energy losses in dead material and the noncompensating nature of the calorimeter make difficult to

reach the relation. This means, a bias “b” in the parallel component is introduced,

u∥ = b− pℓℓT , (3.7)

where the average in the bias provides the parallel HR resolution.

During the reconstruction process in the ATLAS detector, it is common for objects to meet the

identification requirements of multiple physical particles, resulting in an overlap. To address this,

an overlap removal is employed to determine the nature of each reconstructed object and to prevent

double-counting of energy, particularly in the calculation of Emiss
T .
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3.3 Event simulation

Monte Carlo (MC) simulations are extensively used in particle physics to test the SM processes

and to look for new physics scenarios. In particlar, the ATLAS collaboration uses its own sim-

ulation framework [125] and the GEANT4 [126] detector simulation toolkit. The simulation and

reconstruction workflow can be summarized as,

• The simulation process in ATLAS begins with the generation of events originating from the

hard-scattering of colliding partons and their immediate decay products, referred to as truth-

level simulation. The choice of parton distribution functions (PDFs) is critical, providing

essential parameters to compute the production cross section of the targeted physics process.

• During event generation, QCD processes and interactions resulting from parton collisions lead

to multiple radiation cascades known as parton showers. Following this, hadronisation occurs

where the quarks and gluons produced in these showers recombine to form new hadrons or

underlying events, which subsequently decay.

• Next, the generated particles interact with the components of the detector. These interactions

are simulated using the GEANT4 toolkit, which replicates the full ATLAS detector, including

its geometry, realistic response, misalignments, and distortions. Single hard-scatter processes

are generated individually and then overlaid to simulate additional interactions from bunch

crossing (pile-up) effects. The energy deposited in the detector by the particles is converted

into voltage and currents, which can then be compared with the detector readouts in a process

known as digitisation.

• Finally, the simulated events are reconstructed by the detector, referred to as reco-level sim-

ulation. The same reconstruction procedure used for real observed events is applied to the

Monte Carlo (MC) simulated events, leading to comparable outputs for both simulated and

actual observed events.

A simplified scheme of the simulation workflow in ATLAS is shown in Fig. 3.6. The Simulation

samples for muon calibration are described in Section 5.2 while for the mW measurement, the
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Figure 3.6: Simplified scheme of the ATLAS simulation and reconstruction infrastructure [91].

simulation samples at 7 TeV and low pile-up (5.02 TeV and 13 TeV) are detailed in Section 6.3.
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Chapter 4

Parameter estimation

Parameter estimation is a fundamental aspect of statistical analysis aimed at determining the un-

known parameters of a statistical model based on observed data. In statistical inference, one

common approach to parameter estimation involves using methods like the chi-square (χ2) method.

This method plays significant roles in quantifying uncertainties associated with parameter estimates

such as the statistical uncertainty and systematic uncertainties introduced through nuisance param-

eters (NPs). The statistical uncertainty refers to the inherent variability in parameter estimates

due to random sampling of data. This uncertainty is quantified using statistical measures such

as standard errors, confidence intervals, or likelihood-based approaches. On the other hand, the

systematic uncertainty arises from potential biases or inaccuracies in the modelling assumptions

or experimental setup. It represents uncertainties that persist regardless of the amount of data

collected and can significantly impact parameter estimates. Systematic uncertainties are often ad-

dressed through sensitivity analyses, calibration procedures, or by incorporating additional sources

of information into the estimation process.

The chi-square method is particularly valuable in scenarios where data follows a known distribu-

tion, and parameter estimation is achieved by comparing observed data with expected theoretical

outcomes. This method typically involves formulating a chi-square statistic that measures the

goodness-of-fit between observed data and model predictions. Minimizing these statistics allows to

estimate the parameters that best describe the underlying distribution of the data. When system-
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atic sources are considered in the analysis, their contribution can be obtained using the so-called

“χ2 offset method” or, more sophisticatedly, by a profile likelihood approach (PLH).

The profile likelihood approach of the χ2 is another powerful technique used in parameter estima-

tion, particularly in scenarios involving simultaneous estimation of multiple parameters. It involves

constructing likelihood profiles by fixing certain parameters to specific values while maximizing the

likelihood function with respect to the remaining parameters. The resulting profile likelihood curve

provides insights into the uncertainties and correlations among the estimated parameters. Com-

monly, the profiling of the likelihood can takes several forms according to the data distribution

and the probability models. However, in the case where the NPs and the data follows a Gaussian

distribution, the likelihood can be solved analytically. This solutions allow to exploits consistent

results for the POI and NPs such as a breakdown of uncertainties (uncertainty decompositon), shift

induced by the NPs into the POIs, post-fit correlations among the fits, etc.

When a measurement of a physical quantity is performed, the total uncertainty can be de-

composed into two components, the statistical uncertainty and the systematic uncertainty. Since

different systematic sources can be considered into the analysis, the systematic uncertainty receives

contributions from each source and it is important to understand the contribution of each of this

source into the total systematic uncertainty. To determine this, the common approach used in high-

energy physics is known as “impacts” which tends to quantify the impact of each systematic into

the total uncertainty. However, this approach is not accurate since due to the post-fit correlation of

the nuisance parameters the quadrature sum of the impacts does not return the total uncertainty

and by consequence, these are underestimated. Here, an extensive study of profile likelihood fits

and their uncertainty components was performed for a general case, as well as for the specific case

when all uncertainties are Gaussian-distributed. A consistent fitting strategy is described to be used

in the muon calibration in chapter 5 and for the W boson mass in chapter 6.

The following chapter is arranged as follows, Section 4.1 illustrates the statistical and systematic

uncertainties via χ2 offset method. Section 4.2 describes the Maximum Likelihood Estimator, the

concept of nuisance parameters and the profile likelihood (PLH) fit approach. Section 4.3 study

the PLH fit solution when the uncertainties are Gaussian-distributed exploiting the most of it and
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showing a consistent uncertainty decomposition among other properties of the likelihood and the

covariance matrices.

4.1 Statistical and systematic uncertainties via χ2 offset

method

Given a set of n data points (xi, yi) with associated uncertainties σi, and a model function f(x, θ)

with parameters θ, the goal is to find the parameters θ that best describe the data while accounting

for the uncertainties.

The chi-square function (χ2) is defined as the sum of the squared differences between the observed

data points and the model predictions, normalized by the uncertainties:

χ2(θ) =
n∑
i=1

(
yi − fi(x, θ)

σi

)2

. (4.1)

The best-fitting parameters, θ, are obtained by minimizing the χ2 function. In cases where f is

linear in θ, an analytical expression can be found or in the case of higher orders, a perturbative

approach to |θ| ≪ 1 can be performed. In a general approach, a Taylor expansion can be performed

as follows,

fi ≈ fi(θ0) + ∂fi
∂θ

∣∣∣∣∣
θ0

(θ − θ0) = fi,0 + hi · (θ − θ0), (4.2)

where θ0 is the nominal value of θ1. This allows to expand the χ2 to a first order in θ to fit a

parabola that reaches its minimum at θ̂,

χ2(θ) = χ2(θ̂ ± σ̂stat) = χ2
min + 1, (4.3)

where σ̂stat is the statistical uncertainty in θ̂. In general, a smaller value of (χ2) indicates a better

fit between the model and the observed data, with the uncertainties taken into account. Ideally,

the best-fit model will have a (χ2) close to the number of degrees of freedom (n.d.f) obtained as

1Notice that θ0 can be set to zero without loss of generality.
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n minus the number of parameters being fit, indicating that the model adequately describes the

data within the uncertainties. One of the reasons why this method is largely used in data analysis

is because it provides a goodness-of-fit measure or also called χ2 probability P (χ2, n.d.f). A

small χ2−probability indicates that the observed data is unlikely to have occurred by chance if the

model were correct, suggesting that the model provides a good fit to the data. Conversely, a large

chi-square probability suggests that the model may not adequately describe the data, indicating a

poor fit. In simple terms, P (χ2, n.d.f) indicates “what is the probability of getting a giving χ2 value

or something worse, assuming this is the correct fit function”. Three scenarios can be distinguished,

• χ2/n.d.f ≈ 1 ⇒ 0.01 < P (χ2, n.d.f) < 0.99 all is good.

• χ2/n.d.f ≫ 1 ⇒ P (χ2, n.d.f) < 0.01 implies a bad fit due to a wrong hypothesis or modelling,

the data is faulty, or the errors are too small.

• χ2/n.d.f ≪ 1 ⇒ 0.99 < P (χ2, n.d.f) the fit modelling is too good, which could imply an

overestimation of uncertainties.

The χ2 method is a valuable statistical technique for assessing the goodness-of-fit of models

to observed data. It provides a quantitative measure of the discrepancy between the observed

and expected values, taking into account the uncertainties in the data. The chi-square method is

particularly useful for hypothesis testing and model comparison, as it yields a chi-square statistic

and associated probability (p−value) that indicates the likelihood of the observed data under the

assumed model.

The offset method

The χ2 in Eq. (4.1) accounts only for data in which the uncertainties are originated from statistical

sources. However, in several analyses, the systematic sources play a role in the parameter estimation

and by consequence they need to be accounted for to properly determine their contribution to the

total uncertainty. One of the most common approaches is known as the offset method. In this, to

estimate the systematic uncertainty contribution of a given source r, the data is replaced by pseudo-

data accounting for the effect of the systematic source, the fit is repeated to find the minimum of the
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parabola such that the offset between θ̂r and the new minimum, θ̂, is taken to be the uncertainty, σ̂r.

The total systematic uncertainty, σ̂syst, is retrieved as the quadrature sum (⊕) of the uncertainty

components,

σ̂syst = ⊕rσ̂r. (4.4)

The final result is quoted as,

θ̂ ± σ̂total = θ̂ ± σ̂stat ⊕ σ̂syst. (4.5)

where σ̂total is the quadratic sum of the statistical and systematic components. Some limitations of

this approach could be related to the fact that the χ2 offset method may not adequately capture cor-

relations between different sources of systematic uncertainties. In practice, systematic effects can be

interrelated or dependent on one another, and ignoring these correlations can lead to underestimat-

ing the true uncertainty. Also, the numerical stability can depend on the complexity of the model

and the number of parameters, the minimization of the χ2 function (particularly when including ad-

ditional offset parameters) can become computationally intensive and numerically unstable. Careful

optimization techniques and regularization methods may be needed to ensure reliable results.

4.2 Maximum Likelihood Estimator (MLE)

A more general and versatile technique to fit model to data is known as the Maximum Likelihood

Estimator method (MLE). Given a statistical model with parameters θ and observed data X =

{x1, ..., xN} (statistically independent quantities), the goal is to find the values of θ that maximize

the likelihood of observing the given data. To measure how likely the observed data X are under the

given model and parameter values θ the likelihood function (joint probability) L(X|θ) is calculated.

It is often expressed as the probability density function (pdf) f(xi|θ), conditional on the parameter

values. For N trials, L can be expressed as,

L(X|θ) =
N∏
i=1

f(xi|θ). (4.6)
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To maximize L is more convenient to minimize −2 ln L(X|θ). This means, the solution to the MLE

is given by,
∂ ln L(X|θ)

∂θ

∣∣∣∣∣
θ=θ̂

= 0, (4.7)

where θ̂ is the value that maximize the likelihood and the uncertainty in the MLE estimator σθ̂ is

given by the inverse of the Hessian matrix of the likelihood. In the case of one single parameter θ

the likelihood function expanded around θ̂ can be scanned around its minimum as,

−2 ln L(θ̂ ± σθ̂) = −2 ln Lmax + 1, (4.8)

where Lmax = L(θ̂). Sometimes the number of events n is not fixed but they are distributed as a

Poisson variable with mean νi, then L can be expressed [127] as,

L(X|ν(θ)) =
N∏
i=1

νxi
i

xi!
e−νi . (4.9)

Here νi represents the rate parameter of the Poisson distribution for the i−th observation. In the

case where the probability density function can be expressed as a signal, Si, and background, Bi,

Eq. (4.9) is given by,

L(X|ν(θ)) =
N∏
i=1

(Si +Bi)xi

xi!
e−(Si+Bi). (4.10)

4.2.1 Nuisance parameters

In statistical analysis, nuisance parameters (NPs) are often estimated alongside the POIs using

methods such as the MLE or Bayesian inference with the Likelihood function being a function of

the NPs, L(X|θ, α), with α the NPs. Once estimated, NPs can be “integrated out” or marginalized

to obtain valid inferences about the POI. To deal with the NPs two approaches are commonly

used. The first one is called the Marginalisation (Bayesian approach) that consists in integrating

the likelihood L over the NPs with prior knowledge P , leaving a likelihood as a function of the POIs

only,

L(θ) =
∫
dαP (α)L(θ, α). (4.11)
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The second approach is known as profiling or profile likelihood (PLH) method and assumes that the

likelihood can be factorized with respect to the NPs where each likelihood of the NPs is independent

of the other NPs, this is,

L(X|θ, α) = L(X|θ) · C(α), (4.12)

where C is the likelihood of the NPs known as constrain or penalty term, which takes the variation

of the NPs into account. In this way, the PLH function is obtained by maximizing the likelihood

function with respect to the nuisance parameters α for each fixed value of the parameters of interest

θ,

PLH(X|θ) = max
α

{L(X|θ, α)} , (4.13)

then the profile likelihood function PLH(X|θ) is used for inference about the POI. Often NPs

are considered as univariate Gaussian random variables which simplifies considerably the problem.

Moreover, the NPs treatment is totally an election that can vary according to the model approach.

However, the profiling technique is largely implemented when there is more than one floating pa-

rameter involved. In the χ2 approach the NPs can be introduced into the χ2−function as “penalty

terms” that account deviations from the expected values based on the estimated nuisance parame-

ters, adjusting the chi-square statistic to reflect the additional uncertainty in the model providing

a more accurate result compared to the χ2−offset method in the NPs treatment.

4.2.2 Profile likelihood fit

The following study is focused on the case where the NPs are Gaussian-distributed such that the

likelihood is given by Eq. (4.12) with C,

C(α) =
∏
r

Gauss(αr|ar) =
∏
r

1√
2πσr

exp
(

−(αr − ar)2

2σ2
r

)
(4.14)

where αr is the r−th nuisance parameter, ar and σr are the mean value and standard deviation of

the r−th NP, respectively. Considering a set of data m⃗ = m1, ...,mN , then the likelihood can be
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expressed as,

L(m⃗|θ⃗, α⃗) =
∏
i

Poisson(mi|νi(θ⃗, α⃗)) ·
∏
r

Gauss(αr|ar), (4.15)

where mi is the event observed in data in bin i. Here, νi represents the total prediction (signal

modelling) in the bin i that depends on the NPs and θ⃗ that corresponds to the vector of parameter

of interest (POIs). Assuming a linear dependence of the probability model with respect to the POI

and NPs, νi(θ⃗, α⃗) be parametrized as follows,

νi(θ⃗, α⃗) = t0,i +
∑
p

hip(θp − θ0,p) +
∑
r

Γir(αr − ar), (4.16)

Where θ⃗0 are the reference values of the POI, t⃗0 = ν(θ⃗0, a⃗) is the nominal prediction of the POIs

and NPs reference values and h and Γ are the sensitivity matrices of the prediction with respect to

the POI and the NPs, this is,

hip = ∂νi(θ⃗, α⃗)
∂θp

, Γir = ∂νi(θ⃗, α⃗)
∂αr

. (4.17)

4.3 Likelihood fit in the Gaussian limit

The formalism previously described is suitable for several analysis and fit model to data. However,

in most of the scenarios a numerical approach to find the solution that maximizes the likelihood

is needed. For large datasets this can require a high numerical power apart from a considerably

amount of time. For that reason, an analytical approach [128, 129] could provide a fast and accurate

solution that could model the data [130–132]. It is important to highlight that in the scenario where

all the uncertainties are Gaussian-distributed the negative logarithm of the likelihood is proportional

to the χ2 function,

−2 log L ≡ χ2, (4.18)

such that the PLH fit is just the way in which the minimum of the likelihood function is found.

Moreover, this section shows that in this limit, the minimum of the parabola can be found by

different ways, first profiling over the NPs while the POI is fixed and second by profiling over the
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Figure 4.1: Minimization of the χ2 (1 POI + 1 NP) by profiling over the NPs while keeping the
POI fixed (blue curve) and profiling over the POI while keeping the NPs fixed (red line).

POI while the NPs are fixed as shown in Fig. 4.1. Both minimizations lead to the same result since

the parabola is fully symmetric and there is no possibility of more than one minimum or plateaus in

the likelihood that could deviate the minimum. This not only provides a consistent result in both

cases but it also allows to exploit the analytical solution in different ways.

In the case where all the uncertainties are Gaussian and the model is linear dependent with the

POI and NPs, the likelihood (4.15) admits an analytical solution [133–142] and it can be expressed

as follows,

−2 ln L(θ⃗, α⃗) =
∑
i,j

(
mi − ti(θ⃗) −

∑
r

Γir(αr − ar)
)
V −1
ij

(
mj − tj(θ⃗) −

∑
s

Γjs(αs − as)
)

+
∑
r

(αr − ar)2.

(4.19)

where ti(θ⃗) = t⃗0 + h · θ⃗ (using θ⃗0 = 0⃗) and Vij represents the statistical covariance matrix that

in general is non-diagonal. Eq. (4.19) is solved by profiling the NPs, this is, first minimizing over

α⃗, for fixed θ⃗. Then substituting the result into Eq. (4.19) (thus obtaining the profile likelihood
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ln L(θ⃗, ˆ⃗̂
α(θ⃗)); and minimizing over θ⃗. The profiled NPs are given by,

ˆ̂αr(θ⃗) =
∑
i

Qri

(
mi − ti(θ⃗)

)
+ ar, (4.20)

with,

Qri =
∑
s

(
I + ΓTV −1Γ

)−1

rs
(ΓTV −1)si. (4.21)

The NPs covariance is given by,

cov(ˆ̂αr, ˆ̂αs)(θ⃗) =
(
I + ΓTV −1Γ

)−1

rs
. (4.22)

Replacing Eq. (4.20) into Eq. (4.19), the profile likelihood can be written as

−2 ln L
(
θ⃗,

ˆ⃗̂
α(θ⃗)

)
=
∑
i,j

(
mi − ti(θ⃗)

)
Sij

(
mj − tj(θ⃗)

)
, (4.23)

where,

Sij =
∑
k

V −1
ik (I − Γ ·Q)kj , (4.24)

Therefore Eqs. (4.23) admits a covariance representation that can be seen as the result of maximizing

L(θ⃗, α⃗) over α⃗, for fixed θ⃗: it is the profile likelihood. The solution to (4.23) is given by,

θ̂p =
∑
i

λpi(mi − t0,i), (4.25)

cov(θ̂p, θ̂q) =
∑
i,j

λpiCijλqj. (4.26)

or equivalently,

cov(θ̂p, θ̂q) =
(
hT · S · h

)−1

pq
, (4.27)
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with cov(θ̂p, θ̂q) the total covariance in the POIs and,

λpi =
∑
q

(
hT · S · h

)−1

pq
·
(
hT · S

)
qi
, (4.28)

Cij = Vij +
∑
r

ΓirΓjr, (4.29)

with C the total covariance matrix of the measurements and Csyst. = Γ·ΓT the systematic covariance

matrix. Moreover Eq. (4.24) and Eq. (4.29) verify,

∑
k

V −1
ik (I − Γ ·Q)kj =

(
Vij +

∑
r

ΓirΓjr
)−1

, i.e (4.30)

Sij = C−1
ij , (4.31)

To obatin the total post-fit covariance matrix of the NPs the procedure can be repeated but

this time profiling the POI, this is, first minimizing over θ⃗ for given α⃗, substituting the result into

Eq. (4.19), and minimising the result over α⃗ leading to,

cov(α̂r, α̂s) =
[
I + (ζ · Γ)TV −1(ζ · Γ)

]−1

rs
, (4.32)

with

ζij =
∑
p

hipρpj − δij, (4.33)

ρpj =
∑
q

(hT · V −1 · h)−1
pq (hT · V −1)qj, (4.34)

while the “covariance” between the NPs and POI is given by

cov
(
α̂r, θ̂p

)
= −

∑
s

[
I + (ζ · Γ)TV −1(ζ · Γ)

]−1

rs
(ρ · Γ)ps . (4.35)

Equations (4.26), (4.32) and (4.35) determine the full covariance matrix of the fitted parameters.
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Importantly, Eq. (4.35) can be further simplified to

cov
(
α̂r, θ̂p

)
= −

∑
i

λipΓri, (4.36)

The inner product of Eq. (4.36) with itself gives the systematic covariance and the statistical un-

certainty can be obtained subtracting the result in quadrature from the total uncertainty in θ̂p. In

other words, the contribution of every systematic source to the total uncertainty is directly given by

the covariance between the corresponding NP and the POI and the total covariance of the likelihood

encodes the uncertainty components.

cov (−2 ln L) =

 cov (α̂r, α̂s) cov
(
α̂r, θ̂q

)
cov

(
θ̂p, α̂s

)
cov(θ̂p, θ̂q)

 . (4.37)

As an addition, Eq. (4.35) can be expressed in terms of the λ, h, Γ and S matrices as follows,

cov (α̂r, α̂s) =
[
I − 2

(
ζ̃ · Γ

)T
· S ·

(
ζ̃ · Γ

)]
rs
, (4.38)

where,

ζ̃ij =
∑
p

hipλpj − δij. (4.39)

Notice that Eq. (4.38) does not involve the matrix inversion and is suitable for numerical purposes

when dealing with a large number of nuisance parameters.

4.3.1 Shift induced by the NPs in the POI

When performing a fit in which the systematic sources play an important role is necessary to known

which systematics are capable of deviate the POI central value with respect to the expected central

value if there would not be systematic sources, i.e. the statistical only fit central value. This

concept of “shift” induced by a NP into the POI is also not well understood in profile likelihood fits

since commonly it is defined as the product of the pre-fit “impact” of a NP and its post-fit central

value. However, as discussed in subsections 4.3.2.3 and section 4.3.3, the impact method is not fully
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accurate when the post-fit NPs are correlated since the “impacts” tend to be overestimated.

Exploiting the Gaussian limit, the concept of shift induced by the NPs is straightforward and

the total shift due to the systematic sources can be disentangled in the POI post-fit value as follows,

ˆ̂
θp( ˆ⃗α) = ˆ̂

θ[stat. only]
p + ˆ̂

θ[syst]
p ( ˆ⃗α),

=
∑
i

ρpi(mi − t0,i) −
∑
r

(ρ · Γ)pr α̂r,
(4.40)

where,

α̂r =
∑
i

Q̃ri (mi − t0,i) , (4.41)

and,

Q̃ri = −
∑
s

[
I + (ζ · Γ)TV −1(ζ · Γ)

]−1

rs

[
(ζ · Γ)T · V −1

]
si
. (4.42)

In Eq. (4.40) the first component, ˆ̂
θ[stat. only]
p , is a full statistical only contribution and the second

one, ˆ̂
θ[syst]
p ( ˆ⃗α), is the total contribution of the NPs in the POI central value. A decomposition or

shift per NP is given by,
ˆ̂
θ[r]
p ( ˆ⃗α) = −(ρ · Γ)prα̂r, (4.43)

where the sum over r returns the total shift. Notice that Eqs. (4.20), (4.25), (4.40) and (4.41)

are totally equivalent between them and they represent the same minimum in the χ2. However,

Eq. (4.40) is more suitable to understand the contribution of each NP in the POI and in the case

where no systematics are present in the fit, i.e. Γ = 0. Eq. (4.25) converges to ˆ̂
θ[stat. only]
p .

4.3.2 Uncertainty decomposition

In the post-fit case, the measured parameters (POI and NPs) carry a total uncertainty that indi-

cates the precision level or constraining power of the fit using the pre-fit information. The total

uncertainty can be decomposed into two elements corresponding to the statistical and the system-

atic uncertainties. Where the first element corresponds to the uncertainty related to the statistical

information from the statistical covariance matrix when the NPs are profiled (floating) and it should

not be confused with the “statistical only fit uncertainty” in which the NPs are fixed. This implies
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that the statistical only uncertainty has to be smaller than the statistical uncertainty component

from the PLH fit. On the other hand, the systematic uncertainty receives contribution from each

systematic source and is not only restricted to the POI since the NPs can have an effect among

themselves. The uncertainty components in both POI and NPs and the methods to obtain them

are discussed here.

4.3.2.1 Uncertainty components in the Parameter of Interest (POI)

The analytical approach allows to breakdown the components of the POI uncertainty by matrix

algebra which is consistent and comes from an exact solution. From the previous equations, the

statistical uncertainty and systematic uncertainty are given by,

cov[stat](θ̂p, θ̂q) =
∑
i,j

λpiVijλqj, (4.44)

cov[r](θ̂p, θ̂q) =
∑
i,j

λpi (ΓirΓjr)λqj. (4.45)

where the sum over r of Eq. (4.45) returns the total systematic uncertainty. Notice that the inner

product of Eq. (4.36) with itself for a given r provide the total uncertainty in the NP r as shown in

Eq. (4.45). Then, the off-diagonal elements of the total covariance matrix of the likelihood in POI-

NPs representation provides the uncertainty decomposition which moreover, shows the sign of each

NP. This decomposition is not only useful to understand the contributions to the total uncertainty,

but also needed to propagate these contributions in subsequent analyses, such as combinations or

interpretation fits including results from other measurements or experiments.

Commonly, “statistical only (stat. only)” fits are reported as the uncertainty computed solely

using statistical information in the input data, or when the nuisance parameters (NPs) are fixed to

a given value. However, in PLH fits, the statistical component showed in Eq. (4.44) should not be

confused with the stat. only element that is strictly smaller. For example, the stat. only term can

be obtained by setting all the NPs to zero and is given by,

cov[stat. only](θp, θq) =
(
hT · V −1 · h

)−1

pq
=
∑
ij

ρpiVijρqj, (4.46)
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such that, √
cov[stat](θp, θp) >

√
cov[stat. only](θp, θp) (4.47)

This has a strong implication in PLH fits, as subtracting only the statistical uncertainty from the

total PLH uncertainty does not provide the total systematic uncertainty. Doing this provides a

systematic uncertainty that is larger than what actually comes from the PLH fit.

Although the Gaussian limit admits an analytical solution this is not always case in many

analysis and the uncertainty decomposition of all systematic sources is still a valuable information

that needs to be retrieved from the fit. To asses this information, the usual approach is to perform

the Uncertainty decomposition from shifted observables [143–145]. For a given probability

model, the post-fit value of the POI depends on data m⃗ and the global observables a⃗ of auxiliary

measurements θ̂p = θ̂p(m⃗, a⃗). Assuming no correlations between these observables, the uncertainty

in θ̂p then follows from linear error propagation:

cov(θ̂p, θ̂p) =
∑
i

 ∂θ̂p
∂mi

∆mi

2

+
∑
r

∂θ̂p
∂ar

∆ar

2

, (4.48)

where the first sum reflects the fluctuations of the data with ∆mi = σi, i.e. the statistical uncertainty

(each term of the sum represents the contribution of a given mi, measurement or bin), and the second

sum collects the contributions of all systematic uncertainties where ∆ar = 1.

Similarly, the shifted observable approach can be carried out analytically. Following the er-

ror propagation, to obtain the statistical uncertainty contribution in the POI, the corresponding

measurement should be varied by one standard deviation in the expression of the likelihood, and

repeating the fit otherwise unchanged, this is known as varying one parameter at the time (OPAT).

However, in our case the variables could be correlated and they should be varied taking into account

their correlations through the Cholenksy decomposition matrix L which verify V = L · LT . Then
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Eq. (4.49) should be solved.

−2 ln Lmk
(θ⃗, α⃗) =

∑
i,j

(
mi + Lik − ti(θ⃗) −

∑
r

Γri(αr − ar)
)
V −1
ij

(
mj + Ljk − tj(θ⃗) −

∑
s

Γsj(αs − as)
)

+
∑
r

(αr − ar)2,

(4.49)

On the other hand, to obtain the systematic uncertainty contribution in the POI, the NP global

observable is shifted by one standard deviation leading to Eq. (4.50),

−2 ln Lat(θ⃗, α⃗) =
∑
i,j

(
mi − ti(θ⃗) −

∑
r

Γri(αr − ar)
)
V −1
ij

(
mj − tj(θ⃗) −

∑
s

Γsj(αs − as)
)

+
∑
r

(αr − ar − δrt)2,

(4.50)

By this approach, the offsets induced in the POI due to the measurement mk and global observable

at shifts are given by,

∆θ̂[mk]
p ≡ θ̂[mk]

p − θ̂p =
∑
i

λpiLik, (4.51)

∆θ̂[at]
p ≡ θ̂[at]

p − θ̂p = −
∑
i

λpiΓit. (4.52)

Where quadrature sum of these expressions recovers the total uncertainty,

cov(θ̂p, θ̂q) =
∑
k

∆θ̂[mk]
p ∆θ̂[mk]

q + ∆θ̂[at]
p ∆θ̂[at]

q

=
∑
i,j

λpiVijλqj +
∑
i,j

λpi (ΓitΓjt)λqj.
(4.53)

Here, Eq. (4.52) represent the uncertainty decomposition that matches with off-diagonal block of

the total covariance matrix of the likelihood given in Eq. (4.36). It is important to notice than in

this case, the both POI and NPs are floating parameters in the fit and they has not been fixed.

This means, that the nominal fit and the shift fits have the same dimension (POI + NPs).
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4.3.2.2 Uncertainty components in the Nuisance Parameters (NPs)

Commonly, the parameter of interest is the only result that is presented with a dedicated decom-

position since is more intuitive to understand. However, the nuisance parameters’ total uncertainty

also receives contribution from the statistics and the other nuisance parameters. To obtain this

components, Eq. (4.49) and Eq. (4.50) are minimized but this time profiling the POI. For the NPs,

the minimization yields,

∆α̂[mk]
r ≡ α̂[mk]

r − α̂r =
∑
i

Q̃riLik, (4.54)

∆α̂[at]
r ≡ α̂[at]

r − α̂r =
[
I + (ζ · Γ)TV −1(ζ · Γ)

]−1

rt
. (4.55)

Summing Eqs. (4.54) and (4.55) in quadrature recovers the total NP covariance matrix in Eq. (4.32),

as expected. This means that the statistical component of the NPs uncertainty is given by,

cov[stat](α̂r, α̂s) =
∑
ij

Q̃riVijQ̃sj = cov(α̂r, α̂s) −
∑
t

cov(α̂r, α̂t)cov(α̂t, α̂s), (4.56)

which is similar to the POI expression in Eq. (4.44) as a weighted average of the statistical covariance

matrix but with the NPs weights. For the systematic components, Eq. (4.55) is the total uncertainty

given in Eq. (4.32) and by consequence the systematic matrix is given by the square of this matrix,

cov[syst](α̂r, α̂s) =
∑
t

cov(α̂r, α̂t)cov(α̂t, α̂s). (4.57)

It is straightforward that the total covariance of the NPs is recovered by summing of Eq. (4.56)

and Eq. (4.57). Notice that this imposes a strong condition in the NPs because only one matrix

is needed to fully determine the uncertainty components of the NPs, this is, the total covariance

matrix. Since the systematic is obtained by squaring the total uncertainty and the statistical can

be obtained by matrix subtracting the total uncertainty matrix with the systematic uncertainty

matrix.

Similarly as for the POI, the shifts correspond to the uncertainty component of each nuisance

parameters, this means that ∆α[at]
r is the uncertainty component induced by the systematic t in the
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NPs r and they are equal to the total covariance matrix elements. Moreover, a NP induces a shift

on itself equal to the square of its total uncertainty while the other NPs induce a shift equal to the

covariance. This is not only an accurate way to obtain the uncertainty decomposition but it also

shows that even at the post-fit level, all the uncertainties add-up together even when correlations

are presented, since they are considered by this approach.

In this way, the NPs-NPs and POI-POI covariance matrices are fully recovered. To complete the

full covariance matrix of the likelihood, the covariance between the NPs and POIs can be obtained

analytically by summing the products of the corresponding offsets, obtained from statistic and

systematic variations, that is,

∑
k

∆α[mk]
r ∆θ[mk]

p +
∑
t

∆α[at]
r ∆θ[at]

p = −
∑
s

[
I + (ζ · Γ)TV −1(ζ · Γ)

]
rs

(ρ · Γ)ps , (4.58)

which again matches the expression for cov(α̂r, θ̂p) in Eq. (4.35).

4.3.2.3 Comparison with the “Impacts”

In high-energy physics analyses, contributions of systematic uncertainties are routinely quantified

using “impacts”. In this method a nominal fit is performed and a total uncertainty σtot is retrieved

from it. To evaluate the impact of a given systematic source r into the fit result, this NP is removed

from the fit and the fit is performed again retrieving an uncertainty σ′
tot that is strictly smaller than

σtot. If σ′
tot is considerably smaller than σtot the systematic removed from the fit is expected to has

a large impact in the final result and this can be quantified by the quadratic difference of the two

uncertainties,

σr =
√

(σtot)2 − (σ′
tot)2. (4.59)

This impact is associated as a the systematic uncertainty component σr of the source r. A big

problem of this approach is that post-fit the NPs tend to be correlated and this do not consider

those correlations into account such that the quaratic sum of the all the NPs impacts do not recover

84



the total systematic uncertainty coming from the real PLH fit,

∑
r

σ2
r ̸= σ2

syst, (4.60)

This means Impacts do not add up to the total uncertainty, and do not match usual uncertainty

decomposition formulas even when they should, i.e. when all uncertainties are genuinely Gaussian.

4.3.3 Example in mW fits

The uncertainty decomposition discussed above is further illustrated with a toy measurement of

the W -boson mass using pseudo-data, where the results obtained from the profile likelihood fit are

compared with “impact” method. Since the measurement of W mass is a typical shape analysis,

in which the fit to the distributions is parameterized by both POI and NPs, the conclusions drawn

from this example can in principle be generalized to all kinds of shape analyses. While the effect of

varying the W mass is parameterized by the POI, only one systematic source is parameterized by

NPs in the probability model, this is, the pWT modelling uncertainty.

4.3.3.1 Simulation

The signal process under consideration is the charged-current Drell-Yan process [146] pp → W− →

µ−ν at a centre-of-mass energy of
√
s =13 TeV, generated using Madgraph, with initial and final

state corrections obtained using Pythia8 [147, 148]. Detailed information of the event generation is

listed in Table 4.1.

Event Generator
pp → W− → µ−νµ at

√
s=13 [TeV]

Number of events 10,000,000
Matrix elements Madgraph at LO

Input mW 80.419 [GeV]
Input ΓW 2.0476 [GeV]

Parton shower & QED FSR Pythia8

Table 4.1: Madgraph+Pythia8 [147, 148] event generation for MC samples. Events with an off-
shell boson are excluded in the event generation at parton level, leading to a total cross-section of
6543 pb.
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Kinematic distributions for different values of the W mass are obtained in simulation via Breit-

Wigner reweighting [149]. The systematic variations of pWT are implemented using a linear reweight-

ing as a function of pWT before event selection, then taking only the shape effect on the underlying pWT

spectrum. At reconstruction level, the pT of the bare muon is smeared by 2% following a Gaussian

distribution. The hadronic recoil u⃗T is taken to be the opposite of p⃗WT and smeared by a constant

6 GeV in both directions of the transverse plane. The information about the W mass templates

and the systematic variations is summarized in Table 4.2.

Templates and systematic variations
W mass templates ± 50 MeV by Breit-Wigner reweighting

pWT model
w(pWT ) = 0.96 + 8 · 10−4 · pWT [GeV](Reweighting)

Table 4.2: W mass templates and systematic variation for the Madgraph+Pythia8 samples.

The detector smearing, as well as the event selections listed in Table 4.3, are chosen to be similar

to those of a realistic W mass measurement. The reconstructed muon pℓT spectra in the fit range

after the event selection is shown in Fig. 4.2, along with the relevant templates and systematic

variations.

Detector smearing
Lepton pT resolution 2%

Nominal recoil resolutions 6 [GeV]
Event selection

ηℓ selection [-2.5, 2.5]
pℓT selection >25 [GeV]
Emiss

T selection >25 [GeV]
mT selection >50 [GeV]
uT selection <25 [GeV]

Table 4.3: Detector smearing and event selection for Madgraph+Pythia8 samples. The cut-flow
efficiency of the event selection is about 29%.

4.3.3.2 Uncertainty components

To study the difference between the impact method and the uncertainty decomposition described

in section 4.3. An analytical profile likelihood fit is performed, the results include the fitted central

values and uncertainties for all the free parameters. The uncertainty components of the systematic
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Figure 4.2: Reconstructed muon pℓT distribution of the Madgraph + Pythia8 samples. (top): Kine-
matic spectra. (bottom): The variation to nominal ratio with statistical uncertainty indicated by
the error band.

source is also retrieved and read from the covariance matrix. However, The uncertainty components

of the profile likelihood fit results are also obtained by repeating the fit to bootstrap samples obtained

by resampling the pseudo data used to compute the results, or those of the central values of the

auxiliary measurements, then computing the spread of offsets in the POI.

On the other hand, to evaluate the “impact” method, the PLH fit is performed using the dataset

and retrieving the total uncertainty. Once this is done, the pWT systematic is removed and the fit

is repeated such that the total uncertainty is obtained and it corresponds to the statistical only fit

uncertainty. The impact of pWT in the final measurement is evaluated by the quadratic difference of

the total uncertainty and the stat. only result.

The uncertainty decomposition is summarized in Table 4.4, where the total uncertainty is broken

down into statistical and systematic components. uncertainties using the shifted observable method,

and compared with the results using the conventional impact approach for PL fit. This confirms

that the systematic component is not well evaluated by the usual approach since it is overestimated

and both the analytical and toys method provide the same result confirming that for a general case,

the correct way to obtain the uncertainty components is by fluctuating the global observable with

its uncertainty. Next to it, the total covariance matrix of the likelihood proofs that the uncertainty
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pℓT fit (MeV) σtotal σstat. σsyst.
Shifted Analytical 15.49 15.13 3.31

Observable Toys 15.49±0.01 15.13±0.01 3.31±0.00
Impact 15.49 13.81 7.00

cov(L) =
(

0.22 -3.31
-3.31 239.83

)

Table 4.4: Left : Uncertainty decomposition for the muon pℓT fit using the shifted observable method
(Analytical and toys) and the impact method for PL fit, right: post-fit covariance among the NP
and the POI, for the profile-likelihood fit to pℓT distribution.

component can directly be read from the off-diagonal terms, this is, the covariance between the

nuisance parameter and the parameter of interest as shown in Eq. (4.37).

4.3.4 Use of decomposed uncertainties in subsequent fits or combina-

tions

Uncertainty decompositions obtained with the present method are meaningful only if the results can

be used consistently in downstream applications, such as measurement combinations or interpreta-

tion fits in terms of specific physics models. In particular, uncertainty components that are common

to several measurements generate correlations which should be evaluated properly. This happens

when measurements are statistically correlated or when they are impacted by shared systematic

uncertainties.

As a final validation of the presented method, the combination of profile-likelihood fits of the

same observable is described. Such a combination can be performed either using the decomposed

uncertainties, or in terms of the PLH fit outputs, i.e. the fitted values of the POIs and NPs and

their covariance matrix.

The combination is performed starting from,

−2 ln Lcmb(θ⃗) =
∑
i,j

(
mi −

∑
p

Uipθp

)
C−1
ij

(
mj −

∑
p

Ujpθp

)
, (4.61)

that can be applied to linear measurement averaging by adapting the definition of t(θ⃗). In case

of a single combined parameter, ti = θ; for a simultaneous combination of several parameters,

ti = ∑
p Uipθp where Uip is 1 when measurement i is an estimator of POI p, and 0 otherwise [132].
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Equation (4.61) can be solved by following the formalism described above.

In the case of a combination based on the uncertainty decomposition, the covariance matrix C

has dimension equal to the (nPOI · N) × (nPOI · N) where nPOI is the number of POIs and N the

number of fits to be combined. In the case of two fits with 1 POI and 3 NPs, C is a 2 × 2 matrix

constructed from the decomposed uncertainties using Eq. (4.29) where the systematic sources are

introduced in the sensititivy matrix Γ.

For a combination based on the PLH fit outputs, the covariance matrix C has dimension equal

to (nPOI + nNPs) ·N × (nPOI + nNPs) ·N where nNPs is the number of NPs. For example, in the two

measurements case, each one with 1 POI and 3 NPs, each covariance matrix of the measurements

has dimension 4×4 and C has dimension 8 × 8. The diagonal blocks are the post-fit covariance

matrices of each fit that can be obtained by Eqs. (4.26) and (4.32). The off-diagonal blocks reflect

systematic and/or statistical correlations between the fits. For two fits f1 and f2 the covariance

matrix elements are obtained by Eq. (4.62),

cov
(
θf1
p , θ

f2
q

)
=
∑
k

∆θ[mk],f1
p ∆θ[mk],f2

q +
∑
t

∆θ[at],f1
p ∆θ[at],f2

q

cov
(
αf1
r , α

f2
s

)
=
∑
k

∆α[mk],f1
r ∆α[mk],f2

s +
∑
t

∆α[at],f1
r ∆α[at],f2

s

cov
(
αf1
r , θ

f2
p

)
=
∑
k

∆α[mk],f1
r ∆θ[mk],f2

p +
∑
t

∆α[at],f1
r ∆θ[at],f2

p

cov
(
θf1
p , α

f2
r

)
=
∑
k

∆θ[mk],f1
p ∆α[mk],f2

r +
∑
t

∆θ[at],f1
p ∆α[at],f2

r

(4.62)

For each matrix element, the first sum is statistical and typically occurs when the fitted distri-

butions are projections of the same data. The second sum represents shared systematic sources

of uncertainty. This allows to a fast and accurate expression in the Gaussian limit that often is

obtained using the Toy Monte Carlo approach.

4.4 Summary

Different approaches to obtain the uncertainty components in a given measurement have been stud-

ied. The offset method is one of the simplest approaches to retrieve the systematic uncertainties.
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However, in the case of profile likelihood fits, it has been shown that the statistical uncertainty

alone does not match the statistical component when systematic sources are introduced into the

fit. Moreover, it has been proven that the usual impact method approach, commonly implemented

in high-energy physics, not only overestimates the systematic components but also ignores possible

correlations between the systematic sources. This leads to a situation where the uncertainty compo-

nents do not accurately reflect the total systematic uncertainty. In this context, explicit equations

were provided for obtaining each of the systematic components in the Gaussian limit, along with

analytical solutions when the global observable for the parameter of interest and nuisance parame-

ters is shifted by 1σ, including correlations. By fully exploiting the covariance matrices, it was also

shown that the uncertainty decomposition can directly be derived from the total covariance of the

likelihood, ensuring that all aspects of the problem are fully determined and the components of the

nuisance parameters are constrained by the total post-fit covariance of the systematic sources.

Similarly, the concept of a shift in the parameter of interest (POI) due to the nuisance param-

eters (NPs) was introduced without relying on the impacts concept commonly implemented. This

approach retrieves the statistical only result when the systematic sources are removed. These re-

sults not only aid in understanding the components in profile likelihood fits but also provide a broad

framework for subsequent fits or combinations. It should be noted that the shifted global observable

remains valid even for non-Gaussian limits, allowing the induced shift in the best-fit values to be

implemented for combinations.
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Chapter 5

Muon calibration for the Z and J/ψ

resonances

5.1 Introduction

To ensure a good quality data, the ATLAS detector follows up a dedicated detector alignment [89,

150, 151]. The ID alignement is determined by a global χ2 of the track-to-hit residuals [150] while

for the MS an optical alignment system [89] monitors the position of the muon chambers relative

to each other and relative to fiducial marks in the detector.

Despite the sophisticated alignment procedures in the sub-detectors, residual misalignments

between the ID and the MS can introduce different biases. One of these is a charge-dependent bias

in the momentum measurement and it is related to a rotation of the detector layers that can cause

a sagitta bias, which has opposite effects on positively and negatively charged particles, eventually

degrading the resolution in data. For the MS, due to the alignment nature this is less sensitive to

charge-dependent biases, however, residual effects can still impact the data. The MS is capable of

measuring the sagitta of the muon track with a precision level of tens of micrometers (µm) and up

to 120–130 µm in specific detector regions. This residual manifests a potential systematic source in

the reconstruction procedure that needs to be further corrected. This sagitta bias has been largely

studied providing maximum values of about 0.4 TeV−1 that after correction it can be reduced up
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to 2 · 10−4 TeV−1 [117].

Similarly, for the ID, after the alignment procedure is performed some residual detector dis-

placements with respect to the nominal detector geometry can still be present. These are known

as the weak modes or ID geometrical distortions and they can be related to radial or longitudinal

expansion of the detector layers or mismodelling in the magnetic field causing length-scale bias.

These biases according to the model can impact the momentum from few parts per mille to parts

per million. Combining different models can potentially improve the data-to-simulation agreement

providing a per mille agreement after correction.

Correcting the data for sagitta and ID geometrical distortions are not the only effects to be

considered to ensure a good reconstruction. Even though the simulation accounts for a perfect

description of the ATLAS detector, the level of detail is not enough to reach an accuracy of 0.1%

on the muon momentum scale and the percent level precision on the resolution measured in data.

Here, the Muon Momentum Calibration (MMC) is defined as the procedure used to identify the

corrections to the reconstructed muon transverse momenta in simulation to match the measurement

of the same quantities in data [117]. The MMC is accounted after the charge dependent effects

previously described are corrected.

The calibration of the momentum of the muons is of particular interest of the present work and

part of it is fully devoted in understanding and improving the momentum and track performance,

for which a dedicated calibration procedure of the Inner Detector and Muon Spectrometer have been

designed and applied. After muon candidates selection, an ID calibration is carried out to correct for

possible biases in the muon track sagitta, geometrical deformations and magnetic field distortions.

The momentum of the muons is corrected considering charge dependent effects that can potentially

degrade the resolution of the invariant mass. Once this is accounted, different models were tested

(radial, longitudinal and magnetic field distortions) to model and consider possible geometrical

distortions that can generate modulations or shifts in the invariant mass of the resonances. Taking

these effects into account an improvement in the data-to-simulation agreement is obtained.

In the case of the MS, the alignment residuals between the ID and MS have been investigated,

and the residual toroidal magnetic field present in the calorimeters has been re-evaluated. This
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stage is fully based on the track parameters of the muons in the ID and MS allowing to study

different extrapolation types and possible magnetic field mismodellings.

Finally, once the ID calibration has been performed, a muon momentum calibration for scale

and resolution effects is carried out. The scale calibration aims to correct for inaccuracies in the

description of the magnetic field integral and the dimension of the detector in the direction perpen-

dicular to the magnetic field. On the other hand, the resolution correction accounts for multiple

scattering, uncertainties related to, and inhomogeneities in, the modelling of the local magnetic

field, and length-scale radial expansions of the detector layers [117]. After these corrections, the

data-to-simulation agreement is found to be at the per mille level

In this chapter, Section 5.2 introduces the implemented dataset to study the muom momentum

calibration. Section 5.3 describes the approach to correct the charge dependent bias associated to

the muon track sagitta and how the sagitta strength is evaluated. Section 5.4 describes the ID

calibration for geometrical distortion (weak modes) studies based on three models: radial, longitu-

dinal and magnetic field distortions. Section 5.5 study the potential MS/ID misalignment residuals.

Section 5.6 provides an insight into the ATLAS magnetic field and a re-evaluation of the toroidal

magnetic field and possible mismodelling. Section 5.7 evaluates the MS/ID residuals in the first co-

ordinates of the track parameters and establishes a relation with the first coordinates components.

Section 5.8 provides a correction map for the track parameters based on the second coordinates

results. Finally, Section 5.9 describes the muon momentum calibration strategy based on analyt-

ical fits to correct the scale and resolution of the muons and final agreement between data and

simulation.

5.2 Dataset for muon calibration

The implemented samples correspond to data collected between 2015 and 2018 at 13 TeV with an

integrated luminosity of 139 fb−1 after trigger and data-quality requirements and with an average

number of pp collisions per bunch crossing of ⟨µ⟩ = 33.7. Only events collected in stable beam

conditions and with all relevant ATLAS detector subsystems fully operational are used in the
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Figure 5.1: Integrated invariant mass for (a) Z → µµ and (b) J/ψ → µµ after selection using data
taking-years (2015-2018) in CB tracks.

analysis. In particular, for Z → µµ a combination of single-muon trigger algorithms is implemented

while for J/ψ → µµ trigger algorithms dedicated to J/ψ → µµ topologies [152] were used. Muon

candidates are selected by applying the cuts in section 3.2.1.1 giving a total number of Z candidates

of about 7.23 × 107 and 1.06 × 108 for J/ψ. The inclusive invariant mass for the two resonances is

shown Fig. 5.1.

For the Monte Carlo samples, two sets were implemented with different calibrations, release 21

(r21) known as mc16 samples and release 22 (r22) known as mc20 samples with generators Powheg

and Pythia8 for periods a, d and e.

The Z → µµ signal process is simulated using the Powheg-box v22 [153–155] generator at

next-to-leading order (NLO) in QCD with the CT10 parton distribution function (PDF) [55] set

for the hard-scatter process. Events were generated with a dimuon invariant mass above 40 GeV.

The parton showering was simulated using Pythia 8.186 with the CTEQ6L1 PDF set [56] and the

AZNLO set. About 210 million events were simulated for this process.

The J/ψ → µµ signal process was simulated using the Pythia 8.186 [72] leading-order generator,

with the CTEQ6L1 PDF [56] set and A14 as the underlying-event tune. In addition, Photos++

v3.52 [156] was used to simulate the effect of final-state radiation. To increase the effective number
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Figure 5.2: Inclusive invariant mass distribution for J/ψ → µµ in (a) CB and (b) ID tracks before
correction.

of events in the regions of phase space relevant to this analysis, the events were generated in a

reduced phase space, requiring at least one of the two muons to have pT > 6 GeV and both muons

to have |η| < 2.5. About 420 million events were simulated using this configuration. After selection

the total number of candidates are 8.62 × 107 for the Z and 1.03 × 107 for the J/ψ.

The agreement between data and simulation before correction is shown in Figures 5.2, 5.3 and

5.4 where the simulation integral is normalized to the data integral.

5.3 Sagitta bias correction

A dedicated calibration and alignment is performed in the ATLAS detector to reach a high precision

level. Different residuals can affect the momentum measurement of the muon such as, the charge

dependent bias that degrades the momentum resolution as,

q

p̂
= q

p
+ δs, (5.1)

where q is the electric charge, p is the unbiased momentum, p̂ is the biased momentum and δs is

the strength of the bias. The strength can be estimated by different methods, one of the usual

approaches is under the assumption that the average pT of the muon is half of the invariant mass
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Figure 5.3: Mean mass of the dimuon system for J/ψ → µµ in (a) CB and (b) ID tracks before
correction.

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

) 
[G

eV
]

µµ
(mσ 

 

Data

MC-1 = 13 TeV, 139 fbs

µµ→ψJ/

Combined tracks

ATLAS Work In Porgress

 

2.5− 2− 1.5− 1− 0.5− 0 0.5 1 1.5 2 2.5
η

0.95

1

1.05

S
im

ul
at

io
n

D
at

a

(a)

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

) 
[G

eV
]

µµ
(mσ 

 

Data

MC-1 = 13 TeV, 139 fbs

µµ→ψJ/

ID tracks

ATLAS Work In Porgress

 

2.5− 2− 1.5− 1− 0.5− 0 0.5 1 1.5 2 2.5
η

0.95

1

1.05

S
im

ul
at

io
n

D
at

a

(b)

Figure 5.4: Dimuon invariant mass resolution for J/ψ → µµ in (a) CB and (b) ID tracks before
correction.
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of the dimuon pair mµµ, then [157],

δs(η, ϕ) = 4 · q · (mµµ(η, ϕ) − ⟨mµµ⟩)
⟨mµµ⟩2 , (5.2)

where ⟨mµµ⟩ is the average of the invariant mass of the dimuon pairs used to derive the correction,

while mµµ(η, ϕ) is the average invariant mass of the dimuon pairs when the muon with the highest

transverse momentum is in the given (η, ϕ) region. However, in this work, the sagitta strength,

δs(η, ϕ), is evaluated by minimising the variance of the invariant mass distributions [117]. The

values of δs for different data-taking years are shown in Fig. 5.5. Once δs is obtained, the biased

momentum of the muon, p̂T , is corrected using the following equation:

pT = p̂T
1 + q · δs(η, ϕ) · p̂T

. (5.3)

The uncorrected and corrected invariant mass distribution for Z → µµ and J/ψ → µµ are shown

in Fig. 5.6. After correction, an improvement in the resolution is observed at high pT (Z boson)

and a slight improvement at low pT (J/ψ meson). Correcting sagitta bias is of particular interest

in analyses such as Z and W mass measurements since in decays like Z → ℓℓ and W → ℓν a bias

proportional to δs is introduced,

m′
Z −mZ = (p2

T δ
2
s/2) ·mZ ∼ (pT δs)2 ,

m′
W −mW = (pT δs/2) ·mW ∼ pT δs.

(5.4)

This means, the Z mass measurement is less affected by the sagitta correction. For the W mass,

there is a first order dependency in δs and for that reason a good correction is needed to reduce

the uncertainty associated to this source. An average value of ⟨δs⟩ = 0.05 TeV−1 in a pT = 40 GeV

track would induce a mass shift of about 80 MeV in the W boson mass and 0.1 MeV in the Z boson

mass. One of the common systematics sources in the sagitta determination is the global bias with

a constant value of about δglobal
s ≈ 0.02 TeV−1 which induces a shift of about 30 MeV in mW and

0.01 MeV in mZ .
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Figure 5.5: Sagitta strength δs maps for data-taking years (2015-2018) in CB tracks.
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Figure 5.6: Invariant mass for (a) Z → µµ and (b) J/ψ → µµ. The upper panel shows the
distribution for the uncorrected (UnCorr.) and sagitta corrected (Corr.) distributions. Lower panel
shows the ratio Corr./UnCorr.

5.4 Inner detector deformations

Achieving a good determination of the absolute scale of charged particles measured by the ATLAS

ID detector is crucial for precision measurements [158–160]. The ID alignment is carried out by a

global χ2 track-to-hit residual. However, some systematic biases can escape this procedure, resulting

in residual biases known as Weak Modes, which require a different treatment. The measurement of

the track momentum provided by the ID can be affected by different sources such as incomplete

knowledge of the amount of material in the detector, imperfect measurement of the direction and

strength of the magnetic field, and residual geometrical deformations after the alignment of the ID.

These deformations can be either real detector distortions or artificial deformations introduced by

the alignment procedure itself [158]. The ATLAS ID detector is well known and the uncertainties in

the measurements are derived from multiple sources, including the precision of the sensors, alignment

procedures, and environmental factors such as temperature variations. For the ID components, these

uncertainties are estimated in the pixel detector to be 10 µm (R− ϕ) and 115 µm (z) in the barrel

and 10 µm (R−ϕ) and 115 µm (R) in the disks . For the SCT, the intrinsic accuracies per module

in the barrel are 17 µm (R − ϕ) and 580 (R − ϕ) (z) and in the disks are 17 µm (R − ϕ) and 580

µm (R). For the TRT, approximately 130 µm in the transverse plane (R − ϕ) [89]. In the case of
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the magnetic field, this is composed by two systems, the central solenoid magnet and the toroidal

magnet system, each one with their uncertainties. For the solenoid one, the B field has an strength

of 2T with an uncertainty ranging from 0.4mT in the center of the solenoid up to 2mT in the edges.

For the toroidal magnetic field the uncertainty corresponds to 4mT [161].

Even though the ID and the magnetic field are precisely calibrated and well known, these

uncertainties can produce small bias that should be corrected. One of the main deformations

studied is the radial distortion. In this deformation, the measurements on a track are radially

displaced by an amount proportional to their distance from the interaction point [158]. Another

deformation is the longitudinal distortion which affects the transverse and longitudinal momentum

components. These two, radial and longitudinal can be encompassed into a global bias that has

been largely studied [159]. Similarly, possible mismodellings in the magnetic field can be accounted

through a scale affecting both the transverse and longitudinal momentum components.

Notice that these models are a simplified description of the real nature of the bias, but they

illustrate the degrees of freedom remaining after the standard alignment. A more accurate and more

complicated model could consider time-dependent corrections, azimuthal dependence, etc. On what

follows, three models are used to disentangle the effect of each weak mode into the invariant mass,

these are, radial, longitudinal and magnetic field distortions. Each one is parameterized by a single

parameter that corresponds to a small perturbation in the momentum components.

Radial distortion: a radial distortion of the detector implies that the measurements on a track

are displaced proportionally to their radial coordinate, δR(η, ϕ) ≪ r. The transverse momentum is

related to the magnetic field B, the electric charge q, the radial component R, and the sagitta s,

by the expression,

pT ∝ q
BR2

8s (5.5)

If the radial component is shifted by a small perturbation R → (1 + εR) ·R and s → (1 + εR) · s, it

follows,

p′
T = pT (1 + εR) (5.6)

where |εR| ≪ 1. At the same time, a shift in the radial component also generates a change in the
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polar angle θ, that keeps unchanged the Z−component of the momentum,

cot θ′ = cot θ/(1 + εR),

p′
Z = pZ .

(5.7)

This leads to the total momentum,

p′ = p
(
1 + εR sin2 θ

)
, (5.8)

and invariant mass bias,

m′

m
≃ 1 + εR

2
(
sin2 θ1 + sin2 θ2 − ∆θϕ

)
, (5.9)

where ∆θϕ is given by Eq. (A.6).

Longitudinal distortion: the tracks are displaced only in the Z−component affecting the

longitudinal component of the momentum and the polar angle, this is,

cot θ′ = (1 + εz) cot θ,

p′
Z = (1 + εz)pZ ,

(5.10)

with a total momentum,

p → p
(
1 + εz cos2 θ

)
, (5.11)

and the bias in the invariant mass is given by,

m′

m
≃ 1 + εz

2
(
cos2 θ1 + cos2 θ2 − ∆θϕ

)
= 1 + εz

2
(
2 − sin2 θ1 − sin2 θ2 − ∆θϕ

)
. (5.12)

Magnetic field distortion: both components of the momentum are changed but the polar

101



angle remains the same,

p′
T = (1 + εB)pT ,

p′
Z = (1 + εB)pZ ,

(5.13)

therefore, the bias in the mass is given by,

m′

m
= 1 + εB. (5.14)

Notice that both radial and longitudinal distortions are functions of the angles of the two particles

in the laboratory frame. These two deformations are capable of generating modulations in the

reconstructed mass. In the case of the magnetic field distortion, the invariant mass is not a function

of the angles and therefore is not able to generate modulations but a shift (scale) in the mass is

obtained. Notice that for simplicity the parameters εR,B,z are assumed to be constant but in reality

they are functions of η, ϕ. This dependency is obtained by mapping the bias in rapidity bins.

The equations of the three models show that one model can be expressed as a combination of

the other two. For example, a radial distortion could be parameterized as a magnetic field plus

longitudinal distortion, the longitudinal distortion as a combination of the radial distortion and the

magnetic field and finally the magnetic field as combination of the longitudinal distortion plus the

radial distortion.

In principle, it is preferable to describe the data using only one deformation since this implies

only one bias parameter, ε, but possible combinations could be considered. It is necessary to

highlight that a combination of the three models (three parameters model) is ambiguous in the

sense that is not possible to disentangle the effects.

5.4.1 Collins-Soper reference frame

To accurately assess geometrical deformations, it is crucial to analyze the calibration in relation to

the decay angles of muons. Employing the rest frame for this analysis is particularly effective, as it

ensures that the angular variables, cos θ and ϕ, span the full theoretical ranges, −1 < cos θ < 1 and
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−π < ϕ < π, respectively. This comprehensive coverage facilitates a more thorough evaluation of

potential deformations. Conversely, using the laboratory frame for these measurements results in

a much more restricted angular range, especially for particles such as the J/ψ meson, which limits

the effectiveness of the analysis.

In the context of Drell-Yan production in hadron collisions at the hard scattering level, it is

convenient to define a reference system. This system allows the differential distributions to be well

approximated by the Born-level angular dependence while remaining minimally sensitive to the

amount of hard QCD radiation emitted. For a hadron collider, this reference system is known as

the Collins-Soper (CS) frame [162].

The CS frame is defined as a rest-frame of the lepton-pair, with the polar and azimuthal angles

constructed using proton directions in that frame. The polar axis (z−axis) is oriented such that it

bisects the angle between the momentum of one incoming proton and the inverse momentum of the

other proton. The direction of the z−axis is determined by the sign of the lepton-pair momentum

along the z−axis in the laboratory frame. The y−axis is defined as the normal vector to the plane

formed by the two incoming proton momenta, and the x−axis is chosen to establish a right-handed

Cartesian coordinate system with the other two axes. The polar (θ) and azimuthal (ϕ) angles are

calculated with respect to the outgoing lepton [163, 164]. The cosine of the polar angle can be

expressed in terms of the outgoing leptons int the laboratory frame as,

cos θCS = pz(ℓ+ℓ−)
|pz(ℓ+ℓ−)|

2
m(ℓ+ℓ−)

√
m2(ℓ+ℓ−) + p2

T (ℓ+ℓ−)
(P+

1 P
−
2 − P−

1 P
+
2 ) (5.15)

with pz(ℓ+ℓ−) and m(ℓ+ℓ−) being the longitudinal momentum and the invariant mass of the lepton

system, respectively, and P±
i is given by,

P±
i = 1√

2
(Ei ± pz,i), (5.16)

where Ei and pz,i are the energy and longitudinal momentum of the lepton (i = 1) and anti-lepton

(i = 2), respectively. The ϕ angle is calculated as an angle of the lepton in the plane of the x and

y axes in the Collins-Soper frame.
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5.4.2 Weak modes and ID distortions

To determine if the invariant mass presents weak modes, the reconstructed invariant mass is studied

as a function of the CS frame angles, cos θCS and ϕCS. For this, the mean invariant mass of J/ψ → µµ

is obtained in rapidity bins, yJ/ψ, as shown in Fig. 5.7. Results indicate that modulations and shifts

are present in data with respect to the simulation and these need to be corrected. To know which

model describes the data, the momentum of the muons is modified in the simulation as described

in the three models. Simulated results are shown in Fig. 5.8.

The models are capable to generate two effects, modulation and shift of the invariant mass. In

particular, the magnetic field distortion is capable only of generating shift as showed in Eq. (5.14).

For the longitudinal and radial distortions, these are capable of shifting and modulating with op-

posite effects as shown in Equations (5.14) and (5.12).

5.4.3 Fitting strategy

To correct the weak modes, a suitable model that generates shift and modulations is needed. For

this, a template fit of the data is performed in the Collins-Soper frame where the templates cor-

respond to the simulated samples generated in rapidity bins (i.e. Fig. 5.8). Once the fits are

performed, the fitted parameters are retrieved to construct a correction map as a function of the

rapidity.

Since two observables are obtained, cos θCS and ϕCS, an analytical joint fit is performed. An

unrolled distribution of two variables (cos θCS &ϕCS) in bin number units for different rapidity bins

is prepared. Then, the likelihood is minimized following the formalism described in Section 4.3.

To find the best model that describes the data, the fit is performed using the ratio data-to-

simulation (data/MC) as input data and the templates correspond to model/MC while the nominal

sample is the ratio equal to one, this is, MC/MC = 1. The probability model in a given i−bin is

given by,

ti(ε⃗) = 1i +
∑
p

hipεk ⇒ ti(ε⃗) = 1 + εzPz,i + εBBi + εRRi, (5.17)

where 1i corresponds to the nominal model in each bin, ε⃗ = (εz, εB, εR) is the POI vector of biases
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Figure 5.7: Mean invariant mass versus CS angles (left) cos θCS and (right) ϕCS in (top) barrel,
(middle) ECT backward and (bottom) ECT forward regions for ID tracks in J/ψ → µµ.
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Figure 5.8: Simulated distortion models: Mean invariant mass versus CS angles (left) cos θCS and
(right) ϕCS in barrel region for (top) radial distortion, (middle) longitudinal distortion and (bottom)
magnetic field distortion for ID tracks in J/ψ → µµ.
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to be fitted and h is the sensitivity matrix of the POIs with respect to the model, these are, the

model-to-MC ratio. Notice that for every i−bin there is a given ε⃗ such that a binned map in the

rapidity space can be constructed.

Fits can be carried out using only one parameter model (single model fit) that implies only

one bias parameter either εz, εB or εR as shown in Fig. 5.9. However, results show that the

one-parameter model is not capable of describing the data, resulting in a high χ2 and small χ2-

probability. For that reason a combination of models is required, i.e. two-parameter model. These

are: longitudinal-magnetic field (ZB), longitudinal-radial (ZR) and magnetic field-radial (BR).

Notice that a combination of the three models ZBR is degenerated, since as showed in Equa-

tions (5.9), (5.12) and (5.14), each model can be expressed as a combination of the other models

and by consequence the parameters could not be disentangled. Combined model fits are shown in

Fig. 5.10 where the χ2 and the probability Prob(χ2) are improved. The three combinations provide

similar results giving a “freedom” in choosing the modelling of the data. The fits are performed in

all regions and a map of the biases as a function of the J/ψ meson rapidity can be obtained.

5.4.4 Correction maps and corrected dataset

After performing the fits, the biases are collected to construct the maps in J/ψ rapidity space, yJ/ψ,

as shown in Figures 5.11, 5.12, 5.13. Since the three models can be expressed as combinations of the

others and the three provide a similar fit quality there is a freedom in selection. An intuitive model

is a radial distortion since a cylindrical detector over its own weight tends to present deformations

in the radius. However, as showed in the one-parameter model results, a single deformation is not

capable of describing the data. To complement the radial model, a magnetic field distortion is

chosen since the residual (εB) generates a global scale shift in the invariant mass. This combined

two-parameter model (magnetic field-radial distortion) is capable of modelling the effects in data

through global shift plus modulations. Final model shows a relative bias in the barrel region of

⟨εB⟩ = −1.5 × 10−3 and ⟨εR⟩ = 1.0 × 10−3 for the magnetic field and radial distortions, respectively.

After correction, a good agreement between the data and simulation at the per mille level is obtained

as shown in Fig. 5.14.
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Figure 5.9: Analytical joint fit using single model for the barrel region.
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Figure 5.10: Analytical joint fit in combined model for the barrel region.
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Figure 5.11: Bias maps for longitudinal-radial model of the ID distortions.
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Figure 5.12: Bias maps for longitudinal-magnetic field model of the ID distortions.
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Figure 5.13: Bias maps for magnetic field-radial model of the ID distortions.
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Figure 5.14: Data corrected: Mean invariant mass versus CS angles (left) cos θCS and (right) ϕCS in
(top) barrel, (middle) ECT backward and (bottom) ECT forward regions for ID tracks in J/ψ → µµ.
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Figure 5.15: Inclusive invariant mass distribution for J/ψ → µµ in (a) CB and (b) ID tracks with
sagitta and ID geometrical distortion corrections applied in data.

These corrections target to improve the data-to-simulation agreement in the scales as shown in

Figures 5.15 and 5.16 where a good agreement is found. However, the resolution requires another

approach since the ID corrections do not improve considerably the data-to-simulation agreement as

shown in Fig. 5.17.

5.5 MS/ID misalignment studies

In the ATLAS detector, the ID provides excellent resolution for low and medium momentum due

to its high granularity and proximity to the interaction point. However, at momenta higher than

pT > 40 GeV, the MS, provides better momentum resolution, especially in the end-cap. Combining

measurements from both detectors allows for optimized momentum resolution across a wide range

of energies. The MS can be used to tag muons that are correctly reconstructed, helping to reject

background particles that might be misidentified as muons in the ID. This is crucial for reducing

contamination from non-muon tracks. Matching tracks from both systems aids in the alignment of

the detectors, which is crucial for precision measurements, and ensures comprehensive coverage due

to the different angular ranges and efficiencies of the ID and MS. Moreover, combining data from

both detectors mitigates systematic uncertainties. For this, it is necessary to ensure a good MS/ID
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Figure 5.16: Mean mass of the dimuon system for J/ψ → µµ in (a) CB and (b) ID tracks with
sagitta and ID geometrical distortion corrections applied in data.
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Figure 5.17: Dimuon invariant mass resolution for J/ψ → µµ in (a) CB and (b) ID tracks with
sagitta and ID geometrical distortion corrections applied in data.
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alignment that potentially improves the track reconstruction in combined (CB) muons.

The MS alignment is mainly based on an array of optical sensors that are constantly monitoring

the positions and deformations of the precision chambers. This is in charge of the internal MS

alignment but it does not see a global displacement between the muon spectrometer and the inner

detector. Even though the system is sophisticated it has deficiencies such as the knowledge of the

sensor calibrations, lack of external optical links, etc. By consequence, extra information has to be

provided in the alignment procedure. After studying the ID distortions, the next step is to examine

any potential residuals between the MS and ID that persist after the calibration procedure, i.e.

MS/ID residuals.

5.5.1 Residual misalignment parameters

To study the alignment distortions between the MS and the ID two quantities are considered:

(zMS − zID) sin θ = ∆z0 sin θ and ∆θ = θMS − θID. The first one corresponds to the distance

between the MS and ID track in the precision plane of the MS where θ is the combined (MS and

ID) angle between the momentum and the beam axis. The second one corresponds the polar angle

difference measured in both tracks MS and ID. Previous studies in Ref. [165] showed that the MS/ID

residuals for ∆z0 sin θ have a value of about ±1.5 mm with systematic shape in all the sectors and

a different behavior from the end-cap to the barrel. In the same way, for the ∆θ a residual of few

mrad was found. One of the first steps is to reproduce these results and to understand their origin.

On what follows, the sector and pseudo-rapidity region definitions described in subsections 2.2.5

and 2.2.6 are implemented. The muons selection is performed as described in 3.2.1.1.

5.5.1.1 Fit of the residual misalignment parameters

The first MS/ID residual studies are carried out purely with muon extrapolated (ME) tracks, i.e.

MS tracks constrained to the beam spot. The inclusive distributions of the MS/ID residuals for ∆θ

and ∆z0 sin θ in Z → µµ and J/ψ → µµ are shown in Fig. 5.18 where the distributions are fitted

using two models, Gaussian fit with polynomial background (Blue line) and Cauchy fit (red line).

In the case of the Z resonance, ∆θ is distributed around zero but when ∆θ ∼ 0 the values tend
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Figure 5.18: MS/ID residual distributions for (left) ∆θ and (right) ∆z0 sin θ in Z → µµ (top) and
J/ψ → µµ (bottom). Two type of fits are implemented: Gaussian fit (blue) and Cauchy fit (red).
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to deviate significantly from the rest of the data, resulting in a bad goodness of fit. However, the fit

information can be extracted showing a mean value of order ∼ 10−2 mrad with standard deviation

∼ mrad. For ∆z0 sin θ distribution, a similar result is obtained when ∆z0 sin θ ∼ 0 that results

in a large χ2. However, the central value and the standard deviation are obtained to be of order

∼ 10−2mm and ∼mm, respectively.

For the J/ψ resonance, results for both ∆θ and ∆z0 sin θ are similar to the ones obtained for

the Z resonance, this is, central value of 10−2 mrad and standard deviation few mrad for ∆θ and

10−2 mm and few mm for ∆z0 sin θ.

Distributions in Fig. 5.18 show a discontinuity around zero that has to be solved in to improve the

fits. A probable explanation of this behavior arises from the fact that ME tracks are reconstructed

taking into account the beam spot as a constraint. However, if the beam spot is removed and

the track reconstruction is performed only in the muon spectrometer (Muon Spectrometer Only

Extrapolated (MSOE) track) the discontinuity disappears.

Fig. 5.19 shows that once the MSOE track is implemented the discontinuity at zero disappears,

nevertheless, the distribution tends to decrease in amplitude and spread over the tails. Results for

J/ψ → µµ with MSOE track reconstruction show that the MSOE tracks solve the discontinuity

but the amplitude is highly reduced compared to the previous distributions and the spreading over

the tails is highlighted for low momentum. This effect could be related to the fact that the track

reconstruction is performed only in the muon spectrometer, resulting in reduced resolution in both

the angles and pT . This has a greater impact for low momentum muons like in the J/ψ case. Once

the distributions do not present the discontinuity at zero, the fits are performed again as shown in

Fig. 5.20.

5.5.1.2 Detector mapping of ∆θ and ∆z0 sin θ

To study the misalignment parameters for every sector in the detector, a binning in η − ϕ space is

performed using MOSE tracks1 taking into account the sixteen sectors of the detector. For each bin,

the distributions, ∆θ and ∆z0 sin θ, are computed and the misalignment central values are retrieved

1On what follows MSOE tracks are simply noted as MS tracks.
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Figure 5.19: MS/ID residual distributions for (left) ∆θ and (right) ∆z0 sin θ in Z → µµ (top) and
J/ψ → µµ (bottom) using different track reconstruction ME (black) and MSOE (blue).
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Figure 5.20: Fits using MSOE track reconstruction in MS/ID residual distributions for (left) ∆θ
and (right) ∆z0 sin θ in Z → µµ (top) and J/ψ → µµ (bottom). Two type of fits are implemented:
Gaussian fit (blue) and Cauchy fit (red)
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from the fits. The 1D profiles for the residuals are shown in Fig. 5.21 that are in agreement with

results from Ref. [165].

For ∆θ, the residuals are in a range of ∼ ±0.3 mrad and the larger deviations are located mainly

in the barrel region. Nevertheless, some deviations in the ECT region are observed. The results

obtained with the simulation show that these effects are not considered on it.

For ∆z0 sin θ, a residual of few millimeters ∼ ±1.5 mm is found. One of the relevant effects in

this misalignment parameter is the systematic shape, negative slope (decreasing) in the ECT region

as well as the positive slope (increasing) in the barrel. For η < −1 the residual starts around ∼ 1

mm and it decreases up to ∼ −1 mm once the barrel region is reached. At this point, the slope

changes and the residual increases up to ∼ 1 mm for −1 ≤ η ≤ 1. Once the barrel region is over,

the slope changes and the residual decreases in the ECT forward. A possible origin of this effect is

explained in Section 5.7.

The same study is carried out using the J/ψ resonance but the results are not comparable to the

ones in Ref. [165] since they are obtained for high pT . From Fig. 5.22 the misalignment values in ∆θ

are larger compared to the Z boson reaching values up to ∼ ±1.5 mrad with the larger deviations

located in the barrel region. For the longitudinal impact parameter the values go up to ∼ ±3 mm.

In the low pT case, the slopes are present and the transition ECT backward to barrel and barrel to

ECT forward remains with mean values that changes considerably among the η bins. In this case,

the simulation is matching for ∆θ and ∆z0 sin θ with the obtained results since results are obtained

at low momentum.

5.5.2 Charge dependency of the residual parameters

MS/ID residuals are present for both parameters ∆θ = θMSOE − θID and (zMSOE − zID) sin θ. To

look for possible charge dependent dependencies, the same study is performed in η and ϕ taking

into account positive (Pos) and negative (Neg) muons.
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Figure 5.21: MS/ID residual Profiles for (top) ∆θ and (bottom) ∆z0 sin θ vs η for (left) large and
(right) small sectors in Z → µµ.
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Figure 5.22: MS/ID residual Profiles for (top) ∆θ and (bottom) ∆z0 sin θ vs η for (left) large and
(right) small sectors in J/ψ → µµ.

121



5.5.2.1 Z → µµ analysis

To reproduce the same results in different momentum ranges and to ensure a good number of Z

candidates, two regimes are defined, the pT larger and lower than pT,0 = 40 GeV.

Impact on ∆θ

Results for pT > 40 GeV and pT < 40 GeV are shown in Fig. 5.23, where a charge asymmetry

between µ+ and µ− is present. For the high pT , the same behavior observed in section 5.5.1

remains but with larger values compared to the few mrad previously described. To this, the charge

dependency is also considered in which the smallest asymmetry is located in the ECT region for |η| >

1.7, the largest asymmetry is located in the intermediate region, 1 < |η| < 1.7, with characteristic

“peaks” at |η| ∼ 1. The barrel region for |η| < 1 presents deviations of about the same order. In

general, these asymmetry values correspond to ∼ 0.2 mrad. A transition effect is also observed

from large to small sectors where the negative mean values are always larger than the positive mean

values in the large sectors, while for small sectors is the opposite. This behavior is observed in

general for all the sectors 1 to 16.

For pT < 40 GeV, the misalignment values tend to increase when the momentum decreases, this

implies that the charge asymmetry is also momentum dependent. Notice that the two effects, the

charge asymmetry and the large to small sector transition are not present in the simulation.

Impact on ∆z0 sin θ

The same analysis is performed for the longitudinal impact parameter with pT > 40 GeV and

pT < 40 GeV and results are shown in Fig. 5.24. These show that the slope from ECT to Barrel

and barrel to ECT remains when positive or negative muons are considered. To this, new effects

are observed such as the increase in the misalignment scale from few mm up to ∼ 2.5 mm. The

lowest values are located in the ECT for |η| > 1.7, while the largest values of around ∼ 1 mm are

located at the intermediate region 1 < |η| < 1.7 and characterized by “peaks” around |η| ∼ 1. The

barrel region for |η| < 1 has a value of ∼ 0.5 mm.

For ∆θ the transition effect from large sectors to small sectors is also observed. This is, the
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Figure 5.23: MS/ID residual profile for ∆θ for positive and negative muons in (left) large and (right)
small sectors with (top) pT > 40 GeV and (bottom) pT < 40 GeV.
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negative mean values for a given η are larger than the positive mean values in the large sectors

while this is inverted for small sectors where the mean values of positive muons are larger than the

mean values of negative muons. Therefore, results obtained in Fig. 5.24 show a charge dependency

in which the asymmetry tends to increase when the momentum decreases.
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Figure 5.24: MS/ID residual profile for (zMS − zID) sin θ for positive and negative muons in (left)
large and (right) small sectors with (top) pT > 40 GeV and (bottom) pT < 40 GeV.

After the charge dependency studies in Z → µµ resonance, the MS/ID residuals are directly

related to different effects:

• Slope effect from ECT to Barrel present in ∆z0 sin θ only.

• Fluctuations for ∆θ and ∆z0 sin θ in the barrel region.
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• Large sector to small sector transition for positive and negative muons.

• Charge dependency asymmetry related to muon momentum.

5.5.2.2 J/ψ → µµ analysis

The studies are performed for using the J/ψ at low pT to ensure a good number of candidates.

Impact on ∆θ

Results are shown in Fig. 5.25 where the effects described in Section 5.5.1 remains for positive and

negative muons. A charge asymmetry is observed as for the Z resonance but in this case with larger

values compared to the high momentum up to ∼ ±3 mrad. The transition from large sectors to

small sectors is also present.
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Figure 5.25: MS/ID residual profile ∆θ for positive and negative muons in (left) large and (right)
small sectors with low pT .

Impact on ∆z0 sin θ

For the longitudinal impact parameters results are shown in Fig. 5.26 where the charge asymmetry

is observed with misalignment residual of about ±5 mm that changes considerably among the η

bins and the slope is still present.
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Figure 5.26: MS/ID residual profile ∆z0 sin θ for positive and negative muons in (left) large and
(right) small sectors with low pT .

5.5.2.3 Large and Small Sectors inclusive study

The large and small sectors play an important role in the charge dependency since there is a

transition from one to another. To increase the statistics and to obtain a global sector behavior,

the information per sector is combined in one (folded). This gives place to only one large sector

and one small sector encoding all the information.

The results for Z resonance with pT > 40 GeV and pT < 40 GeV are shown in Fig. 5.27 and

Fig. 5.28, respectively. For ∆θ the main effect is an asymmetry in the barrel region |η| < 1 with

prominent peaks located in the intermediate region 1 < |η| < 1.7 and small asymmetry in the ECT

region |η| > 1.7. There is a transition from large to small sector, this is, the mean values in the

large sectors for negative muons are larger than the mean values for positive muons and vice-versa

for small sectors.

In a similar way, the inclusive behavior for ∆z0 sin θ in the large and small sectors are studied.

The highlighted effects are the slopes where a decreasing behavior for |η| > 1 and increasing in

the barrel |η| < 1 are found. The asymmetry in the barrel region is around ∼ 0.5 mm while two

prominent “peaks” in the intermediate region, 1 < |η| < 1.7, are observed with the larger asymmetry

about 1.5 mm. The small asymmetry is located at the ECT region with a value of about 0.15 mm.

The transition, large to small sector is still present.

Moreover, from Fig. 5.28, it follows that a momentum dependency is present. This is, the
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asymmetry increases when the momentum decreases. These effects remain at low momentum.
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Figure 5.27: MS/ID residual profiles for (top) ∆θ and (bottom) ∆z0 sin θ in Z → µµ for (left) large
and (right) small sectors at pT > 40 GeV.

The same analysis was carried out for the J/ψ as shown in Fig. 5.29. In this case, due to the low

momentum a charge asymmetry in all the parameters is observed. For ∆θ, values around ∼ ±1.5

mrad are found for large and small sectors with prominent peaks and fluctuations over all the η

values. For ∆z0 sin θ the asymmetry is higher than for the Z resonance with values of about ±6 mm.

The slope is observed in the barrel region with peaks in the intermediate region. As mentioned,

J/ψ results with MSOE tracks are not good in resolution and for low momentum the magnetic

field and multiple scattering effects in the material play an important role that until now have not

been considered. Further investigation and extension of work at low pT are necessary. However,

the analysis of MS/ID residuals using J/ψ → µµ concludes at this point, with subsequent results

focusing exclusively on Z → µµ.
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Figure 5.28: MS/ID residual profiles for (top) ∆θ and (bottom) ∆z0 sin θ in Z → µµ for (left) large
and (right) small sectors at pT < 40 GeV.
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Figure 5.29: MS/ID residual profiles profiles for (top) ∆θ and (bottom) ∆z0 sin θ in J/ψ → µµ for
(left) large and (right) small sectors at pT > 5 GeV.
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5.6 Magnetic field residuals

The magnetic field in the ATLAS detector presents significant challenges for modelling and track

reconstruction. The solenoid map is well-understood and characterized by relatively small uncer-

tainties in contrast to the magnetic field in the toroid region that has larger uncertainties. However,

the magnetic field in the tile calorimeter (TileCal) requires careful study due to potential mismod-

elling related to the material in this region. One initial indication of this issue is the need to compute

the magnetic field in the tile calorimeter region using the Biot-Savart law, specifically accounting

for an iron contribution within the girder of approximately 0.1 meters in width. An overestimation

of the magnetic field in this region could be contributing to the observed charge asymmetry.

To determine if the MS/ID residuals could be linked to magnetic field mismodelling, it is nec-

essary to study the charge-dependent effects to map regions where the magnetic field effects might

be overestimated. This section focuses on the connection between the MS/ID residuals, charge-

dependent effects, and their relation to the magnetic field, as well as their origin. Previous stud-

ies [166] of the magnetic field modelling have provided insights into significant uncertainties and

potential overestimations of field strength in specific regions, possibly related to material issues. To

study the impact of the magnetic field strength in the track reconstruction a study with modified

magnetic fields is carried out. For this, a track extrapolation of the muons is performed and an

adjustment of the Bϕ−strength in the girder region is obtained to remove the charge asymmetry.

5.6.1 Large and small sectors transition

Results showed that the mean values of the bias for positive and negative muons are inverted when

these are obtained in the large and small sectors, indicating that a possible inversion in the large

to small sectors is happening. To further investigate this, Fig. 5.30 shows the Bϕ component of the

magnetic field covering large and small sectors a how the field lines flow in this region near the tile

calorimeter. The direction of the Bϕ−field map changes from the large sector to the small sector

and the toroidal part near to the tile calorimeter shows a different direction. Zooming in the girder

region around R ≃ 4.2 m (Fig. 5.30b), the Bϕ magnitude is not constant but the field strength
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could be taken as B ∼ 0.7 T over ∼ 10 cm.

(a) (b)

(c)

Figure 5.30: (a) Bϕ component of the magnetic field in ATLAS detector. (b) Zoom of the Bϕ

component of the magnetic field around the girder region. (c) Sketch of the magnetic field flux
through large and small sectors.

Taking this into account and using a simplified scheme of a charged particle in the muon spec-

trometer (Fig. 5.31) is possible to obtain the variation in the angle and the distance as a function

of the magnetic field,
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Figure 5.31: Simplified scheme of a charge particle crossing the muon spectrometer.

δθ = 0.3 · q ·B(x) · δx
p

,

dB = 0.3 q
p

∫ out

in
(L− x) ·B(x) · dx,

(5.18)

where δθ corresponds to the misalignment in θ, dB is the total deflection due to the magnetic field,

B(x) is the magnitude of the field, L is the size of the muon spectrometer, q is the electric charge,

p is the magnitude of the momentum and 0.3 is a constant with units GeV/Tm.

Using Eq. (5.18) and taking into account an average ⟨pT ⟩ = 20.46 GeV, the obtained order of

magnitude is δθ ∼ mrad and dB ∼ ±6 mm. Previous results in the residuals showed deviations of

about ±1.5 mm, which implies a rough correction of the magnetic field of 25% in the girder region,

i.e. 0.1 meters where the magnetic field is around 0.7 T. This gives one of the first clues about the

relation between the magnetic field and the MS/ID residuals and where to focus for correcting the

charge asymmetry. At the same time, Eq. (5.18) shows that the misalignment parameters are in an
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inverse proportion with the momentum, such that for low momentum δθ and dB increase, as shown

in subsection 5.5.2.

This toy model allows to provide a simplified explanation to the charge asymmetry and the

momentum dependency. Moreover, the sector transition form large sectors to small sectors is

observed in Fig. 5.30a and the scheme in Fig. 5.30c, where the magnetic field lines flow in one

direction and when it crosses from one sector to another (small to large for example), these are

inverted around the toroid coil in the girder region. In this way, the muons with a given electric

charge would experiment an inversion of the Bϕ−field direction, switching from one sector to the

other giving the profiles in Fig. 5.27.

5.6.2 Correction of the charge asymmetry

Results show that a modification of the magnetic field around the girder region is required. This

implies to quantify the correction to modify the magnitude of the field only int the Bϕ component

(either increasing or decreasing) when the muon goes into the tile calorimeter girder.

The strategy is the following: Once the muons are produced, the tracks are propagated to

the muon spectrometer using the nominal magnetic field. Once the muon reaches the MS, the

backward track is performed from the entrance of the muon spectrometer back to the interaction

point, following a modified magnetic field. Then, the magnetic field strength is adjusted to remove

the charge dependency and finally the track parameters are recomputed as shown in Fig. 5.32a.

The work scheme is shown in Fig. 5.32b.

Here, the track reconstruction is performed only using the equations of motion inside the mag-

netic field, such that material of any kind was not considered. Stochastic processes and multiple

scattering in the calorimeter were not taken into account. Only the magnetic field effects in the

MSOE tracks are studied.

5.6.3 Modification of the magnetic field in the girder region

A simplified evaluation of Eq. (5.18) showed that to reduce the bias in the residual misalignement

parameters, a modification of the magnetic field in the girder region is needed. Here, the girder
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(a) Forward and backward extrapolation
scheme.

(b) Work scheme for the track extrapolation and mag-
netic field modification.

Figure 5.32: Work strategy for the implementation of the magnetic field and track extrapolation.

is defined in the volume covered by R(m) ∈ [4, 4.23] and |z| < 6.92m, i.e. |η| < 1.3. Within

this volume, the nominal magnetic field is modified in the Bϕ−component and the backward track

extrapolation is performed using the modified field.

The magnetic field models implemented in the present work are shown in Fig. 5.33, where the

nominal field corresponds to the no modified magnetic field, 1.25×Bϕ is the nominal magnetic field

increased by 25% while 0.75 × Bϕ is the nominal magnetic field decreased by 25%. The magnetic

field “bmagatlas05” has not been modified but it contains a different iron contribution for the Biot-

Savart calculation in the girder region. For bmagatlas05 the lamination calculations for different

layer permeability is chosen while for the nominal field the homogenization permeability with a non

diagonal matrices is used (µr, µz, µϕ).

5.6.4 Misalignment residuals for modified magnetic fields

After the implementation of the magnetic field maps, the following results for the Z resonance are

obtained. For ∆θ = θMS − θID the results for pT > 40 GeV and pT < 40 GeV are shown in Fig. 5.34

and 5.35, respectively. At high pT , the increasing effect of the magnetic field in the girder region leads

to a reduction of the asymmetry in the barrel region while for lower magnetic field (0.75 ×Bϕ) the

effects are increased. The correction shows a good result in the large sectors where the asymmetry is

higher while for the small sectors, a 25% correction enhances the bias. This allows to conclude that
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Figure 5.33: Modifications of ±25% in the nominal Bϕ−component of the magnetic field and bma-
gatlas05.

both large and small sectors require a different treatment in the correction magnitude of Bϕ. These

results point out that to correct the charge asymmetry an increment of the magnetic field strength

is needed. On the other hand, bmagatlas05 provides a better treatment of the charge asymmetry

compared to the nominal field. However, in the intermediate region 1 < |η| < 1.7 the magnetic field

shows a higher asymmetry that produces two prominent peaks, effect that is small with the other

maps.

At low pT , all the effects are highlighted producing larger asymmetries and peaks as shown in

Fig. 5.35. Nevertheless, 1.25×Bϕ modification works for large sectors in the barrel region as well as

bmagatlas. This needs a better treatment for small sectors since the results are not well corrected

in the expected region.

For the longitudinal impact parameter (zMS − zID) sin θ the results for pT > 40 GeV and pT <

40 GeV are shown in Figures 5.36 and 5.37, respectively. These show that increasing the magnetic

field in the girder region leads to a reduction of the asymmetry in the barrel with better results in

the large sectors than the small sectors where the magnetic field strength needs to be reduced below

25%. The opposite behavior is obtained when the magnetic field is decreased in the girder region

giving as result an increment in the asymmetry effect. Both analysis indicates that increasing the
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Figure 5.34: MS/ID residual ∆θ profiles for (top) 1.25 × Bϕ, (middle) 0.75 × Bϕ and (bottom)
bmagatlas magnetic field maps in Z → µµ for (left) large and (right) small sectors at pT > 40 GeV.
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Figure 5.35: MS/ID residual ∆θ profiles for (top) 1.25 × Bϕ, (middle) 0.75 × Bϕ and (bottom)
bmagatlas magnetic field maps in Z → µµ for (left) large and (right) small sectors at pT < 40 GeV.
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magnetic field strength, Bϕ, is the correct approach.

On the other hand, the bmagatlas results are promising with a good correction for the asymmetry

effect in the barrel region. However, the same effect appearing in ∆θ is observed for 1 < |η| < 1.7

where the asymmetry is highlighted and two prominent peaks appear. Although this effect is greater

in the small sector it is also present in the large sector but in a lower amount, as well as the nominal

field.

The obtained results showed that by increasing the magnetic field in the girder region both ∆θ

and ∆z0 sin θ charge dependent effects are partially solved. This indicates that the magnetic field

in the tile calorimeter needs to be re-evaluated with a correction factor between 1 and 1.25, while

for |η| > 1 a different approach is needed. This correction does not allow to solve the slope effect

observed in ∆z0 sin θ.

5.6.5 Sector dependency and correction maps

The correction described shows that the observed effects are sector dependent, this means the

correction for large and small sectors is not the same. While for Large sectors 25% shows an

improvement, for small sectors the factor needs to be smaller, around 10% − 15%. These results

show an impact in the barrel region and the ∆z0 sin θ asymmetry could be studied sector by sector

for |η| < 0.9. It is convenient to define ⟨∆z0 sin θ⟩± as the average of the difference of the mean

values between µ+ and µ− that quantifies the asymmetry level for every sector. If there is not

asymmetry, ⟨∆z0 sin θ⟩± should be zero for every sector. Results for the nominal magnetic field and

the 25% modification for pT > 40 GeV and pT < 40 GeV are shown in Fig. 5.38

For pT > 40 GeV, the average ⟨∆z0 sin θ⟩± changes from large to small sectors but the values

are similar sector by sector in the large and small sectors as shown in Fig. 5.38. The average

asymmetry for large sectors corresponds to 0.74 mm while for small sectors a value of 0.67 mm is

found, indicating that the larger deviations are produced in the large sectors than the small ones.

Once the 25% correction is applied, ⟨∆z0 sin θ⟩± gets close to zero and the same fluctuations sector

by sector are present. In general, the average value for large sectors after correction is 0.06 mm and

for small sectors is −0.08 mm. Such that the correction for small sectors is pulling considerably low
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Figure 5.36: MS/ID residual ∆z0 sin θ profiles for (top) 1.25 ×Bϕ, (middle) 0.75 ×Bϕ and (bottom)
bmagatlas magnetic field maps in Z → µµ for (left) large and (right) small sectors at pT > 40 GeV.
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Figure 5.37: MS/ID residual ∆z0 sin θ profiles for (top) 1.25 ×Bϕ, (middle) 0.75 ×Bϕ and (bottom)
bmagatlas magnetic field maps in Z → µµ for (left) large and (right) small sectors at pT < 40 GeV.
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and it needs to be less than 25%.
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Figure 5.38: ⟨∆z0 sin θ⟩± vs. Sector number for (left) large and (right) small sectors with (top)
pT > 40 GeV and (bottom) pT < 40 GeV.

In the low momentum case, pT < 40 GeV, the asymmetry increases such that ⟨∆z0 sin θ⟩±

is expected to be greater than for high pT . Fig. 5.38 shows that the values for large and small

sectors are different but almost similar in all the large sectors and all the small sectors, respectively.

The average ⟨∆z0 sin θ⟩± value found for large sectors corresponds to 1.02 mm and 0.96 mm for

small sectors. Once the correction in the magnetic field is applied the asymmetry is reduced to an

average of 0.02 mm in the large sectors and −0.14 mm for small sectors. This is in agreement with

Figures 5.36 and 5.37, where the 1.25×Bϕ modification works better for large sectors than for small

sectors and an adjustment of correction the factor has to considered.

Fig. 5.38 show that in average the misalignment residual behave similar for all large sectors
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and all small sectors. Therefore, to study the behavior is enough to take a portion of the detector

covering both one large sector and one small sector. This allows to compute the parameters by

portions of the detector and then these portions can be folded to increase the statistics, then a final

correction could be derived. In this way, a map that contains all the information for (ϕ, η,∆z0 sin θ)

can be obtained.

In principle the two variables ∆θ and ∆z0 sin θ are variables of interest but the effects in both

cases are similar. However, ∆z0 sin θ contains the systematic shape (slope effect) that provides

extra information and for that reason is better to map it in η and ϕ space. For this, the η space is

binned using 50 bins with 0.1 resolution between η ∈ [−2.5, 2.5] while for ϕ, 45 bins with 1 degree

resolution in ϕ ∈ [0, 45◦] is used. This region for ϕ is considered since it contains 1 large sector and

1 small sector. To increase the statistics, the pT cut is lowered to pT >20 GeV and two regions of

the detector are considered, top region and bottom region. This is done to distinguish the region

containing the feet that hold the detector2.

By this procedure, a 2D map for positive and negative muons in the top region and bottom

region of the detector are obtained as shown in Fig. 5.39 with a detailed description of its content

in Fig. 5.40. The Y axis (ϕ rad) describes the transition effect from large to small sectors for every

value of η. The X axis (η axis) describes all the information contained in the 1D profiles until

now. The slopes appearing from ECT to Barrel transition and the peaks in the intermediate region

1 < |η| < 1.7. The Z axis corresponds to the misalignment parameter ∆z0 sin θ and it shows the

MS/ID residual mean value for every (ϕi, ηj).

In principle, results from top and bottom regions should be similar due to the symmetry of the

detector. Nevertheless, this is not the case since larger deviations in the bottom region are observed

(white region for values larger than 3.5 mm) located at 1 < |η| < 1.7. For this reason, the results are

focused on the top region since it does not contain extra material. Fig. 5.39 shows those residuals

that after correction should be set to zero.

2The bottom region contains the feet that hold the detector and other kind of material that were not considered
in the analysis.
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Figure 5.39: MS/ID ϕ, η map for the misalignment parameters in the top and bottom regions for
pT > 20 GeV.
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Figure 5.40: Analysis of the misalignment 1D profiles and 2D maps for the top region for positive
muon.

5.6.6 Magnetic field correction map

The misalignment parameters were shown to be ϕ, η, Bϕ and pT dependent and the ∆z0 sin θ

parameter has been mapped as shown in Fig. 5.39. To determine a relation between the previous

map and the magnetic field in the girder region, a magnetic field mapping in (ϕ, η)−space is obtained

as shown Fig. 5.41. These results could be linked through a relation as shown in Eq. (5.18) where

B is considered as the field strength in the girder region.

To quantify the asymmetry level between the two muons, an asymmetry map can be obtained

by subtracting the maps for negative and positive muons in Fig. 5.39. This quantity is defined as,

δzs±
θ = (zMS − zID) sin θ|µ− − (zMS − zID) sin θ|µ+ .

Which indicates those η values where the larger deviations take place. Similarly for θ it follows,

δθ± = (θMS − θID)|µ− − (θMS − θID)|µ+ .
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Figure 5.41: Bϕ component of the magnetic field in the girder region at R = 4.18 m for nominal
field.

Resulting 1D profiles and 2D maps are shown in Fig. 5.42. For the ECT region (forward and

backward) the asymmetry is small such that a large correction is not needed. For 1 < η < 1.7

values up to ∼ ±2 mm are present and they decrease in the barrel region to values around ∼ ±0.5

mm. In ϕ, η space, results show a similar structure as the magnetic field map in Fig. 5.41 with

the greater asymmetries located in the intermediate and barrel regions. In a similar way, there is

a discrepancy between the top and bottom asymmetries where the larger values are found in the

bottom part of the detector for the reasons already explained.

Using the asymmetry maps a correction can be derived that once applied in Fig. 5.42 is capable

to set the misalignment values to zero for every (ϕ, η) pair. A first trial is by implementing the

1.25×Bϕ modified field where the asymmetry parameters are re-computed with results in Fig. 5.43.

This correction works in the barrel region with a better yield in the large sectors (ϕ[rad] ∈ [0, 0.2] ∪

[0.6, 0.78]) while for the small sectors (ϕ[rad] ∈ [0.2, 0.6]) the correction factor needs to be reduced.

Something to take into account is that the larger deviations are in the intermediate regions where

the correction does not have a great effect. The ECT does not require a strong correction since the

asymmetry is small as shown in the 1D profiles of Fig. 5.43.

The same study was carried out using bmagatlas with results in Fig. 5.44. In this case, the
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Figure 5.42: Asymmetry 1D profiles and 2D top region maps for δzs±
θ and δθ± for µ− − µ+ using

nominal magnetic field with (top) pT >40 GeV, (middle) pT <40 GeV and (bottom) pT > 20 GeV.
2D bottom region maps are shown in appendix Fig. A.1.
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Figure 5.43: Asymmetry 1D profiles and 2D top region maps δzs±
θ and δθ± for µ− − µ+ using

1.25 × Bϕ modified magnetic field with (top) pT >40 GeV, (middle) pT <40 GeV and (bottom)
pT > 20 GeV. 2D bottom region maps are shown in appendix Fig. A.2

147



asymmetry is corrected more effectively in the barrel region for large sectors but for the small

sectors the correction is as good as for the 1.25 ×Bϕ correction. However, bmagatlas gives place to

two prominent peaks in the intermediate regions producing larger deviations.

5.6.7 Residual magnetic field correction map

The implemented toy model for the magnetic field in the backward extrapolation shows that is

possible to improve the track reconstruction using an effective model. Nevertheless, this correction

is considered in a specific region of the Tile Calorimeter, this is, the girder of approximately 10 cm.

To correct properly the charge asymmetries a dedicated mapping of the magnetic field residuals,

δB(x), is needed. To estimate it, the first equation in (5.18) for the deflection in θ is used. This

equation allows to determine the deflection δθ of the muon track due to the magnetic field B(x).

Using the data, the “residual magnetic field δB(x)” that gives place to the observed misalignment

can be derived as,

δB(x) = δθ

0.3 · δx
· p
q
. (5.19)

This expression is only for one muon with charge q. To express δB(x) as a function of the asymmetry

quantities is convenient to compute the “residual
∫
Bϕdl ≡ δB(x) · δx” taking into account both

muons, Eq. (5.19) can be expressed as,

δB(x) · δx = δθ±

0.3 · ⟨p+⟩ · ⟨p−⟩
⟨p+⟩ + ⟨p−⟩

, (5.20)

where ⟨p±⟩ is the average momentum of µ± and δθ± = (θMS − θID)|µ− − (θMS − θID)|µ+ . Using

Eq. (5.20) the magnetic field can be corrected over a full track length of a muon to the MS. Since

the “theoretical magnetic field map” is available from simulation, the theoretical
∫
Bϕdl can be

determined and using this, it is possible to map those regions where the asymmetries are taking

place. Therefore, the following dimensionless correction map in (η, ϕ)−space can be computed,

αηϕ =
(
δB(x) · δx∫

Bϕdl

)
ηϕ

, (5.21)
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Figure 5.44: Asymmetry 1D profile and 2D top region maps δzs±
θ and δθ± for µ− − µ+ using

bmagatlas field with (top) pT >40 GeV, (middle) pT <40 GeV and (bottom) pT >20 GeV. 2D
bottom region maps are shown in appendix Fig. A.3.
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that is zero for those regions where no correction is needed δB = 0 ⇒ αηϕ = 0. The correction map

is shown in Fig. 5.45 where a ∼ 20% factor is applied in the barrel region, |η| < 1, as described in

the toy model. Moreover, the αηϕ−map provides a new set of values that would be able to correct

the intermediate region where the larger values take place and they are difficult to reduce. Notice

that these result is valid over a full track in the tile calorimeter volume.
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Figure 5.45: αηϕ correction map for a given muon track valid in the Tile Calorimeter R(m) ∈ [0, 4.36]
and z(m) ∈ [−6.92, 6.92].

To correct the magnetic field, a linear model is considered, as follows,

B′
ϕ = (1 + αηϕ) ·Bϕ(x). (5.22)

After correction, the new magnetic fields as a function of the radius are shown in Fig. 5.46.

After correction, the 1D profiles of the misalignment parameters in Fig. 5.27 are re-computed

for pT > 40 GeV as shown in Fig. 5.47 where an improvement compared to the previous results

is obtained. In this case, the correction is working for both large and small sectors in the barrel

region. Moreover, this correction is also taking into account those values for which |η| > 1. The

peaks appearing in the intermediate region are highly reduced in both misalignment parameters.

Once the charge dependency in the misalignment profiles has been studied and corrected, the

next quantity to look at is the asymmetry δzs±
θ , δθ

± in the large and small sectors (averaged in
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Figure 5.46: Bϕ component of the magnetic field in the tile calorimeter for different implemented
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Figure 5.47: MS/ID residual profiles for (top) ∆z0 sin θ and (bottom) ∆θ vs η after correction in
Z → µµ for (left) large and (right) small sectors with pT > 40 GeV.
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ϕ) and 2D maps in (η, ϕ)−space, these are shown in Fig. 5.48. After correction, results show

a considerably improvement compared to the initial results in Fig. 5.42. The new correction is

capable to manage both large and small sectors in such a way that the asymmetry is set to almost

zero in the barrel as well as in the intermediate region.

5.7 Bias in d0, ϕ and relation to z0

In the residual misalignment parameters, the charge dependent effects were covered by a magnetic

field mismodelling and an effective correction allowed to solve the charge asymmetry in the barrel

region. However, an explanation for the origin and behavior of the systematic shape (slope) and bias

observed in the 1D profiles of ∆z0 sin θ and ∆θ (Fig. 5.21) and 2D maps (Fig. 5.39) has not been

provided. In the following section a possible explanation that could originate the slope is proposed.

The following consider that a RPC strips displacement in the Muon Spectrometer could induce a

bias in the second coordinates d0 and ϕ measured by the RPC that later on produces a second order

bias effect in z0 and θ that are translated into the systematic shapes and biases observed.

5.7.1 RPC strips displacement

A simplified Muon Spectrometer (MS) scheme with the R− z plane (left) and the transverse x− y

plane (right) is shown in Fig. 5.49. On what follows, two tracks are taken into account, the Unbiased

Track with an Unbiased point of closest approach (p.o.c.a) (blue) and the Biased Track with a biased

p.o.c.a (red) produced by a Muon in the detector. For simplicity only one Resistive Plate Chamber

(RPC) located at the Barrel Outer (BO) is considered. The RPC (Yellow) represents the RPC

displaced in the second coordinate3, this means, in “the local x − y plane” that gives the biased

track. The RPC (Green) corresponds to the RPC without displacement that should measure the

unbiased track.

Using this setup two points of view take place when the tracks are reconstructed. In the R − z

plane (left panel of Fig. 5.49) both tracks Unbiased Track and Biased Track are overlap since both
3The second coordinate is a local frame in the RPC but for simplicity the second coordinates are considered to

be in the x − y plane.

153



3− 2− 1− 0 1 2 3
η

3−

2−

1−

0

1

2

3

4

5

 [m
m

]
± θ

 z
 s

δ

40 GeV≥
T

 correction  - pφηα  

ATLAS Internal
= 13 TeVs

µµ→Z

Large Sectors 
Small Sectors

3− 2− 1− 0 1 2 3
η

0.6−

0.4−

0.2−

0

0.2

0.4

0.6

 [m
ra

d]
± θδ

40 GeV≥
T

 correction  - pφηα  

ATLAS Internal
= 13 TeVs

µµ→Z

Large Sectors 
Small Sectors

3− 2− 1− 0 1 2 3
η

3−

2−

1−

0

1

2

3

4

5

 [m
m

]
± θ

 z
 s

δ

40 GeV≤
T

 correction  - pφηα  

ATLAS Internal
= 13 TeVs

µµ→Z

Large Sectors 
Small Sectors

3− 2− 1− 0 1 2 3
η

0.6−

0.4−

0.2−

0

0.2

0.4

0.6
 [m

ra
d]

± θδ
40 GeV≤

T
 correction  - pφηα  

ATLAS Internal
= 13 TeVs

µµ→Z

Large Sectors 
Small Sectors

2.5− 2− 1.5− 1− 0.5− 0 0.5 1 1.5 2 2.5

η

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7 [r
ad

]
φ

5−

4−

3−

2−

1−

0

1

2

3

4

5

 [m
m

]
± θ

zsδ

 +µ - -µ correction for φηαTop difference with with 

1−

0.8−

0.6−

0.4−

0.2−

0

0.2

0.4

0.6

0.8

1

 [m
ra

d]
± θδ

2.5− 2− 1.5− 1− 0.5− 0 0.5 1 1.5 2 2.5

η

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7 [r
ad

]
φ

 +µ - -µ correction for φηαTop difference with 

Figure 5.48: Asymmetry maps δzs±
θ and δθ± for µ− − µ+ after correction with (top) pT >40 GeV,

(middle) pT <40 GeV and (bottom) pT >20 GeV. 2D bottom region maps are shown in appendix
Fig. A.4.
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Figure 5.49: Sketch for the bias in the second coordinate d0 that could originate the bias in the z0
for (left) longitudinal R − z plane and (right) transverse x− y plane.

RPC displaced and RPC corrected are located in the same position4. Therefore, the reconstruc-

tion is performed without any bias. On the other hand, if the RPC is displaced in the second local

coordinate of the x − y plane (right panel of Fig. 5.49) the tracks are reconstructed in a different

way. Since the Biased Track is reconstructed using the displaced RPC the point of closest approach

(p.o.c.a) will also carry a bias. To avoid this, the Unbiased Track should be reconstructed by the

no displaced RPC that ensures a non-biased p.o.c.a .

Finally, considering a projection of this bias into the R− z plane (dotted bottom line), it shows

that when the z0 coordinate is measured by the distance of closest approach (d.o.c.a) in the z−axis,

the bias in the x − y plane induces a displacement from the correct position in z0, and a bias in

the θ angle is also induced. Therefore, when the track reconstruction is performed the values of z0

are positive and negative and symmetric around zero. Once the z0 distributions are retrieved and

represented as a function of η, the profiles in Fig. 5.21 are obtained. This simplified scheme of a

translation displacement in the RPC is capable to reproduce the systematic shape.

However, this is not the most general case, since if a translation plus rotation in ϕ for the

4The displacement is only in the local x − y plane such that the R − z plane is unbiased.
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RPCs is introduced (Fig. 5.50) a more complex scenario takes place producing the systematic shape

(slope) effect. Notice that to reproduce the bias in z0 is enough to have only one bias in the second

coordinate either d0 or ϕ, or both (d0, ϕ). These effects plus the magnetic field effects previously

described should be able to reproduce the results in Fig. 5.24 as well as the maps in Fig. 5.39.
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Figure 5.50: Sketch for the bias in the second coordinate d0 and ϕ that could originate the bias in
the z0 for (left) longitudinal R − z plane and (right) transverse x− y plane.

This analysis shows that under the assumption of a displaced RPC, the slope and moreover, the

bias in both z0 and θ can be explained. The bias should be a second order effect, this means, the

values in d0 should be few cm to induce a few mm bias in z0. Similarly for ϕ where the bias should

be in the mrad scale but around two or three times greater than the bias in θ.

The idea of a “displaced RPC” does not imply necessarily a physical displacement of the RPC,

this could go from a problem in the reconstruction software that is providing a bad reconstruction

up to a physical displacement of few cm in the detector, this should be revisited. Moreover, the

real scenario is more complicated since in reality there are several RPCs in the MS and not only

one, such that the real effect is more complex than this simple scheme. This explanation is purely

qualitative and to understand if there is a real bias in the second coordinates d0, ϕ or both (d0, ϕ)
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a further analysis of this quantities is needed. For this, three regions are considered:


Barrel |η| < 1

Intermediate 1< |η| < 1.7

ECT |η| > 1.7

such that the regions with greater deviations can be localized. Moreover, a sector by sector analysis

is needed to understand the effect in each sector. Similarly to z0 and θ, the residuals dMSOE
0 − dID0

and ϕMSOE − ϕID in bins of ϕID (in every sector) and for different η bins are computed.

5.7.2 Bias in d0

Results for the barrel, intermediate and ECT are shown in Fig. 5.51. For the barrel a bias of

about ±1 cm for is observed with a systematic shape (positive slope) and a discontinuity around

ϕID = 0. The origin of this discontinuity is not well understood in the scope of this work. For the

intermediate region a bias is found with values up to ±0.5 cm with a positive slope as for the barrel.

In the ECT region, similar values for the bias are found to be around ±0.5 cm and a negative slope

with a discontinuity in the middle (ϕID = 0) of the sectors is also present. From the three regions

the larger deviations are located in the barrel and they are reduced in the intermediate and ECT

regions.

Similarly as for z0 and θ a charge asymmetry is observed in the dMSOE
0 − dID0 profiles with

larger values in the middle of every sector and for the three regions, barrel, intermediate and ECT.

However, the magnetic field effects and the bias in d0 are independent effects that need different

approaches. These results show that at least a d0 bias is present and it can induce a second order

effect of few mm in z0.

5.7.3 Bias in ϕ

Results for the barrel, intermediate and ECT regions are shown in Fig. 5.52. The barrel region shows

a bias in ϕ for values up to ∼ −2 mrad with no systematic shape (slope) but with discontinuity in
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Figure 5.51: dMSOE
0 −dID0 profiles for (top) barrel, (middle) intermediate and (bottom) ECT regions

in Z → µµ for (left) large and (right) small sectors at pT > 40 GeV.
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the middle of the sector, ϕID = 0. In the intermediate region, the bias takes values between [−2,−1]

mrad with signficant systematic shape and small discontinuity compared to the barrel region. In

the ECT region several effects are present, the bias takes different values up to −2.5 mrad with

a discontinuity located at the middle of the sector, ϕID = 0. The slope is present for both cases

positive (increasing) and negative (decreasing). Similarly to dMSOE
0 − dID0 , the charge asymmetry

is also present in the azimuthal residual. Notice that azimuthal angle residual have larger values

compared to those related to the polar angle, θMSOE − θID and by consequence this can induced a

second order effect.

Residuals obtained for the second coordinates showed that both d0 and ϕ have a global bias,

systematic shape and charge dependent asymmetry. These results could be explained by the model

in Fig. 5.50. However, this results can not conclude if really the displacement of the RPCs is the

origin of the systematic shape observed in z0, such that a more exhaustive study is required.

5.8 Second coordinates correction maps

The present studies showed that effective corrections can be proposed to manage the misalignment

parameters. For the charge dependent effects, z0 and θ, a function parameterizing the effect of the

magnetic field correction in the MS is proposed. For the neutral effects d0 and ϕ (including z0 and

θ without charge effect), a correction based on the residuals charge-independent biases of the MS

with respect to the ID can be proposed.

5.8.1 Correction maps for dMSOE
0 − dID

0 and ϕMSOE − ϕID

To correct the bias in the second coordinates, d0 and ϕ, the residual charge-independent biases,

dMSOE
0 − dID0 and ϕMSOE − ϕID, are mapped with respect to the ID in (η, ϕ)−space. The purpose

of this is to apply the magnetic field corrections to the MSOE tracks and then correcting for the

final bias using the neutral maps. Notice that the magnetic field map correction modifies the Bϕ

component affecting only the first coordinates, z0 and θ, such that for d0 and ϕ, the correction

should be propagated as a second order effect.
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Figure 5.52: ϕMSOE−ϕID profiles for (top) barrel, (middle) intermediate and (bottom) ECT regions
in Z → µµ for (left) large and (right) small sectors at pT > 40 GeV.

160



The maps for dMSOE
0 − dID0 , ϕMSOE − ϕID, (zMSOE − zID) sin θ and θMSOE − θID are shown

in Fig. 5.53, respectively. In principle, these effects are charge independent, such that they are

removed in the same amount for µ+ and µ− once the magnetic field is corrected.
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Figure 5.53: 2D maps for misalignment residuals in (a) dMSOE
0 −dID0 , (b) ϕMSOE −ϕID, (c) ∆z0 sin θ

and (d) ∆θ with MSOE - ID tracks.

5.8.2 Magnetic field and bias correction

Once the neutral corrections maps are computed these can be applied after the magnetic field

correction (αηϕ − map). The correction chain can be summarized as follows, a muon is forward

extrapolated with the nominal field to the MS and then at the entrance of the MS, the muon is

backward extrapolated with a modified the magnetic field. In this process, the charge-independent

bias for both µ+ and µ− is removed.
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Results for (zMS − zID) sin θ and θMS − θID at pT > 40 GeV are shown in Fig. 5.54. After

correction, the charge effects have been removed and the systematic shape (slope) in (zMS−zID) sin θ

has been corrected reducing the bias to less than 1 mm for the ECT and below 0.2 mm in the barrel.

On the other hand, for θMS − θID the charge effect is reduced and the bias has been corrected

from 0.2-0.4 mrad to less than 0.1 mrad in the ECT and below 0.05 mrad in the barrel. After

corrections, there is still a small charge asymmetry residual, this is due to the fact that using a

charge-independent map the same value is removed for both muons, giving a second order effect.
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Figure 5.54: MS/ID residual profiles for (top) ∆z0 sin θ and (bottom) ∆θ vs η after corrections in
Z → µµ for (left) large and (right) small sectors at pT > 40 GeV.

The same study is performed taking into account the low momentum regime in Fig. 5.55, i.e.

20 < pT (GeV) < 40. The results indicate that the bias has been successfully eliminated in both

the large and small sectors. Additionally, applying the magnetic field corrections addresses the

charge asymmetry, though a residual effect remains. Importantly, these maps were constructed for
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high momentum scenarios, but they remain valid even at low momentum. This demonstrates the

effectiveness of the correction in both regimes.
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Figure 5.55: MS/ID residual profiles (top) ∆z0 sin θ and (bottom) ∆θ vs η after corrections in
Z → µµ for (left) large and (right) small sectors at pT < 40 GeV.

Second coordinates correction

The same corrections are applied to the second coordinates, d0 and ϕ, and the MS/ID residuals are

re-evaluated in the barrel, intermediate and ECT regions as shown in Fig. 5.56 and Fig. 5.57 for

dMSOE
0 − dID0 and ϕMSOE − ϕID, respectively.

These results show that the magnetic field correction is almost negligible in the second coordi-

nates but the bias effect is playing an important role setting the values around zero. Larger biases

are found in the barrel while for the intermediate and ECT regions it decreases fast compared to

the barrel. Moreover, since the magnetic field correction is not having a considerably impact, those
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sectors where the charge asymmetry is large, the residual effect is still present. This is mainly ob-

served in the center of each sector, where a discontinuity was previously observed. In d0 the effect

is small compared to ϕ where the charge asymmetry reaches few ∼mm and ∼mrad, respectively.

5.9 Momentum scale and resolution calibration

Corrections obtained in Section 5.4.2 aim to address potential charge-dependent effects and ID

geometrical distortions in the data. The first one accounts for charge dependent effects that improve

the resolution in the invariant mass while the second one allows for a reduction in the scale in

data with respect to the simulation, as well as a slight improvement in the resolution. These

corrections are directly impacting the momentum performance of the muon and by consequence

the invariant mass. On the other hand, Section 5.5.1 describes the approach in data to potentially

improve the track reconstruction accounting for possible biases in the perigee parameters and charge

dependent effects in the tile calorimeter region. Notice that sagitta and ID distortions aim to

correct the momentum of the muons while the MS/ID residual corrections aim to improve the track

reconstruction.

However, after these corrections are applied residuals between data and simulation are still

present. For reaching a good agreement, the muon momentum still needs a calibration procedure

that aims to correct the simulation. In general, this calibration can take into account several

effects but the present work considered two, scale and resolution. The scale correction accounts

the inaccuracy in the description of the magnetic field integral and the dimension of the detector

in the direction perpendicular to the magnetic field. On the other hand, the resolution accounts

for multiple scattering, uncertainties related to, and inhomogeneities in, the modelling of the local

magnetic field, and length-scale radial expansions of the detector layers.

5.9.1 Calibration parameters

To account the scale and resolution effects, the momentum needs to be expressed as function of η−

and ϕ−dependent parameters that can be measured in data with respect to the simulation ensuring
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Figure 5.56: dMSOE
0 − dID0 profiles with magnetic field and bias correction for (top) barrel, (middle)

intermediate and (bottom) ECT regions in Z → µµ for (left) large and (right) small sectors at
pT > 40 GeV.
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Figure 5.57: ϕMSOE −ϕID profiles with magnetic field and bias correction for (top) barrel, (middle)
intermediate and (bottom) ECT regions in Z → µµ for (left) large and (right) small sectors at
pT > 40 GeV.
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a high precision on them to avoid the propagation of uncertainties. Commonly, iterative procedures

are used as described in [117]. In this approach, the momentum scale and resolution parameters

are computed in a first iteration to correct the simulation and to determine the agreement within a

certain threshold. If the residual between data and simulation is below this threshold, the parameters

are taken, if not, the procedure is repeated until the tolerance in the calibration is reached. This

approach in some cases can lead to instabilities or a large number of iterations to reach a good

precision. The present work has for objective to perform a calibration procedure using an analytical

approach that ensures high precision while being fast and non-iterative.

The scale effect can be introduced as a shift of the momentum of the particles. To parameterize

it, bins in η−space are considered such that the momentum in each i−bin is shifted by a given scale

parameter αi that is a function of η in that bin. This means,

pi → (1 + αi(η)) · pi, (5.23)

such that the di-Muon mass mij can be reconstructed as,

mij → mij

(
1 +

γαij
2

)
, (5.24)

where γαij is a 2D map in η−space of the two muons obtained from the invariant mass in a category

(i, j) given by,

γαij = αi + αj. (5.25)

On the other hand, the resolution describes the momentum smearing that broadens the relative pT

resolution in simulation, σ(pT )/pT , to properly describe the data. This can be directly related to

the relative mass resolution, σ(mµµ)/mµµ, by the following equation,

σ(mµµ)
mµµ

= 1
2

[
σ(p+

T )
p+
T

⊕ σ(p−
T )

p−
T

]
, (5.26)

where a ⊕ b =
√
a2 + b2 and the ± is the muon charge. The resolution in the invariant mass and
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momentum between data and monte carlo simulation (MC) are related as,

σdata(mµµ) = rm · σ(mµµ)MC,

σdata(p±
T ) = r±

p · σ(p±
T )MC,

(5.27)

where rm and r±
p represent scaling factors that are used to adjust the simulation to better match

the distribution in real data. To correct for the resolution effects, the goal is to perform a data-

to-simulation fit to obtain r±
p based on rm input data. Injecting Eq. (5.27) into Eq. (5.26), an

expression that relates the resolution in momentum with respect to the resolution in data can be

obtained,

fm · r2
m = g+ · (r+

p )2 + g− · (r−
p )2. (5.28)

where fm is a 2D map in η−space of the two muons and g± are 1D maps in η−space of a single

muon (positive or negative) given by,

fm =
[
σ(mµµ)
mµµ

]2

MC
, g±

p = 1
4

[
σ(p±

T )
p±
T

]2

MC
, (5.29)

Since, rm and r±
p , are expected to be close to one an approximation at first order is used. This is,

for the mass resolution rm = 1 + γm and in momentum r±
p = 1 + β±

p where |γm| ≪ 1 and |β| ≪ 1.

This allows to expand Eq. (5.28) around γm, βp and neglecting higher order contributions. Then,

it follows,

fm · γm = g+ · β+
p + g− · β−

p . (5.30)

Notice that both Eq. (5.25) and Eq. (5.30) are similar in the parameter determination. For example,

Eq. (5.25) describes the momentum scale, α, as a function of previous knowledge of γαij (measured

in data). Meanwhile, the resolution in momentum, β±
p , is obtained from γm, fm 2D maps and g±

p

1D maps. In the limit where fm = 1 and f±
p = 1, both Equations (5.25) and (5.30) are the same.
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5.9.2 Analytical fit of calibration parameters

The Gaussian limit described in section 4.3 is implemented to determine the scale and resolution

parameters with no systematics sources. A likelihood function to find α and β is given as,

−2 ln L ≡ χ2 =
∑
ij

(
f ijγij − gi · θi − gj · θj

σij

)2

, (5.31)

where i, j run over the categories, σij is the uncertainty in f ijγij, fij and gi are the 2D and 1D

weight matrices obtained from simulation, respectively. These matrices are equal to 1 in the scale

determination and given by Eq. (5.29) in the resolution case. γij are the 2D maps obtained from

the invariant dimuon mass fit, θ⃗ is the POI either scale (α⃗) or resolution (β⃗). The Eq. (5.31) admits

an analytical solution given by,

θi =
∑
ℓ

U−1
iℓ Bℓ, (5.32)

where

Bℓ =
∑
k

gℓ

σ2
kℓ

(fkℓ · γkℓ), (5.33)

and,

Uiℓ = gigℓ

σ2
iℓ

+ δiℓ
∑
k

(
gi

σik

)2

, (5.34)

with δiℓ the Kronecker delta function and cov(θp, θq) = U−1
pq . For the analytical solution to be valid a

symmetry in electric charge is required such that resolution parameter for the negative and positive

particles are the same, this is, β+
p = β−

p as well as the 1D maps g+ = g−. However, as shown in

section 5.3 a charge asymmetry is present in data and this should be treated to obtained accurate

results.

In the case of resolution, the weights matrices f, g (relative reslolutions) are obtained as the RMS

of the distribution from the difference of the reconstructed (reco) quantity and the true quantity
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divided by its true value of the simulation,

σ(mµµ)
mµµ

=
(
mreco
µµ −mtrue

µµ

mtrue
µµ

)
RMS

,

σ(p±
T )

p±
T

=
(
preco
T − ptrue

T

ptrue
T

)±

RMS
.

(5.35)

These quantities are computed in different (i, j)−categories and in a perfect scenario, they should

be symmetric in the simulation and the relative momentum resolution should also be symmetric

in electric charge, i.e. σ(p+
T )/p+

T = σ(p−
T )/p−

T . However, this is not the case, since the simulation

present small variations between the categories (i, j) ≃ (j, i). To correct this, the 2D maps γij

(relative mass resolution) are symmetrized as follows,

γsym
ij = ωijγij + ωjiγji, (5.36)

where,

ωij =
(

1
σij

)2

/
∑
kℓ

( 1
σkℓ

)2
, (5.37)

and the uncertainty is given as,

σsym
ij =

√
(ωij · σij)2 + (ωji · σji)2. (5.38)

with σij the error associated to γij. Final 2D maps before and after symmetrization are shown in

Fig. 5.58.

In the case of the 1D maps g±
p (relative momentum resolution), both muons show an asymmetry

with respect to η but also a charge asymmetry. To obtain one single symmetric map, first, each

muon is symmetrized with respect to η, as follows,

g̃±
k = g̃±

N−k = w̃±
k g

±
k + w̃±

N−kg
±
N−k (5.39)
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Figure 5.58: f ij relative invariant mass resolution maps for (a) no symmetrized and (b) symmetrized.

where,

w̃±
k =

(
1
σ±
k

)2

/

( 1
σ±
k

)2

+
(

1
σ±
N−k

)2
 , (5.40)

and the uncertainty

σ̃±
k = σ̃±

N−k =
√

(w±
k · σ±

k )2 + (w±
N−k · σ±

N−k)2. (5.41)

where k = 1, 2, .., N/2 with N the number of η bins and σ±
k is the uncertainty in g±

k . Once the maps

are symmetrized with respect to η, the final map is obtained as a weighted average of both electric

charges symmetric maps g̃± as follows,

gcmb
i = w+

i g̃
+
i + w−

i g̃
−
i , (5.42)

where,

w±
i =

(
1
σ̃±
i

)2

/

( 1
σ̃+
i

)2

+
(

1
σ̃−
i

)2
 , (5.43)

and the uncertainty

σcmb
i =

√
(w+

i · σ̃+
i )2 + (w−

i · σ̃−
i )2. (5.44)

where i = 1, ..., N . The relative momentum resolution maps before and after symmetrization are

shown in Fig. 5.59.
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Figure 5.59: Relative momentum resolution maps for positive (red) and negative (blue) muons,
statistical combination and symmetrization. g̃± represents the map after symmetrization of g± in
η and gcmb is the statistical combination of both g̃+ and g̃−.

5.9.3 Invariant mass fit

To perform the momentum calibration, the scale and resolution need to be obtained using the γij

matrices coming from the invariant mass fits. There are several approaches to determine them such

as parametric fits. For example, the mass distribution can be modelled by analytical functions like

Gaussian functions, Crystal-Ball functions, Polynomials of different orders, combinations of different

models, etc. And then reading the invariant mass from the fit. These kind of fits commonly involve

several degrees of freedom related to the parameters to be fitted. For example, a usual approach

considers two crystal ball plus a Gaussian and a polynominal of order n. This means, 14 + n,

parameters to be fitted in order to model the data, which in some cases are not capable to fully

reproduce the physics effects. On what follows, the invariant mass fit is carried out by a numerical

template fit with a quadratic morphing between the templates.

A data-to-simulation fit of the di-muon mass distribution is performed to extract from it the 2D

data maps γα and γm for the scale and resolution, respectively. Once the 2D maps are obtained

an analytical fit is carried out by minimizing the Eq. (5.31). The fit is performed using J/ψ → µµ

resonance in η−categories of the two muons. This means, for each muon the η−space is binned in
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18 × 18 categories (bins) from η ∈ [−2.5, 2.5]. Then, a fit is carried out in each (i, j)−category, i.e.

18 × 18 = 324 fits.

5.9.3.1 Templates for scale and resolution

Theoretical models or “templates” are constructed for both the signal process (the phenomenon of

interest) and the background processes (other known or expected phenomena). These templates

describe the expected distributions of certain observables such as scale or resolution and then they

are fitted to the experimental data by adjusting their parameters to minimize the difference between

the observed data and the predicted distributions.

Since the study is performed with muons in η−space, the templates are prepared in each category

to mimic the effects of the scale and the resolution in that given category. For the scale, the

momentum of the muons is decalibrated using Eq. (5.23) by a constant factor in all the categories.

These factors are chosen to be,

α = ±(5, 4, 3, 2, 1, 0.9, 0.8, 0.7, 0.6, 0.5, 0.4, 0.3, 0.2, 0.1, 0.0) × 10−3, (5.45)

resulting in 29 templates for which α = 0.0 means no scale applied (nominal simulation). Some

scale templates are shown in Fig. 5.60a.

In the case of the resolution sample, a common methodology is to smear the momentum using

random numbers as,

psmear = pMC · (1 + β ·G(0, 1)), (5.46)

where G(0, 1) is a univariate Gaussian random number centered at 0 and with standard deviation

equal to one. This method only allows for the generation of broader smeared samples that are

stochastic. Consequently, the fit may encounter limitations if the data being fitted is narrower than

the template itself. For that reason, the resolution templates are constructed directly at the mass

level by smearing the reconstructed mass,

msmear
µµ = mtrue

µµ + (1 + β) · (mreco
µµ −mtrue

µµ ), (5.47)
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where the distribution is wider for β > 0, narrower for β < 0 and β = 0 means no smearing. For

the template production the following values are used,

β = ±(0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10)% (5.48)

resulting in 21 templates with β = 0.0 the nominal distribution matching with α = 0.0 template.

Some smeared distributions using Eq. (5.47) are shown in Fig. 5.60b.

The generated templates are capable to mimic independently the effects in scale and resolution

and they are suitable to perform combined fits. However, Equations (5.23) and (5.47) can be applied

simultaneously to generate templates that simulate the effect of scale and resolution together. For

example, once the momentum is scaled, the scaled mass (mscale) is reconstructed and then smeared

using the true mass, as follows,

p → (1 + αi) · p =⇒ msmear + scale
µµ = mtrue

µµ + (1 + β) · (mscale
µµ −mtrue

µµ ). (5.49)

Some templates generated by this approach are shown in Fig. 5.60c.

Templates in Fig. 5.60 model properly the signal region of the fit. However, when using data, the

background events play an important role and they need to be introduced also in the modelling as

systematic sources. For this, they can also be treated by the template fit method. Often parametric

fits use Cristal Ball + Gaussian functions to model the signal region while for the background a

polynomial or exponential (or combinations) are used. In this work, to model the background,

analytical functions are implemented. The background in the data is fitted using an exponential

function fbkg(x) = A exp(−ax), where the parameters are retrieved in each category to construct a

background distribution. Once this is done, the nominal background is obtained and the templates

are computed by varying the nominal within its uncertainty ±σ. This allows to have a suitable

description of the background that can be applied in the model. To provide more flexibility to the

fit, templates with ±2σ variations were prepared to be used as control regions for the background

such that a better convergence in the fit is ensured. Background templates are shown in Fig. 5.61.

Having under control the templates the numerical fit can be performed.
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Figure 5.60: Templates for (a) Scale, (b) resolution and (c) scale + resolution. Upper panel:
generated templates using mc20 mote carlo samples for different injected values. Bottom panel:
Ratio of variations (Var) with respect to the nominal monte carlo simulation (nom).
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Figure 5.61: Exponential background templates. Upper panel: ±σ,±2σ variations generated using
analytical functions of fits with respect to the data. Bottom panel: Ratio of variations (Var) with
respect to the nominal background function (nom).

5.9.3.2 Template morphing

When performing a binned template fit is crucial to study the dependence of the templates with

respect to the parameter of interest to determine the sensitivy of the POI with respect to the prob-

ability model as shown in Eq. (4.17). To choose the template interpolation (template morphing),

the template yield behavior with respect to the template variation in each bin needs to be studied.

If the templates behave linearly a straight line model should be accurate, otherwise a more sophis-

ticated function is required (Piecewise, Polynominal of higher orders, etc). In the case of the linear

morphing an analytical solution of the POIs can be found. If the morphing is quadratic, the POI

can be found only in a perturbation approach for |θ| ≪ 1. To decide the morphing type, Fig. 5.62

shows the resolution template yields in three bins, tails (bins 10 and 45) and peak of the resonance

(bin 25). Around the peak of the resonance, the templates behave linearly since the distribution

tends to be narrower or wider without changing the mean value. However, in the tails, the yields

are not fully linear and a quadratic model is more accurate.

In the case of the scales, the template yields for the same bins (tails and resonance peak) are

shown in Fig. 5.63. Where a non-linear behaviour is observed and the quadratic model leads to
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Figure 5.62: Resolution (smearing) template yields versus template variation. Two fits are showed,
linear (blue line) and quadratic (red line).
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a better fitting strategy. Finally, if a simultaneous fit of scale and resolution is performed, both

templates should be fitted in a 2D space as shown in Fig. 5.64. Since the scale behaves linearly when

the resolution behaves quadratically and vice-versa, it is convenient to use a quadratic morphing as

follows,

morphing =
2∑

k=0

2∑
ℓ=0

ckdℓα
kβℓ, (5.50)

where ck, dℓ are fitted parameters. For the systematics, since they correspond to ±σ variations,

they are perfectly described by a linear morphing.

Since a quadratic morphing is required at this stage, the di-muon invariant mass fit is carried

out numerically to obtain the 2D maps γij. Finally, the calibration parameters α, β are obtained

by an analytical minimization as described in subsection 5.9.2.
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Figure 5.63: Scale template yields versus template variation. Two fits are showed, linear (blue line)
and quadratic (red line).
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Figure 5.64: Scale + resolution 2D template yields versus template variation with quadratic mor-
phing (red plane).

5.9.3.3 Closure test and fit validation

To verify that the fit strategy is working properly a closure test was carried out. In this a pseudo-

data is prepared by decalibrating the simulation. In the sample, the momentum of the muons

is scaled by αinj = 5 × 10−4 factor in all the η−categories of the muons and smeared by rp,inj =

92.75% → βinj = −7.25%. This generates a shift and a narrower peak than the original sample.

Finally a pseudo-data background is prepared as +0.5σ variation and added to the signal. Once this

is done, the pseudo-data is fitted using a quadratic morphing with the templates already described,

pre-fit and post-fit plots of the dimuon invariant mass are shown in Fig. 5.65. These fits are repeated

in each (i, j)−category from which the γij maps for scale and resolution are obtained as shown in

Fig. 5.66. Finally, they are introduced into the χ2 of Eq. (5.31) with the relative resolution maps

in Figures 5.58 and 5.59 returning the calibration parameters. Since the injected value is known, is

convenient to compute the residual with respect to the fitted values as shown in Fig. 5.67. Results

for scale and resolution parameters are retrieved with an average residual ⟨αfit − αinj⟩ = 7 × 10−6

and ⟨βfit − βinj⟩ = −2 × 10−6, respectively or roughly ∼ 10−5. This validates the fitting strategy

and it is ready to be implemented in data.
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Figure 5.65: Numerical fit using the di-muon invariant mass for scale and resolution (2POI) +
background (1 NPs).
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Figure 5.66: Invariant mass γij maps for (a) scale and (b) resolution for the simulation closure test.
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Figure 5.67: Residuals for scale and resolution using analytical fit method.

5.9.4 Scale and resolution maps

The fit is performed with the data-sets pre-corrected for charge dependent effects (sagitta) and ID

geometrical distortions as described in Section 5.4.2 for data-taking years (2015, 2016, 2017 and

2018) and different track types, CB and ID. The final calibration parameters are obtained by the

template fit and they are shown in Fig. 5.68, 5.69, 5.70 and 5.71. The large values of the ID track

for the ECT regions are related to the fact that the quality of this track and the invariant mass

reconstruction is degraded at high η values and by consequence the parameter estimation is not as

good as for the CB.

In the case of the scale parameters, both tracks CB and ID show similar values in the barrel

region |η| < 1 since this region is mainly dominated by the Inner tracker. However, in the case of

the case of the ECT |η| > 1, the ID and CB tracks are not longer around the same values. This is

due to the fact that the Muon Spectrometer dominates this region and the CB track allows a better

performance for these values.

In the case of the resolution, for the barrel region the ID tracks show values around 5% smearing

while the CB tracks around 10% for 2018 and 2017 while for 2015 and 2016 the ID tracks show

almost a good compatibility with 0% smearing and the CB track decreases to 5%.
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Figure 5.68: Calibration parameters for (a) scale and (b) resolution for muon momentum calibration
in year 2018.
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Figure 5.69: Calibration parameters for (a) scale and (b) resolution for muon momentum calibration
in year 2017.
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Figure 5.70: Calibration parameters for (a) scale and (b) resolution for muon momentum calibration
in year 2016.
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Figure 5.71: Calibration parameters for (a) scale and (b) resolution for muon momentum calibration
in year 2015.
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5.9.4.1 Final Muon Momentum Calibration (MMC)

Once the scale and resolution parameters are determined, the simulation is corrected to match the

data. The muons in simulation are corrected as,

pcorr
T = (1 + α) ·

[
ptrue
T + (1 + β) ·

(
pUnCorr
T − ptrue

T

)]
, (5.51)

where pUnCorr
T is the uncorrected momentum of the muons. After correction, the data-to-simulation

residual is evaluated for both, scale and resolution. These residuals are considered as a systematic

source that are introduced into the correction function to propagate them and to generate up and

down variations that represent the systematic error. This leads to the final muon momentum

calibration results shown in Fig. 5.72 for CB tracks and Fig. 5.73 for the ID track. The gray error

band accounts for systematic uncertainties arising from the final scale and resolution and the green

error band accounts only for the systematic uncertainty arising due to the scale correction. After

correction, a data-to-simulation agreement at the per mille level within the uncertainties is obtained.

5.10 Summary

The charge dependent effects related to the muon sagitta have been evaluated by minimising the

variance of the invariant mass distributions. This correction was applied in data for both CB and

ID tracks reducing the bias from an average value of 0.05 TeV−1 to 2×10−4 TeV−1. Showing a good

performance at high and low transverse momentum, pT .

The Inner Detector geometrical deformations have been studied by different models involving

radial and longitudinal distortions as well as magnetic field mismodelling. These models were

implemented by an analytical template fit showing that more than one parameter model is required

in order to correct the global scale and modulations observed in the invariant mean mass values in

the Collins-Soper frame. A radial-magnetic field distortion model was chosen with relative bias in

the barrel region of ⟨εB⟩ = −1.5 × 10−3 and ⟨εR⟩ = 1.0 × 10−3 for the magnetic field and radial
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Figure 5.72: Muon momentum calibration in CB tracks for (a) inclusive invariant mass (b) mean
invariant mass and (c) invariant mass resolution versus rapidity of both muons in the same category
(ηµ+ = ηµ−).
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Figure 5.73: Muon momentum calibration in ID tracks for (a) inclusive invariant mass (b) mean
invariant mass and (c) invariant mass resolution versus rapidity of both muons in the same category
(ηµ+ = ηµ−).
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distortions, respectively. After correction, a good performance over all η values was found, reducing

the bias and improving the data-to-simulation agreement at the per mille level in the scales with a

small improvement in the resolution. These corrections together were applied to the data affecting

directly the transverse and longitudinal components of the momentum of the muons.

On the other hand, the MS/ID misalignment residuals were studied in order to improve the

track reconstruction by correcting the perigee parameters (d0, z0, θ, ϕ, q/p) in the ID and MS. These

studies initially showed a charge dependent effects and a global bias of few mrad in θ and a bias

of about 1.5 mm in z0 with a slope effect, with positive slope for |η| < 1 and negative slope for

1 < |η| < 2.5. The charge asymmetry effects were corrected by re-evaluating the magnetic field in

the tile calorimeter by proposing an initial correction of about 25% of the ϕ−component (Bϕ) of

the magnetic field in this region. This initial model was extended by mapping the magnetic field

integral over the (η, ϕ)−space allowing to get a correction map that once implemented it successfully

solved the charge asymmetry in the tracks. On the other hand, to solve the bias associated to the

slope and the overall bias observed in z0 and θ, the second coordinates d0 and ϕ were also studied in

both tracks CB and ID. The second coordinate results showed a bias that could directly be related

to the first coordinates (z0, θ) as a second order effect. These biases were mapped in (η, ϕ)−space

and then applied in the tracks in order to correct both, the first and second coordinates. Mixing

these corrections next to the magnetic field corrections a good agreement with the simulation was

obtained.

Finally, once the pre-corrections were applied to the data the final muon momentum calibra-

tion was performed taking into account the scale and resolution parameters. The invariant mass

distribution was fitted by a numerical template fit with a quadratic morphing. Different scale tem-

plates were prepared by decalibrating the momentum of the muons while the resolution templates

were prepared with a deterministic approach at the mass level, allowing to generate narrower and

wider samples to better emulate the data. The background was modelled by analytical functions

(exponential function) which were varied within their uncertainties to be introduced as systematic

sources. The invariant mass fit results were retrieved to perform 2D maps for scale and resolution

that later on were introduced into an analytical χ2 that allowed to obtain the final calibration pa-
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rameters with a precision of about 10−5. This correction was applied in the simulation by affecting

the transverse component of the momentum of the muons allowing a data-to-simulation agreement

at the per mille level. The systematic sources were evaluated by computing the residual between

data and simulation after correction, then they were propagated in the simulation. Final results

were found to be within the uncertainties.
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Chapter 6

W -boson mass

In the Standard Model, the W boson mass at the lowest order can be expressed as a function

of the Z boson mass (mZ), the Fermi constant (GF ) and the fine structure constant (α). When

considering higher-orders, the radiative corrections (∆r) introduce additional dependencies of the

W boson mass with the gauge couplings and heavy particles. In the SM, these contributions come

mainly from the top quark and the Higgs boson. The electroweak theory also predicts the decay

width of the W boson (ΓW ) to be equal to the sum of the partial widths over three generations of

lepton doublets and two generations of quark doublets. In the presence of new particles that couple

to the W boson, the value of ΓW could be altered. For BSM scenarios, new exotic particles such as

SUSY particles or Dark Matter particles (among others) can potentially generate a shift in mW and

ΓW through loop corrections. These new scenarios could be probed through precise measurements

of these parameters and then to be compared with the SM prediction [83],

mSM
W = 80355 ± 6 MeV,

ΓSM
W = 2088 ± 1 MeV.

(6.1)

The current average of mW using LEP [80], D0 [167], ATLAS [76] and LHCb [77] leads to mW =

80369.2±13.3 MeV [82] that is in tension with the recent CDF collaboration result mW = 80433.5±

9.4 MeV [168]. While for ΓW the world average leads to ΓW = 2085 ± 42 MeV [16].

The following chapter is focused on the study of the current status ofmW and ΓW using the 7 TeV
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dataset recorded by the ATLAS detector in 2011. As well as the preliminary results and prospects

in the precise measurement of mW using the low pile-up dataset at 5.02 TeV and 13 TeV. The

present analysis implements the profile likelihood fit to perform simultaneous determination of mW

and ΓW as well as the treatment of the systematic sources and a proper uncertainty components by

analytical fits as described in Chapter 4. This chapter is organized as follows, Section 6.1 describes

the production, physics correction and decay model of the EW vector bosons through the resonance

parametrization, electroweak and QCD corrections and angular coefficients. Section 6.2 describes

the signal region and background determination used for the present studies and how the different

type of background contributions are obtained by simulation and data driven approach. Section 6.3

describes the data samples and the event simulation for the W boson studies. Section 6.4 describes

the propagation of calibration uncertainties in mW . Section 6.5 describes the probability model

implemented for the W boson mass and width determination. Section 6.6 shows the study and

results for the mW and ΓW measurement at
√
s = 7 TeV applying the PLH fit with analytical

studies. Section 6.7 study the preliminary results and prospects in mW uncertainty using PLH fits

at low pile-up. Section 6.8 provides the expected precision in mW measurement exploiting the
√
s =

5.02, 7 and 13 TeV centre-of-mass energy dataset in ATLAS. Section 6.9 studies the compatibility

of the new world W -boson mass measurements considering the new ATLAS result discussed in this

work, LHCb, CDF, D0 and LEP with different PDF sets.

6.1 Production, physics correction and decay model

The inclusive cross section of the of the W → ℓν and Z → ℓℓ bosons into two leptons final state

is a six-dimensional equation. It has been shown that this equation can be factorized into four

components in the di-lepton (or boson) system as shown in [76, 146]. It is given by,

dσ

dp1dp2
=
[
dσ(m)
dm

] [
dσ(y)
dy

]  dσ(pT )
dpT

∣∣∣∣∣
y

dσ(y)
dy

−1 [
(1 + cos2 θ) +

7∑
i=0

Ai(pT , y,m)Pi(cos θ, ϕ)
]
,

(6.2)
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where p1 and p2 are the lepton and anti-lepton four-momenta, m, pT , and y, are the invariant mass,

transverse momentum, and rapidity of the di-lepton system, respectively. θ and ϕ are the polar and

azimuthal angles of the lepton in the di-lepton system rest frame, Pi are the spherical harmonics

functions and Ai are the angular coefficients. The angular coefficients are functions of pT , y and

m, and they represent the ratios of the helicity cross sections with respect to the unpolarized cross

section of the boson production. The A5 − A7 coefficients are non-zero only at order O(α2
s) and

above.

Eq. (6.2) provides a simplified modelling of the mass-distribution dσ(m)/dm (boson resonance)

with respect to the pole-mass of the W boson using Breit-Wigner distribution and including elec-

troweak corrections. The differential cross section, dσ(y)/dy, and the angular coefficients, Ai,

are modelled with fixed-order perturbative QCD predictions, at O(α2
s) in the perturbative ex-

pansion of the strong coupling constant. The transverse momentum spectrum at given rapidity,

(dσ(pT )/dpT )(dσ(y)/dy) is given by analytic resummation or tuned parton shower.

6.1.1 Resonance Parameterization

The boson resonance, dσ(m)/dm, is parameterized by a Breit-Wigner distribution based on the

gauge interactions and couplings for the Neutral Currents (NC) and Charged Currents (CC). This

is giving by the following lagrangians,

LNC =
∑
i=γ,Z

αiff̄γ
µ(vfi − afiγ

5)fViµ

LCC = αWVff ′ f̄γµ(1 − γ5)fWµ

(6.3)

where αi, Vff̄ , vfi and afi are the coupling constants, CKM matrix mixing elements and the vector

and axial couplings for the incoming and outgoing fermions. These are summarized in the Table 6.1.

At leading order, the parton-level cross sections for qq̄ → ℓℓ and qq̄′ → ℓν can be generically

191



Table 6.1: Vertex factors for different interactions in the Standard Model. α corresponds to the
Gauge couplings, vi and ai are the vector and axial couplings and Vi the CKM matrix elements.

Vertex γff Zff Wff ′

αi αem
Gµm2

Z

2
√

2π
Gµm2

W√
2π

vi Qf I3f − 2Qf sin2 θW
I3f

I3f

ai 0 I3f
I3f

I3f

Vi 1 1 Vff ′

written as,

σ̂(ŝ) ∝
∑
i,j

αiαjViVjBijPij(ŝ), (6.4)

Bij = (vivj + aiaj)in(vivj + aiaj)out, (6.5)

Pij(ŝ) = ŝ
(ŝ−m2

i )(ŝ−m2
j) +mimjΓiΓj

[(ŝ−m2
i )2 + (miΓi)2][(ŝ−m2

j)2 + (mjΓj)2] , (6.6)

where the summation runs over the exchanged gauge bosons in the s−channel. In the case of NC

interactions, the indices i, j can run over the γ and Z boson. For the CC interactions, they run

only over the W boson. This allows to interpret the equal terms i = j as the squared amplitude

corresponding to the exchange of a given boson while for i ̸= j corresponds to the γ−Z interference.

The mass and width of gauge boson i are denoted as mi and Γi, and ŝ is the available energy for

the parton-level process.

Eq. (6.6) corresponds to a fixed-width Breit-Wigner parametrization that is suitable for genera-

tors. However, for other analyzes such as the one for mZ at LEP [169] and mW [76] a running-width

parametrization is used. In this, the terms mΓ are replaced by ŝ
m

Γ as follows,

P ′
ij(ŝ) = ŝ

(ŝ−m′2
i )(ŝ−m′2

j ) + ŝ2

m′
im

′
j
Γ′
iΓ′
j[

(ŝ−m′2
i )2 +

(
ŝ
m′

i
Γ′
i

)2
] [

(ŝ−m′2
j )2 +

(
ŝ
m′

j
Γ′
j

)2
] (6.7)

where the primed quantities refers to the running variables and they should not be confused

with their fixed-width quantities. However, both Eq. (6.6) and (6.7) are equivalent through the
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parametrization,

mi = m′
i

√√√√1 +
(

Γ′
i

m′
i

)2

Γi = Γ′
i

√√√√1 +
(

Γ′
i

m′
i

)2
(6.8)

If Eq. (6.7) is used, the physical masses and widths of the gauge bosons should be taken from the

PDG values [170] for the nominal simulation.

6.1.2 Electroweak corrections

The formalism described above is only valid when no real photons are emitted, since this is not

the case, it needs to be corrected. In ATLAS, the simulations are corrected using Photos [156]

that are in charge of generating photon emissions and modifying the final state lepton kinematics

starting from the Born-level.

Photos is a Monte Carlo algorithm used to apply QED radiative corrections in the decay

processes of particles. It operates as an “after-burner”, adding bremsstrahlung photons to decay

events generated by other programs. This allows for the simulation of radiative corrections without

needing the host generator to consider these effects. The algorithm can add multiple photons to an

event, ensuring coverage of the phase space and treating collinear regions by considering the masses

of the charged particles. Photons are calculated using an iterative procedure where each photon’s

four-momentum is adjusted to respect energy-momentum conservation, while also considering the

photon’s probability distribution according to QED matrix element. The algorithm takes into

account various factors, such as interference effects, to ensure that the radiation pattern matches

the precise predictions of QED. The algorithm can be applied to any decay process and is designed to

work seamlessly with other Monte Carlo generators, improving the accuracy of simulations involving

radiative decays. The iteration ends when the photon energy is smaller than 10−7 times the energy

of the parent in the decay rest frame. The iterative FSR approach is shown in Fig. 6.1. The present

study is performed by generating events using Powheg+Pythia 8 and Photos as done for the
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main analysis samples, only changing the settings in Photos.

Figure 6.1: Iterative FSR treatment using Photos. The dot represents the matrix element for a
single photon emission. After each photon emission, the outgoing lepton lines (right of the dashed
line) are considered by Photos again for further photon emissions, in an interactive way [171].

6.1.3 Boson rapidity and transverse momentum

In the mW measurement analysis, the differential cross section as a function of boson rapidity,

dσ(y)/dy, is modelled with fixed order perturbative QCD predictions at O(α2
S) in the perturba-

tive expansion of the strong-coupling constant. However, the majority of the W bosons used in

the present analysis are at low value of boson transverse momentum (pWT < 30 GeV) where the

resummation of large logarithms log(mV /pT ) is needed and non-perturbative effects should be ac-

counted. For this, the parton showers are introduced to predict the transverse momentum spectrum

of vector boson at a given boson rapidity dσ(pT )/dpT |y. In the present analysis, the parton shower

AZNLO tune of Powheg+Pythia8 is used. This employs leading order matrix elements for the

qq̄′ → W,Z/γ∗ processes, complemented by a reweighting of the first parton shower emission to

the leading order V + jet cross section, with V = W,Z/γ∗. Current study in Ref. [75] performed a

precision measurement of the W and Z boson transverse momentum at 5.02 and 13 TeV with low

pile-up data. In this study, a direct measurement of pWT is performed instead of modelling it based

on the measured pZT . This approach avoids the uncertainty due to the extrapolation.

6.1.4 Angular coefficients

At leading order without Initial State Radition (ISR) QCD, the bosons are only transvely polar-

ized and the angular distribution of the decay leptons depends only depends in the polar angle θ.
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When going to higher order amplitudes, the colliding partons ISR QCD interactions provide trans-

verse momentum to the W or Z bosons. This affects the polarization state resulting in azimuthal

asymmetries that are encoded into eight the angular coefficients Ai. Eq. (6.2) can be expressed as

follows,

dσ

dp2
Tdydmd cos θdϕ = 3

16π
dσ

dp2
Tdydm

×
[
(1 + cos2 θ) + A0

1
2(1 − 3 cos2 θ)

+ A1 sin 2θ cosϕ+ A2
1
2 sin2 θ cos 2ϕ

+ A3 sin θ cosϕ+ A4 cos θ

+A5 sin2 θ sin 2ϕ+ A6 sin 2θ sinϕ+ A7 sin θ sinϕ
]

(6.9)

that using the completeness of the spherical harmonics,

⟨Pi(θ, ϕ)⟩ =
∫ 1

−1 d cos θ
∫ 2π

0 dϕdσ(θ, ϕ)Pi(θ, ϕ)∫ 1
−1 d cos θ

∫ 2π
0 dϕdσ(θ, ϕ)

, (6.10)

the angular coefficients Ai can be obtained as a function of the polar and azimuthal angles,

A0 = 4 − 10⟨cos2 θ⟩,

A1 = 5⟨sin(2θ) cosϕ⟩,

A2 = 10⟨sin2 θ cos(2ϕ)⟩,

A3 = 4⟨sin θ cosϕ⟩,

A4 = 4⟨cos θ⟩,

A5 = 5⟨sin2 θ sin(2ϕ)⟩,

A6 = 5⟨sin(2θ) sinϕ⟩,

A7 = 4⟨sin θ sinϕ⟩,

(6.11)

where θ and ϕ are obtained defined in the Collins-Soper frame. In general, the Ai coefficients

are functions of the transverse momentum, rapidity and boson mass but the dependence on the

boson mass is negligible such that, the predictions can be performed with a fixed boson mass. The

correlations between the two decay leptons due to the polarization of the vector boson are not well
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modelled in the baseline simulation since only NLO QCD accuracy can be reached. To improve

this, the coefficients are reweighted to NNLO predictions following the same strategy as described

in Ref. [76]. The reweighting is carried out using DYTurbo at O(α2
s) and Powheg+Pythia 8

as follows,

w = 1 + cos2 θ +∑7
i=0 A

′
i(pT , y)Pi(cos θ, ϕ)

1 + cos2 θ +∑7
i=0 Ai(pT , y)Pi(cos θ, ϕ)

. (6.12)

where Ai is the initial prediction of an angular coefficient and A′
i is an alternative prediction.

6.2 Signal region and Background determination

The signal region encompasses the muon channel and electron channel in different η regions for the

7 TeV while for 5.02 TeV and 13 TeV categories in uT and η regions are considered. The background

encodes the contributions from the electroweak and top processes modelled by MC simulation while

the multijet (MJ) estimation is obtained from data-driven method.

6.2.1 Signal region

Electrons: are reconstructed from clusters of energy deposited in the EM calorimeter and asso-

ciated with at least one ID track. They are required to pass the tight identification criterion of a

cut-based discriminating variables, to have a transverse momentum of peT > 15 GeV and an absolute

pseudorapidity of |η| < 2.47 excluding the calorimeter crack region (transition barrel to end-cap)

1.2 < |η| < 1.82. Background from jets misidentified as electrons is reduced using additional isola-

tion requirements. For this, the activity in the ID and calorimeter nearby the electron candidates

passing the kinematic and identification selections is used as measured by tracks in a cone of size

∆R < 0.2 around the candidate.

Muons: the reconstruction of the muons is performed independently in the ID and the MS

and a combined muon candidate (CB) is formed from the statistical combination of the two tracks

information. To ensure that the reconstructed muons are originated from the primary vertex (PV)

the track-to-vertex association requirement is imposed, i.e. |z0 sin θ| < 0.5mm and |d0|/σ(d0) < 3.

Candidates are selected by single-muon trigger with kinematic properties that considers transverse
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momentum of pµT > 20 GeV and absolute pseudorapidity of |η| < 2.4 with Medium identification

criteria ensuring a good distribution of the channel W → µν from the background. The multĳet

background is reduced by applying an isolation requirement as in the electrons selection.

W boson selection: W boson candidates are chosen to contain exactly one identified and

isolated lepton candidate satisfying the criteria described above. If an event has more than one

lepton associated, this is rejected to reduce the Z background. The transverse momentum of the

decay neutrino is inferred from the missing transverse momentum (p⃗miss
T ) and its magnitude (Emiss

T )

that are defined from p⃗ℓT and u⃗T , as p⃗miss
T = −(p⃗ℓT + u⃗T ). The transverse mass is reconstructed as

mT =
√

2pℓTpmiss
T (1 − cos ∆ϕ), with ∆ϕ the azimuthal opening angle between the charged lepton

and the missing transverse momentum. The recoil, u⃗T is reconstructed from the vector sum of

the transverse energy of all clusters measured in the calorimeters, excluding clusters located at a

distance ∆R < 0.2 from electron or muon candidates.

To minimize the background contribution (mainly multijet) and the model uncertainties, the

following cuts in the W kinematics are used at 7 TeV,

• Lepton transverse momentum pℓT > 30 GeV.

• Hadronic recoil as a measure of pWT : uT < 30 GeV.

• Neutrino transverse momentum: Emiss
T > 30 GeV.

• W boson transverse mass: mW
T > 60 GeV.

leading to 5.9 × 106 candidate events in the W → eν channel and 7.8 × 106 candidate events in the

W → µν channel after cuts. Final studies considered the 28 categories for electrons and muons as

shown in Table 6.2.

Table 6.2: Summary of the 28 categories and kinematic distributions used in the mW measurement
for the electron and muon decay channels at

√
s = 7 TeV.

Decay channel W → eν W → µν
Kinematic distributions pℓT , mT pℓT , mT

Charge categories W+, W− W+, W−

|ηℓ| categories [0, 0.6], [0.6, 1.2], [1.8, 2.4] [0, 0.8], [0.8, 1.4], [1.4, 2.0], [2.0, 2.4]

For the low pile-up at 5.02 TeV and 13 TeV, the cuts are,
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• Lepton transverse momentum pℓT > 25 GeV.

• Hadronic recoil as a measure of pWT : uT < 25 GeV.

• Neutrino transverse momentum: Emiss
T > 25 GeV.

• W boson transverse mass: mW
T > 50 GeV.

leading to a total number of 7.1×105 (2.2×106) W -boson candidate events in the W → eν channel

and 7.5×105 (2.2×106) in the W → µν channel for the 5.02 TeV (13 TeV) data after cuts. Samples

are categorized in uT and η with 20 bins as shown in Table 6.3. This results in a total 20 categories

per channel and energy.

Table 6.3: Summary of the 20 categories per channel and centre-of-mass energy and kinematic
distributions used in the mW measurement at

√
s = 5.02 and 13 TeV for the electron and muon

decay channels.

Decay channel W → eν W → µν
Kinematic distributions pℓT , mT pℓT , mT

Charge categories W+, W− W+, W−

|ηℓ| categories [0, 0.6], [0.6, 1.2], [1.2, 1.8], [1.8, 2.47] [0, 0.8], [0.8, 1.4], [1.4, 2.0], [2.0, 2.4]
uT categorites [0, 5], [5, 10], [10, 15], [15, 20], [20, 25] [0, 5], [5, 10], [10, 15], [15, 20], [20, 25]

6.2.2 Electroweak and top quark background

In the W → ℓν channels for ℓ = e, µ, the background receives contributions from W → τν,

Z → ℓℓ, ττ , Gauge-boson pair production (diboson: WW , ZZ, WZ), top processes (tt̄ and single

top t) and multijet (MJ) events. Apart from the MJ, the EW and top can be modelled with high

accuracy with respect to the theoretical predictions directly from the MC simulation. Top processes

are generated with Powheg+Pythia 8 and Top++ prediction reported by CMS [172]. For the

di-boson background, Sherpa [173] is implemented in all the decay channels for at least one real

lepton in the final state. The impact of the uncertainty is considered by assigning a 10% relative

uncertainty to the top-quark and diboson background cross sections except for the tt̄ cross-section

where a 7% is assigned.

From the mentioned backgrounds, the larger contribution is coming from Z → ℓℓ events in both

channels when one of the leptons escapes detection and mimics missing transverse momentum. The
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second largest background is coming from leptonic decays such as τ decaying into electrons or muon.

However, the Z boson events as well as the τ at the LHC are very well understood as well as its

background such that the contribution can be well estimated from MC simulations.

6.2.3 Multijet (MJ) estimation

The W candidates are accompanied by multijet background that originates from semi-leptonic

decays of heavy quarks (b− and c−quarks) and in-flight pion decays. These have an important

contribution due to its large cross-section. In the muon channel, long-lived hadrons passing through

the calorimeter represent an additional source of background since they can mimic a muon signal.

In the electron channel the processes already mentioned are included but also the pion faking an

electron or photon conversion are sources of background. In contrast to the EW and top processes,

the MJ background cannot be well simulated using MC predictions and by consequence, the data-

driven approach is implemented [174, 175]. In this method, the MJ background estimate in the

signal region is constructed from a jet-enriched control region in data by reversing or relaxing

some of the isolation requirements. From this control region is posible to obtain the shape of the

background.

The W -boson phase-space in the signal region (SR) used for the main measurement is defined

by the following selections:

• pℓT > 25 GeV and |ηℓ| < 2.4.

• Emiss
T > 25 GeV.

• mT > 50 GeV.

• Lepton isolation as pcone20
T /min(pT , 50 GeV) < 0.1.

Four regions are defined by relaxing the kinematic cuts and inverting the lepton isolation selection

as shown in Table 6.4. The four signal regions are given by,

• Signal region (SR): Isolated leptons and signal phase-space for pℓT , Emiss
T and mT .
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• Fit region (FR): Isolated leptons, but without Emiss
T or mT cut.

• Control region 1 (CR1): Anti-isolated leptons (pcone20
T /min(pT , 50 GeV) > 0.1) and relaxed

kinematic cuts like FR.

• Control region 2 (CR2): Anti-isolated leptons with full kinematic cuts like SR.

Table 6.4: Selection criteria for the four different regions in the data driven method for MJ estima-
tion.

Fit Region (FR) Signal Region (SR)
pℓT > 25 GeV pℓT > 25 GeV
mT > 0 GeV mT > 50 GeV
Emiss
T > 0 GeV Emiss

T > 25 GeV
Lepton isolation < 0.1 Lepton isolation < 0.1

Control Region 1 (CR1) Control Region 2 (CR2)
pℓT > 25 GeV pℓT > 25 GeV
mT > 0 GeV mT > 50 GeV
Emiss
T > 0 GeV Emiss

T > 25 GeV
Lepton isolation > 0.1 Lepton isolation > 0.1

To extract the fraction and shape of the MJ in the SR, the two CR are used, CR1 and CR2

through the fraction fit method. This is based on a binned maximum likelihood fit of the combination

of all samples modelling in Monte Carlo (signal, multijet, top, electroweak) to the observed candidate

events from data. In this fit, the relative normalisation of all modelled in Monte Carlo samples

(signal W → ℓν and backgrounds W → τντ , Z → ℓℓ, di-bosons, Top processes), is fixed according

to proton-proton cross-section. While the normalizations of the multijet background and total MC-

based contributions are allowed to float. Once the fit has been performed and the multijet samples

has been normalized, the MJ background is calculated in the SR by the ratio of the MJ events to

the number of all selected events in data.

Since the MJ is mainly produced for lower values of pℓT , Emiss
T and mT , it is convenient to

determine the MJ fraction in the FR, that is the region where the Emiss
T and mT cuts are relaxed.

Then, the total number of data events in the FR, NFR
data, is given by,

NFR
data = α ·NFR

EW+Top + T ·NCR1
MJ , (6.13)
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where NFR
EW+Top is the expected contribution from electroweak and top-quark process in the FR and

NCR1
MJ is the number of MJ events in CR1 given by, NCR1

MJ = NCR1
data −NCR1

EW + Top. T is the scale of the

MJ template in FR to be determined by the fit and α is the overall normalization of contribution

from electroweak and top process approximately equal to one, within the uncertainties in luminosity

and production cross-sections. This, allows to approximate the MJ yield as,

NFR
MJ ≈ T ·NCR1

MJ . (6.14)

Notice that FR and CR1 share the same kinematic cuts similarly to SR and CR2 (with difference

in Emiss
T and mT ). Therefore, the FR yield can be extrapolated to the obtain the SR yield by

introducing a transfer factor ε = NCR2
MJ /NCR1

MJ derived from the two control regions, such that,

NSR
MJ = ε ·NFR

MJ =
NCR2

data −NCR2
EW+top

NCR1
data −NCR1

EW+top
×NFR

MJ . (6.15)

In this way, the CR1 and CR2 are used to derived the shape of the MJ template used in the fraction

fit in the FR and the MJ shape in the SR region, respectively.

6.3 Data samples and event simulation

Two datasets are implemented corresponding to different data-taking periods, Run1 and Run2 at

different centre-of-mass energy and luminosities.

6.3.1 Dataset at 7 TeV

The data sample considersW → eν andW → µν candidate events, collected in 2011 in proton−proton

collisions at a centre-of-mass energy of
√
s = 7 TeV. The data collected with all relevant detector

systems operational correspond to integrated luminosity of 4.6 fb−1 and 4.1 fb−1 in the electron and

muon channels, respectively.

For the simulation, the W and Z boson production and decay in the electron, muon and tau

channels have been produced using Powheg+Pythia 8 MC generator and parton shower. The
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effect of virtual photons are included in the Z simulation and the QED final state radiation (FSR)

is simulated using Photos. Several PDF sets are implemented, in particular, CT10 is used for hard

processes while CTEQ6L1 is used for the parton shower. Kinematically, the W and Z bosons rapid-

ity and pℓT are reweighted to optimized the data. The τ−lepton decays are handled by Pythia8 tak-

ing into accoun the polarisation effects. The W and Z boson event yields are normalised according to

their measured cross sections with a 1.8% and 2.3% uncertainties assigned to the W+/Z and W−/Z

production cross-section ratios, respectively. The W production samples assume mW = 80399 MeV

and ΓW = 2085 MeV. Background processes such as top-quark pair and single-top-quark produc-

tion are modelled using the MC@NLO MC generator interfaced to Herwig and Jimmy for the

parton shower. Gauge-boson pair production (WW , WZ, ZZ) is simulated with Herwig v6.520.

The CT10 PDF set is used in all these samples. The detector response is simulated using a software

suite based on Geant4. The hard-scattering process is overlaid with additional proton–proton

interactions, simulated with Pythia8 (v8.165) using the A2 tune. The distribution of the average

number of interactions per bunch crossing ⟨µ⟩ spans the range 2.5–16.0, with a mean value of ap-

proximately 9.0. The present analysis is performed using different PDF sets such as ATLASpdf21,

CT18, CT18A, MSHT20, NNPDF3.1 and NNPDF4.0 to study the PDF dependence.

The mW is extracted using the template fit approach in which W -boson width, ΓW , is treated

as a source of systematic uncertainty, considering the SM value and uncertainty of ΓSM
W = 2088 ± 1

MeV. In the
√
s = 7 TeV case, the ΓW has been also obtained using a similar approach in which

mW is treated as a systematic uncertainty assuming the SM prediction and uncertainty of the

mSM
W = 80355 ± 6 MeV. Templates for pℓT and mT with different values of mW or ΓW are shown in

Fig. 6.2.

6.3.2 Low pile-up dataset at 5.02 TeV and 13 TeV

Similarly to the 7 TeV dataset, the low pile-up dataset consists of W → eν and W → µν candidate

events. During 2017 and 2018, the LHC carried out a low pile-up run with an average number of

proton−proton interactions, ⟨µ⟩, of about two, as compared to ⟨µ⟩ ∼ 34 for the nominal LHC Run

2. The low pile-up datasets correspond to an integrated luminosities of 254.9 pb−1 at
√
s = 5.02 TeV
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(a) (b)

Figure 6.2: Simulated kinematic distributions of (a) pℓT and (b) mT , for W -boson mass and width
values of mW = 80399 MeV and ΓW = 2085 MeV. The ratio panels represent the relative effect
(sensitivity) of varying these parameters by ±60 MeV and ±200 MeV, respectively.

and 338.1 pb−1 at
√
s = 13 TeV and only data collected with all relevant detector systems operational

are considered [108]. The low pile-up dataset is of particular interest since it can provide a good

hadronic recoil resolution for which the thresholds applied to suppress noise in the reconstruction

of clusters of energy in the calorimeters were lowered. The data was collected with triggers that

require at least one electron or muon with transverse momentum thresholds of peT > 15 GeV and

pµT > 14 GeV, respectively [108–110]. Loose identification criteria are applied at the trigger level

for electron or muon candidates.

For the simulation, a dedicated MC campaign at low pile-up has been performed. In which no

further pile-up reweighting needs to be applied to the MC samples since the low pile-up distributions

are already considered. The signal process takes into account the W -boson decay into the leptonic

channels.

The W and Z signal processes are generated using Powheg with CT10 PDF set interfaced with

Pythia8 for the parton shower using the AZNLO tune. To keep the PDF baseline matching the

variations at 7 TeV, a reconstructed level PDF reweighting is applied to the unrolled distributions,

pℓT and mT , to replace the baseline PDF by CT18A PDF set. The QED final state radiation

(FSR) is simulated using Photos++ and the W and Z cross sections are normalized to the
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NNLO calculation performed using DYTurbo with the MMHT2014nnlo PDF set. Similarly to

the
√
s = 7 TeV analysis, the signal region is considered to be the electron (W → eν) and muon

(W → µν) channels while the τ−lepton decay (W → τν) is taken as one of the electroweak

background as well as the top-quark related process.

Given the uncertainties in the choice of the PDF set, including its internal uncertainties (ap-

proximately 3-4%), the dependence on factorization and renormalization scales (less than 1%), and

the uncertainty of the strong coupling constant αs (about 1-2%), a conservative total uncertainty

of 5% is assigned to the event count predictions normalized using these cross-sections.

The top-quark pair production tt̄ and the single top-quark production corresponding to Wt,

t−channel and s−channel are generated with Powheg+Pythia 8. The tt̄ the crosssection at
√
s = 5.02 TeV is taken from the Top++ prediction reported by CMS [172]. The Gauge boson

pair-production (di-boson background: WW , WZ, ZZ) are produced with Sherpa [173] in all the

decay channels for at least one real lepton in the final state. Uncertainties of 10% are assigned to

the top-quark related background and the di-boson background cross-sections, except for tt̄ process,

for which a cross-section uncertainty of 7% is assigned.

To model the multiple interactions per bunch crossing (pile-up) effect, simulation of minimum

bias events were generated using Pythia8 with NNPDF2.3LO global PDF set and the A3 tune

to be superimposed over the hard-scattering events. The soft QCD background (multijet) were

obtained by data-driven approach.

Similarly to the 7 TeV, the mW is extracted using the template fit approach for the W boson for

two observables, pℓT and mT , corresponding to projection of the same data in the case of 5.02 TeV

and 13 TeV. For each observable, channel and centre-of-mass energy, five categories in uT are

implemented in which four categories in ηℓ are considered with 20 bins (20 distributions with 400

bins in total). Templates for mW in W → eν and W → µν are shown in Fig. 6.3 and 6.4.
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Figure 6.3: Simulated W → eν kinematic distributions at
√
s = 5.02 TeV for (a) pℓT and (b) mT

and
√
s = 13 TeV for (c) pℓT and (d) mT for W -boson mass of mW = 80399 MeV. The ratio panels

represent the relative effect of varying the mW parameter by ±100 MeV in all the categories.
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Figure 6.4: Simulated W → µν kinematic distributions at
√
s = 5.02 TeV for (a) pℓT and (b) mT

and
√
s = 13 TeV for (c) pℓT and (d) mT for W -boson mass of mW = 80399 MeV. The ratio panels

represent the relative effect of varying the mW parameter by ±100 MeV in all the categories.
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6.4 Propagation of uncertainties in mW

The main sources of uncertainties affecting the pℓT and mT distributions are the lepton energy

calibration and the recoil calibration. The lepton momentum corrections are obtained using Z →

ℓℓ resonance and measuring its mass, mZ . The recoil response is calibrated using the expected

momentum balance between uT and pℓℓT . The tag-and-probe method is implemented for the lepton

identification and reconstruction efficiency corrections. After the corrections, a precision of O(10−4)

in the energy and momentum scale for electrons and muons is obtained while the response and

resolution of the hadronic recoil, uT , is determined with a few percent precision.

6.4.1 Uncertainty propagation

The methodology for evaluating and managing the systematic uncertainties in the W -boson mass,

mW , and width measurement, ΓW , involves varying the calibration model parameters within their

known uncertainties and generating templates for these variations. Principal Component Analysis

(PCA) is employed to transform these variations into a set of uncorrelated, two-sided uncertainties,

allowing for a streamlined and efficient representation of uncertainties. This approach aids in a

more precise and accurate determination of the W -boson’s properties by effectively handling and

minimizing the impact of systematic uncertainties on the analysis.

Due to the finite size of the MC samples, a smoothing process is applied to the systematic vari-

ations to remove statistical fluctuations. This step is important for ensuring that the uncertainty

estimates accurately reflect true systematic effects rather than random noise or sample size limita-

tions. The smoothing process helps in maintaining the integrity of the measurement by focusing on

genuine systematic trends and minimizing the impact of statistical anomalies on the final results.

6.4.2 Sources of uncertainties at 7 TeV

The sources of uncertainties comes from electrons, muons and hadronic recoil mainly. For electrons,

the sources considered are the electron calibration and selection efficiencies including the energy

scale and resolution as well as the electron identification, isolation, and trigger efficiencies that
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correspond to 75 sources on pℓT and 58 in mT . From which 23 are originated from the energy

calibration while 52 in pℓT and 35 in mT comes from the trigger, reconstruction, identification and

isolation efficiencies. In the case of the muons, the muon response and efficiencies contribute to 83

sources in pℓT and 76 sources in mT . The calibration of the hadronic recoils leads to 36 sources of

systematic uncertainties for the mT distributions, but only 7 sources for the pℓT distributions since

the impact on the pℓT are only due to the hadronic recoil requirement in the signal selection.

6.4.3 Sources of uncertainties at low pile-up

Several sources of experimental, background, and luminosity uncertainties are considered. For

electron reconstruction and calibration, scale factors (SFs) are measured from high pile-up and ex-

trapolated to low pile-up regimes and applied to datasets at 5.02 and 13 TeV. Identification SFs are

measured in-situ using Z boson samples. Isolation and trigger efficiency SFs are measured in-situ

using combined low pile-up datasets. Uncertainties in electron SFs include statistical uncertainties

from limited tag-and-probe pairs and systematic uncertainties dominated by photon and background

control performance. Electron energy scale and resolution corrections are derived from Z events

using standard ATLAS procedures. For muon reconstruction and calibration, reconstruction SFs

are extrapolated from high pile-up measurements, and trigger, isolation, and track-to-vertex associ-

ation SFs are measured in-situ using low pile-up data. Muon SF uncertainties consist of statistical

uncertainties from the tag-and-probe method and systematic uncertainties mainly from background

subtraction and selection criteria variations. The momentum scale and resolution are derived from

high pile-up data and sagitta bias corrections from 2017 low pile-up datasets.

The hadronic recoil calibration addresses mis-modelling of underlying events, recoil direction,

and recoil response and resolution. The uncertainties arise from the non-closure in the extrapolation

of the calibration from Z events to W events, and from statistical uncertainties in the response and

resolution corrections. Background cross-section uncertainties for simulated top-quark-related and

di-boson backgrounds are generally set at 10%, with 7% for the tt̄ process, and Z-boson, charge flip,

and W -boson to tau-neutrino decay backgrounds have a conservative 5% cross-section uncertainty.

Luminosity uncertainties are 1.0% for 5 TeV and 0.92% for 13 TeV, determined from LUCID-2
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detector measurements and complementary measurements from the ID and calorimeters. Finally,

the multijet background is estimated using the data-driven method.

6.4.4 Physics corrections and uncertainties

Two physics corrections are considered, electroweak (EW) and QCD uncertainties. The dominant

uncertainty in the EW is the QED Final State Radiation (FSR) that is modelled with Photos.

The Initial State Radiation (ISR) is included in the parton shower modelled with Pythia8. The

remaining non-modelled EW effects are introduced as systematic uncertainties evaluated at detector

level whose variations are obtained by applying detector response and efficiency migration matrices

derived from samples of simulated signal events.

To improve the data-to-simulation agreement, the higher-order QCD corrections are accounted

by reweighting the rapidity, transverse momentum and decay distributions of the simulated W− and

Z−boson samples. The differential cross section as a function of the boson rapidity, dσ(y)/dy, and

the angular coefficients, Ai, are calculated at O(α2
s) in fixed-order QCD. The transverse-momentum

spectrum at a given rapidity, dσ(pT , y)/(dpT dy) · (dσ(y)/dy)−1, is modelled using the Pythia8

MC generator, with parameters adjusted to reproduce the measured Z−boson pT distribution at
√
s = 7 TeV. The resulting tune, called AZ in the following, predicts W -boson pT distributions that

agree with measurements at
√
s = 5 and 13 TeV.

For the PDFs, the uncertainties are calculated for CT10, CT14, CT18, CT18A, MMHT2014,

MSHT20, NNPDF3.1, NNPDF4.0 and ATLASpdf21 sets using the Hessian method. In which each

eigenvector of the PDF fit covariance matrix defines a pair of PDF uncertainty variations and a

corresponding nuisance parameter in the PLH fit.

The initial-state charm and bottom quark masses affect the pT spectrum, and the corresponding

uncertainties have been estimated by varying their respective masses by ±0.5 GeV and ±0.8 GeV,

respectively. Uncertainties in the shower evolution are parameterised through variations of the

factorisation scale, µF, by factors of 0.5 and 2.0 with respect to the central choice µ2
F = p2

T,0 + p2
T ,

where pT,0 is an infrared cut-off, and pT is the evolution variable of the parton shower. The variations

are applied independently to the light-quark, charm-quark and bottom-quark-induced processes, and
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are propagated considering only the relative impact on the pWT and pZT distributions.

The angular coefficients A0–A7 NNLO predictions are validated by comparing to the correspond-

ing measured values in Z-boson production. The Z-boson data uncertainties are propagated to the

W -boson predictions, which assumes that NNLO predictions have similar accuracy for the W and

Z boson processes, and are validated within the experimental precision of the Z-boson data. The

observed disagreement between data and prediction for the A2 coefficient is taken as additional

uncertainty. Similarly to some experimental uncertainties, random angular coefficient variations

are treated with a PCA to produce uncorrelated two-sided uncertainties.

6.5 Fitting strategy for the W boson mass and width

A global profile likelihood fit in all event categories described in Tables 6.2 and 6.3 is considered.

The implemented likelihood function is given by Eq. (4.15) with probability model,

νji
(
θ⃗, α⃗

)
= Φ ×

[
Snom
ji +

∑
p

θp ×
(
S
θp

ji − Snom
ji

)]

+
∑
s

αs ×
(
Ssji − Snom

ji

)
+Bnom

ji +
∑
b

αb ×
(
Bb
ji −Bnom

ji

)
,

(6.16)

where Φ is an overall, unconstrained normalisation factor ensuring that the total W± signal rate

always adjusts to the number of events in data, Snom
ji and Bnom

ji are the nominal distributions of

signal and background, respectively, while s and b represent nuisance parameters acting on signal

and background contributions. The multijet is considered as a background sample next to the

electroweak, top, etc.

The fit ranges for mW and ΓW are 30 < pℓT < 50 GeV and 60 < mT < 100 GeV and the baseline

results at 7 TeV rely on a numerical minimization of the likelihood (4.15). While studies as the

decomposition of uncertainties, fit range variations, and to estimate the correlation between the mT

and pℓT fits, the following assumptions are made: In the limit where all uncertainties are Gaussian and

the dependence of νji(θ⃗, α⃗) on θ⃗ and α⃗ is linear, the likelihood can be written as shown in Eq. (4.19)

210



Table 6.5: Best-fit value of mW , total and PDF uncertainties, in MeV, and goodness-of-fit for the
pℓT and mT distributions For different PDF sets. Each fit uses 14 event categories with 40 bins, for
558 degrees of freedom.

pℓT fit mT fit
PDF set mW σtot σPDF χ2/n.d.f. mW σtot σPDF χ2/n.d.f.
CT14 80358.3 +16.1

−16.2 4.6 543.3/558 80401.3 +24.3
−24.5 11.6 557.4/558

CT18 80362.0 +16.2
−16.2 4.9 529.7/558 80394.9 +24.3

−24.5 11.7 549.2/558
CT18A 80353.2 +15.9

−15.8 4.7 525.3/558 80384.8 +23.5
−23.8 10.9 548.4/558

MMHT2014 80361.6 +16.0
−16.0 4.5 539.8/558 80399.1 +23.2

−23.5 10.0 561.5/558
MSHT20 80359.0 +13.8

−15.4 4.3 550.2/558 80391.4 +23.6
−24.1 10.0 557.3/558

ATLASpdf21 80362.1 +16.9
−16.9 4.2 526.9/558 80405.5 +28.2

−27.7 13.2 544.9/558
NNPDF31 80347.5 +15.2

−15.7 4.8 523.1/558 80368.9 +22.7
−22.9 9.7 556.6/558

NNPDF40 80343.7 +15.0
−15.0 4.2 539.2/558 80363.1 +21.4

−22.1 7.7 558.8/558

and the minimization and uncertainty estimation can be performed analytically as described in

section 4.3 and in [128]. For the low pile-up the baseline results rely in the full analytical solution

as well as the uncertainty decomposition where an extensive numerical validation was carried out

using HistFactory [176]. Similarly, for the combination between the 7 TeV and low pile-up, the

results are considered in the Gaussian limit.

6.6 mW measurement at
√
s = 7 TeV

6.6.1 Fit results for mW

Fits are performed in the two observables, pℓT and mT , independently since they are projection of

the same data and due to the PCA treatment over some systematic uncertainties, different sets of

nuisance parameters for the two distributions arise and a dedicated study on their correlations is

needed. Fit results for different PDF sets are shown in Table 6.5 with a good fit quality and CT18

result being the baseline. The best-fit values of mW for different PDF sets span a range of about

18 MeV for the pℓT fits, and about 42 MeV for the mT fits. Where the lowest fit values are obtained

from NNPDF3.1 and NNPDF4.0. Without those PDFs, the spanned values are aound 9 MeV for

pℓT and about 21 MeV for the mT . The influence of the size of the initial PDF uncertainties on

the best-fit values is studied in Fig. 6.5, where the fits are repeated with pre-fit PDF uncertainties
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scaled by factors 1–3. Enlarged uncertainties allow the models to better adapt to the data, resulting

in a reduced PDF model dependence. This shows that for factors of 2 and above, the residual of

the model dependence is below 5 MeV and 25 MeV for pℓT and mT , respectively. This results in an

increased uncertainty by less than 1.5 MeV.

Figure 6.5: Variation of the fitted value of mW with the PDF set used in the fit, for different scalings
of the pre-fit PDF uncertainties. The reference value is defined by the CT18 PDF set.

The compatibility of the results for mW in the different measurement categories has been verified

by repeating the fit assuming independent parameters of interest in each category with independent

systematic sources as shown in Fig. 6.6. The case with shared systematic sources among the

categories is shown in Fig. 6.7 where small differences with respect to the baseline fit are found.

The dependence of the fit result on the pℓT and mT ranges used for the fit is shown in Fig. 6.8,

with good stability. The post-fit, |η|-inclusive pℓT distributions obtained with CT18 are shown in

Fig. 6.9, and agree with the data within the uncertainties.

The ten nuisance parameters that induce the largest shift of mW in fits to the pℓT and mT

distributions are shown in Fig. 6.10 as well as their pulls. The main sources that generates a shift

in mW are those related to electron and muon calibration, to the charm-induced production for the

pWT description, to the specific eigenvectors (EV) of the CT18 PDF set, and to missing higher-order

electroweak corrections.
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(a) (b)

Figure 6.6: Overview of the mW PLH fit results in all categories for the (a) pℓT and the (b) mT

distributions, with the CT18 PDF set. The points labelled as "Combination" correspond to the
result of a joint PLH fit to all categories.
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Figure 6.7: Overview of the mW PLH fit results in all categories for the (a) pℓT and the (b) mT

distributions, with the CT18 PDF set. Each category takes into account an independent POI for
mW with shared systematics between the fits, this means 14 mW fitted. The points labelled as Joint
fit is the Joint PLH fit of all categories with one single mW .
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(a) (b)

Figure 6.8: Dependence of the variation ∆mW of the fitted W-boson mass on the range of the (a)
pℓT and (b) mT distributions. The nominal ranges are 30 < pℓT < 50 GeV and 60 < mT < 100 GeV,
respectively. The outer dashed lines indicate the total measurement uncertainty for the nominal
range. Results are shown for the combined fit over all categories, and for the CT18 PDF set.

Combination

The two observable distributions, pℓT and mT , are projection of the same data and by consequence

to perform a single measurement of mW a detailed correlation study should be carried out. The

correlation between the final pℓT− and mT−based results for mW is computed from an ensemble of fit

results obtained by fluctuating the data and the most probable values of the nuisance parameters

within their respective uncertainties. Once the correlation is obtained, the final combination is

performed using the BLUE approach as described in [177]. The result for all PDF sets are shown

in Table 6.6 where pℓT has the larger weight and by consequence dominates the final result. The

CT18 combined mW result is given by,

mW = 80366.5 ± 9.8 (stat.) ± 12.5 (syst.) MeV = 80366.5 ± 15.9 MeV,

where the first uncertainty component is statistical and the second corresponds to the total system-

atic uncertainties and the post-fit uncertainty decomposition is performed according to Ref. [128]

and shown in Table 6.7. From here, the statistical component corresponds to about 10 MeV that is

larger than the 6 MeV result obtained from statistical only fits in which all the nuisance parameters
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(a) (b)

(c) (d)

Figure 6.9: Post-fit distributions of pℓT with data and MC for (a) W+ → e+νe, (b) W− → e−νe, (c)
W+ → µ+νµ and (d) W− → µ−νµ, inclusive over all η regions, and using the CT18 PDF set. In the
bottom panels, the black points represent the post-fit ratio of data-to-simulation, while the gray
color points indicate the ratio before the fit. The hatched band represents the total uncertainty of
the data.
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Figure 6.10: The ten nuisance parameters inducing the largest shifts on the fitted value of mW in
the combined PLH fits, using the (a) pℓT and the (b) mT distributions and the CT18 PDF set. For a
given NP α, the shift is defined as the product of its post-fit value α̂ and its pre-fit impact on mW .

are fixed to their best-fit values. This difference reflects the larger number of parameters determined

from the same data. The total systematic uncertainty contributes about 13 MeV and is dominated

by PDF uncertainties, missing higher-order electroweak corrections, and electron and muon calibra-

tion uncertainties. The systematic uncertainty components show smaller values compared to the

systematic impacts conventionally reported from the PLH fits1.

Table 6.6: Uncertainty correlation between the pℓT andmT fits, combination weights and combination
results for mW and the indicated PDF sets.

PDF set Correlation weight (pℓT ) weight (mT ) Combined mW [MeV]
CT14 52.2% 88% 12% 80363.6 ± 15.9
CT18 50.4% 86% 14% 80366.5 ± 15.9
CT18A 53.4% 88% 12% 80357.2 ± 15.6
MMHT2014 56.0% 88% 12% 80366.2 ± 15.8
MSHT20 57.6% 97% 3% 80359.3 ± 14.6
ATLASpdf21 42.8% 87% 13% 80367.6 ± 16.6
NNPDF3.1 56.8% 89% 11% 80349.6 ± 15.3
NNPDF4.0 59.5% 90% 10% 80345.6 ± 14.9

1Impacts are obtained from the quadratic subtraction between the total fit uncertainty and the uncertainty of a
fit with selected nuisance parameters removed and overestimate the genuine systematic uncertainty.
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Table 6.7: Uncertainty components for the pℓT , mT and combined mW measurements using the
CT18 PDF set. The first columns give the total, statistical and overall systematic uncertainty in
the measurements. The following columns show the contributions of modelling and experimental
systematic uncertainties, grouped into categories.

Unc. [MeV] Total Stat. Syst. PDF Ai Backg. EW e µ uT Lumi ΓW pWT
pℓT 16.2 11.1 11.8 4.9 3.5 1.7 5.6 5.9 5.4 0.9 1.1 0.1 1.5
mT 24.4 11.4 21.6 11.7 4.7 4.1 4.9 6.7 6.0 11.4 2.5 0.2 7.0
Combined 15.9 9.8 12.5 5.7 3.7 2.0 5.4 6.0 5.4 2.3 1.3 0.1 2.3

Fig. 6.11a illustrates the compatibility of the W -boson mass using CT18 PDF set with respect to

the Standard Model expectation and previous measurements. Fig. 6.11b show the two-dimensional

68% and 95% confidence limits for the mW and mt predictions obtained from the Standard Model

electroweak fit and the comparison to the present measurement of mW and to the combined value

of the LHC top-quark mass determinations at 7 and 8 TeV [178].

(a) (b)

Figure 6.11: (a) Present measured value of mW , compared to SM prediction from the global elec-
troweak fit [83], and to the measurements of LEP [80], Tevatron [179, 180] and the LHC [76, 77].
(b) The 68% and 95% confidence level contours of the mW and mt indirect determinations from the
global electroweak fit [31], compared to the 68% and 95% confidence-level contours of the present
ATLAS measurement of mW , the ATLAS measurement of mH [181] and the LHC measurement of
mt [178].

6.6.2 Fit results for ΓW

Similarly to the mW fits, the ΓW result is obtained by fitting the two observables pℓT and mT inde-

pendently with mW treated as a nuisance parameter and CT18 being the baseline PDF set. Results
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for all PDF sets are shown in Table 6.8 where a good fit quality is obtained. The PDF dependence

of the fit result is weaker than for mW , and all central values are well within the uncertainties ob-

tained with CT18. The compatibility of ΓW for each category including all systematic uncertainties

for the CT18 PDF set are shown in Fig. 6.12 yielding to the total values of ΓW = 2221+68
−76 MeV

and ΓW = 2200+47
−48 MeV for pℓT and mT distributions, respectively. Good agreement between the

categories can be observed. Similarly to mW , the dependence of the fit result on the pℓT and mT

ranges is studied as shown in Fig. 6.13 where stable results are found.

Table 6.8: Best-fit value of ΓW , total and PDF uncertainties, in MeV, and goodness-of-fit for the
pℓT and mT distributions and the PDF sets. Each fit uses 14 event categories with 40 bins, for 558
degrees of freedom.

pℓT fit mT fit
PDF set ΓW σtot σPDF χ2/n.d.f. ΓW σtot σPDF χ2/n.d.f.
CT14 2228 +67

−83 24 550.0/558 2202 +48
−48 5 556.8/558

CT18 2221 +68
−76 21 534.5/558 2200 +47

−48 5 548.8/558
CT18A 2207 +68

−75 18 533.0/558 2181 +47
−48 5 550.6/558

MMHT2014 2155 +71
−78 19 546.0/558 2186 +48

−48 5 562.2/558
MSHT20 2206 +66

−79 15 556.5/558 2179 +47
−48 4 559.4/558

ATLASpdf21 2213 +67
−73 18 531.3/558 2190 +47

−48 6 545.6/558
NNPDF31 2203 +65

−78 20 531.7/558 2180 +47
−47 6 560.4/558

NNPDF40 2182 +69
−68 12 550.5/558 2184 +47

−47 4 564.0/558

For the uncertainty decomposition study, the same approach as for mW was implemented with

results shown in Table 6.9 where the largest contributions are coming from systematics sources

mainly for pℓT while for mT both statistical and systematic components are almost of the same

magnitude. The uncertainties components show a dominant effect of the parton shower modelling

for pℓT while for mT , the lepton and recoil performance have the largest impact.

Table 6.9: Uncertainty components for the pℓT , mT and combined ΓW measurements using the
CT18 PDF set. The first columns give the total, statistical and overall systematic uncertainty in
the measurements. The following columns show the contributions of modelling and experimental
systematic uncertainties, grouped into categories.

Unc. [MeV] Total Stat. Syst. PDF Ai Backg. EW e µ uT Lumi mW pWT
pℓT 72 27 66 21 14 10 5 13 12 12 10 6 55
mT 48 36 32 5 7 10 3 13 9 18 9 6 12
Combined 47 32 34 7 8 9 3 13 9 17 9 6 18
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(a) (b)

Figure 6.12: Overview of the ΓW PLH fit results in all categories for the (a) pℓT and (b) mT

distributions, with the CT18 PDF set. The points labelled as ‘Combination’ correspond to the
result of a joint PLH fit to all categories.

(a) (b)

Figure 6.13: Dependence of the variation ∆ΓW of the fitted W -boson width on the of the (a) pℓT
and (b) mT distributions. The nominal ranges are 30 < pℓT < 50 GeV and 60 < mT < 100 GeV,
respectively. The outer dashed lines indicate the total measurement uncertainty for the nominal
range. Results are shown for the combined fit over all categories, and for the CT18 PDF set.
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An overview of selected pre- and post-fit distributions of mT is shown in Fig. 6.14, where a

general better agreement can be observed for the post-fit case. The post-fit distributions use the

final measured value of ΓW .

(a) (b)

(c) (d)

Figure 6.14: Post-fit distributions of mT with data and MC for (a) W+ → e+νe, (b) W− → e−νe,
(c) W+ → µ+νµ and (d) W− → µ−νµ, inclusive over all η regions, and using the CT18 PDF set. In
the bottom panels, the black points represent the post-fit ratio of data-to-simulation, while the gray
color points indicate the ratio before the fit. The hatched band represents the total uncertainty of
the data.

The ten nuisance parameters that induce the largest shift in ΓW for pℓT and mT are shown in

Fig. 6.15. These are related to the multijet (MJ) background, to the lepton calibration, to specific

eigenvectors of the CT18 PDF set, to the luminosity, and to the uncertainty in charm-induced

production for the pWT description.
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Figure 6.15: The ten nuisance parameters inducing the largest shifts on the fitted value of ΓW in
the combined PLH fits, using the (a) pℓT and (b) mT distributions and the CT18 PDF set. For a
given NP α, the shift is defined as the product of its post-fit value α̂ and its pre-fit impact on ΓW .

Combination

As formW , the final ΓW result is obtained by the BLUE combination [177] of pℓT andmT distributions

as shown in Table 6.10 for all PDF sets that in this case, mT has the larger weight dominating the

final result. For CT18, the final ΓW is given by,

ΓW = 2202 ± 32 (stat.) ± 34 (syst.) MeV = 2202 ± 47 MeV,

where the first uncertainty component is statistical and the second corresponds to the total sys-

tematic uncertainties. Fig. 6.16a shows the compatibility of the measured ΓW value with the SM

expectation and selected previous measurements.

6.6.3 Simultaneous fit of mW and ΓW

The previous results were obtained by considering one floating parameter of interest (mW or ΓW )

while the other is treated as a nuisance parameter with its SM value. To study the interplay of
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Table 6.10: Uncertainty correlation between the pℓT and mT fits, combination weights and combi-
nation results for ΓW and the indicated PDF sets.

PDF set Correlation weight (mT ) weight (pℓT ) Combined ΓW [MeV]
CT14 50.3% 88% 12% 2204 ± 47
CT18 51.5% 87% 13% 2202 ± 47
CT18A 50.0% 86% 14% 2184 ± 47
MMHT2014 50.8% 88% 13% 2182 ± 47
MSHT20 53.6% 89% 11% 2181 ± 47
ATLASpdf21 49.5% 84% 16% 2193 ± 46
NNPDF31 49.9% 86% 14% 2182 ± 46
NNPDF40 51.4% 85% 15% 2184 ± 46

the PLH fit between the two parameters, a 2 POI simultaneous fit is performed. The fit yields

values of mW = 80351.8 ± 16.7 MeV and ΓW = 2216 ± 73 MeV for the plT distributions and mW =

80369.4 ± 26.8 MeV and ΓW = 2186 ± 53 MeV for the mT distributions using the CT18 PDF set.

The final combination is performed using the total post-fit covariance matrices of the independent

fits and the post-fit covariance matrices between the fits as described on Ref. [128]. For the CT18

PDF set, the combination yields values of

mW = 80354.8 ± 16.1 MeV

ΓW = 2198 ± 49 MeV

with a correlation of −30%. Fig. 6.16b shows the 68% and 95% CL uncertainty contours.
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(a) (b)

Figure 6.16: (a) Present measurement of ΓW , compared to the SM prediction from the global
electroweak fit [83], and to the measurements of LEP [80] and Tevatron [182]. (b) 68% and 95%
CL uncertainty contours for the simultaneous determination of mW and ΓW using the CT18 PDF
set and combining results from the pℓT and mT distributions. The triangular marker represents the
best fit, while the star corresponds to the SM prediction of Ref. [83].

6.7 Prospects of the low pile-up fit at
√
s = 5 and 13 TeV

The following section is focused on the W -boson mass measurement using the low pile-up dataset

at the centre-of-mass energy of 5.02 TeV and 13 TeV. Contrary to the 7 TeV analysis, the trans-

verse momentum of the W boson (pWT ) has not been determined by extrapolating the Z boson

transverse momentum. In this case, this distribution was measured directly from the low pile-up

dataset allowing a granularity of about 7 GeV in pWT and a final precision at the level of 1−2% [75].

Ref. [75] shows that the pWT distribution model derived using 7 TeV data fails at
√
s = 5 and 13 TeV.

Therefore using the measured pWT distribution at these energies has the double advantage of pre-

dicting a spectrum that is unbiased by construction, and of potentially reducing the corresponding

uncertainties. These results have been implemented in the following studies. Given its importance

for the measurement of mW , a detailed bibliographical description is given subsection 6.7.1 and

Ref. [183].

At the time of writing this work, electron calibration uncertainties are finalized. Muon calibration

uncertainties are about to be implemented based on the studies of chapter 5. Electroweak corrections

and QCD predictions (PDFs and spin correlations) are the major subject of study.
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6.7.1 Modelling of the W -boson’s transverse momentum

In the mW determination, one of the implemented observables is the lepton transverse momentum

spectrum, pℓT , that is strongly dependent in the W boson transverse momentum (pWT ) modelling.

For that reason, a precise knowledge in pWT is required for a controlled uncertainty in this systematic

source that requires a good precision of around 1% for low values of pWT < 20 − 30 GeV.

In section 6.6, the pWT distribution is modelled by extrapolating the experimentally measured

transverse momentum spectrum of the Z-boson. This spectrum is used to tune the Pythia parton

shower, and the tuning parameters carry an experimental uncertainty that propagates to the pWT

modelling, together with PDF uncertainties, the mass of the charm and bottom quarks and high-

order QCD correction. The modelling of this distribution is one of the largest sources of uncertainty

in the analysis.

From these sources, the variations of the masses of the charm and bottom quarks show a small

impact in the determination of mW while the high-order QCD needs to be treated carefully. In

particular, the missing higher-order QCD corrections to the parton shower are estimated by the

variations of the factorization scale (µF ) for QCD ISR. However, the QCD scales variations only

provide an approximate size of the missing higher-order effect without an insured coverage and

moreover, the variations do not offer an indication of the uncertainties correlation among the dis-

tributions.

For these reasons, it is worth to perform a direct measurement of the pWT spectrum directly

from the data instead of extrapolating the pZT . This will avoid uncertainties due to the QCD scale

variations.

6.7.1.1 Methodology

Due to the neutrino involved in the decay, the pWT cannot be inferred directly in the transverse

plane. To determine it, the hadronic recoil, uT , needs to be used, which originates with a non-zero

component due to the QCD ISR. The pWT measurement corresponds to a direct measurement of

the differential Drell-Yan cross-section in W → ℓν decays. However, the detector effects introduce

bias and smearing into the measurement of pWT through the hadronic recoil. To achieve a precise
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measurement, it is essential to correct for detector effects such as detector response, limited detector

acceptance, object reconstruction efficiency, and finite detector resolution. The true pWT spectrum

can be obtained from the response of the detector by an unfolding procedure.

Results are reported in a fiducial region close to the event selection criteria outlined in sub-

section 6.2.1, minimizing the need for extrapolation. This is done for electrons, muons and their

combination with the selection criteria:

W → ℓν : pℓT > 25 GeV, |ηℓ| < 2.5, pνT > 25 GeV, mT > 50 GeV.

with binning in uT and pT ,

• uT is chosen in three intervals, uT ∈ [1, 100] GeV, [100, 200] GeV and [200, 600] GeV with 1, 5

and 10 GeV bin size, respectively.

• pT at 5.02 TeV is divided in the following categories [0, 7, 14, 21, 28, 35, 42, 49, 56, 63, 77,

92, 115, 145, 175, 220] GeV.

• pT at 13 TeV is divided in the following categories [0, 7, 14, 21, 28, 35, 42, 49, 56, 63, 77, 92,

115, 145, 175, 220, 310, 600] GeV.

To determine the pWT spectrum at the truth-level with uT at the reco-level the following is considered:

an observed distribution, Di, can be seen as the product of a true distribution, Tj, with a detector

response matrix, Rik (including efficiency and resolution effects), such that,

Di =
∑
j

RijTj. (6.17)

Were i runs over uT and j over pT . The unfolding implies that Eq. (6.17) can be inverted to get

an estimate of the true distribution T . This is done using the observed distribution from data, and

the response matrix from simulation plus corrections. Then,

Tj =
∑
i

R−1
ji Di. (6.18)
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The response matrix Rij can be derived from the conditional probability of observing a reconstructed

value of uT in bin i and a given truth value of pWT in bin j as,

Rij = Mijϵj, (6.19)

where Mij is the migration matrix and ϵj is the efficiency. Mij represents the migration from pWT at

the truth-level to uT at the reco-level and is given by,

Mij = Nij∑
kNkj

, (6.20)

where Nij is the number of events in uT bin i and pWT bin j and is normalized to unity in each truth

bin j. The efficiency, ϵj, of reconstructing a truth level signal, in bin j is computed as,

ϵj =
N reco&gen
j

Ngen
j

=
∑
iNij

Ngen
j

, (6.21)

where N reco&gen
j refers to the events in the j−bin of pWT passing the fiducial and reconstructed-level

selection and Ngen
j is the number of events passing the fiducial selection. To account for the presence

of background, Bj, after the reconstructed level cuts. Eq. (6.17) can be extended as,

Di =
∑
j

RijTj +Bi, (6.22)

and the unfolded is given by,

Tj =
∑
i

R−1
ji (Di −Bi). (6.23)

In general, the inversion of R is not well defined. If R is strongly non-diagonal (large resolution

effects), instabilities could appear in this process and a regularization procedure needs to be applied

to tame the fluctuations in T . In this work, pWT is the same as in Ref. [75] and R is determined by

the iterative Bayesian regularized unfolding approach with the implementation of the D’Agostini

iterative scheme [184, 185]. Since events beyond the fiducial selection can be reconstructed, an

additional correction of purity has to be applied to the reconstructed level distribution in the
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unfolding. Then Eq. (6.23) is given by,

Tj =
∑
i

R−1
ji (Di −Bi)pi. (6.24)

where pi is the purity correction given by,

pi = N reco&gen
i

N reco
i

=
∑
kNik

N reco
i

. (6.25)

From Eq. (6.24) the following sources of uncertainties can be identified, data statistics coming

from D matrix at the reco level. In this, the data is fluctuated using bootstrap such that the

spread of the distributions are associated to the data statistics. The MC statistics coming from the

unfolding, R−1, is originated from the fluctuation of the migration matrix, purity and efficiency via

bootstrap, such that the spread of the distribution is considered to be the MC uncertainty. For the

experimental systematic, the systematic variation is applied to the unfolding transformation Uij,

including migration matrix, efficiency correction and purity correction. After that, the change in

the unfolded spectrum is taken to be the experimental systematic of the given source. Finally, the

background uncertainty is estimated from B at the reconstructed level by varying according to the

relevant systematics. The change in the unfolded spectrum is then the background systematic of

source under study.

6.7.1.2 pWT reweighting and bias uncertainties

In general, if the pWT modelling in the simulation is inaccurate, it can cause significant discrepancies

between the data and the simulation. This, can lead to a percent-level bias in the unfolding strategy,

introducing a source of uncertainty at the unfolded level. To avoid this and to ensure a better data-

to-simulation agreement on the reconstructed uT distribution, a reweighting of the simulation is

carried out. This reweighting is performed using a pWT function whose form can be obtained by
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minimizing the following χ2,

χ2 =
∑
ij

∆iC
−1
ij ∆j,

∆i = (Di −Bi) +
∑
j

Rij ×
(
wT

(
pWT
))

j
,

(6.26)

where Cij is the total covariance matrix at the reconstructed level. A satisfactory data-to-simulation

agreement is achieved using the following form for wT
(
pWT
)
,

wT
(
pWT
)

= N ×
[
1 + a · pWT + b ·

(
pWT
)2
]

·
[
1 − c+ c · rNNPDF/CT10

(
pWT
)]
, (6.27)

where a, b, c, N are parameters to be fitted and rNNPDF/CT10(pWT ) represents the correction in the

full phase space, from the default PDF set (CT10) used in the Powheg samples to a different

PDF set (NNPDF3.0). This quantity is estimated using DYTurbo in the range pWT ∈ [0, 100] GeV

and for pWT > 100 GeV the correction value is frozen at the 100 GeV value. To determine the

parametrization uncertainty of Eq. (6.27), the reweighting procedure is repeated using different

functions for wT
(
pWT
)
. Only those functions that provide a good data-to-simulation agreement

(good χ2) of uT at the reconstructed level are kept as a variation of the parametrization.

The uncertainty in the (pWT , y) distribution in simulation is obtained from a reweighting of pT .

The nominal MC is reweighted in 2D to the possible alternative prediction of (pWT , y) varying between

different functions to asses the best data-to-simulation agreement in uT at the reconstructed level.

At the end, the best data-to-simulation agreement is obtained by choosing DYTurboCT10 as

proxy of initial (pWT , y) uncertainty variation at 13 TeV and DYTurboNNPDF3.0 for all 5.02 TeV

channels. These variations are injected into the probability model for template morphing, and nine

nuisance parameters (NPs) are assigned to the pWT systematics per boson charge and centre-of-mass

energy. Despite this detailed method, the approach has limitations, such as ignoring correlations

between boson pT and rapidity and not fully accounting for recoil calibration uncertainties.

A dedicated study of the pWT and pZT precise measurement at
√
s = 5 and 13 TeV is presented in

Reference [183] in which the optimization of the iterative Bayesian unfolding is largely discussed.
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An alternative method to derive a model for the pWT distribution would be to include the recoil

distributions, uT , in the W mass fitting procedure. This would yield a simultaneous determination

of mW and pWT .

After reweighting, the detector-level distributions for mT and pℓT at 5.02 TeV (13 TeV) are shown

in Fig. 6.17 and Fig. 6.18 (Fig. 6.19 and Fig. 6.20), respectively. Where the MC predictions are

normalised to the integral of the data distribution. The grey band in ratio panels represents total

systematic uncertainty, while the brown band includes small statistical uncertainties from the MC

simulation. The systematic uncertainty is normalized to the data integral and excludes luminosity

and alternative simulation uncertainties from Sherpa. The χ2 per degree of freedom (χ2/dof) cal-

culation includes all uncertainties and accounts for bin-to-bin correlations in the covariance matrix.

Overall, a good data-to-simulation agreement across all kinematic distributions is found. However,

minor mismodellings are observed indicating the need for further work in areas such as muon cal-

ibration, electroweak and QCD corrections. These results show that low pile-up scenarios yield

higher quality signals with better-defined mT distributions, while high pile-up conditions result in

broader distributions with larger uncertainties as in the case of
√
s = 7 TeV.

6.7.2 Correlation studies for joint pℓ
T −mT fits

The low pile-up datasets share the same systematic sources, such that, it is possible to perform

a joint fit in the Gaussian limit by accounting for the statistical correlations in the statistical

covariance matrix and the systematic correlations in the systematic covariance matrix. To evaluate

the correlation between the two observables, pℓT and mT , the 2D distribution in the same category

is required. This means that only those distributions within the same uT and ηℓ categories are

correlated while for the others, the statistical correlation is zero.

To compute the covariance of the 2D distributions with non-trivial correlations, a set of pseudo-

experiments (toys) are performed by fluctuating the bin contents within the uncertainties for a given

number of toys (Ntoy). For each pseudo-experiment, the 2D distribution is projected in the pℓT and
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Figure 6.17: Transverse mass mT distribution of the W boson in the (a) W+ → e+νe, (b) W− →
e−ν̄e, (c) W+ → µ+νµ and (d) W− → µ−ν̄µ channels for the

√
s = 5.02 TeV dataset. The lower

panel displays the ratio of the data to the full prediction (black points), along with the prediction
uncertainties around 1. These uncertainties are shown as a dark band when excluding the MC
simulation statistical component and as a light band when including it. The prediction uncertainties
presented exclude those from the luminosity measurement and the alternative signal modeling.
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Figure 6.18: Lepton transverse momentum pT distribution of the W boson in the (a) W+ → e+νe,
(b) W− → e−ν̄e, (c) W+ → µ+νµ and (d) W− → µ−ν̄µ channels for the

√
s = 5.02 TeV dataset.

The lower panel displays the ratio of the data to the full prediction (black points), along with the
prediction uncertainties around 1. These uncertainties are shown as a dark band when excluding
the MC simulation statistical component and as a light band when including it. The prediction
uncertainties presented exclude those from the luminosity measurement and the alternative signal
modeling.
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Figure 6.19: Transverse mass mT distribution of the W boson in the (a) W+ → e+νe, (b) W− →
e−ν̄e, (c) W+ → µ+νµ and (d) W− → µ−ν̄µ channels for the

√
s = 13 TeV dataset. The lower

panel displays the ratio of the data to the full prediction (black points), along with the prediction
uncertainties around 1. These uncertainties are shown as a dark band when excluding the MC
simulation statistical component and as a light band when including it. The prediction uncertainties
presented exclude those from the luminosity measurement and the alternative signal modeling.
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Figure 6.20: Lepton transverse momentum pT distribution of the W boson in the (a) W+ → e+νe,
(b) W− → e−ν̄e, (c) W+ → µ+νµ and (d) W− → µ−ν̄µ channels for the

√
s = 13 TeV dataset.

The lower panel displays the ratio of the data to the full prediction (black points), along with the
prediction uncertainties around 1. These uncertainties are shown as a dark band when excluding
the MC simulation statistical component and as a light band when including it. The prediction
uncertainties presented exclude those from the luminosity measurement and the alternative signal
modeling.
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Figure 6.21: 2D distributions for (a) W → eν at 5.02 TeV and (b) W → µν at 13 TeV in the same
category.

mT axes and then, the covariance matrix element Cij can be obtained as,

C
pℓ

T −mT

ij = 1
Ntoy

Ntoy∑
k=1

(
p
ℓ,(i,k)
T − pℓ,iT

) (
m

(j,k)
T −mj

T

)
, (6.28)

where pℓ,(i,k)
T and m(j,k)

T are the content in the (i, j)−bin of the pℓT distribution in the kth−toy and pℓ,iT

and mj
T are the values of the original pℓT and mT distributions in the bin (i, j). Once this is done, the

correlation matrix is obtained from the covariance matrix. The 2D distributions in the electron and

muon channels at 5.02 TeV and 13 TeV are shown in Fig. 6.21. By bootstrapping the corresponding

distributions the correlation matrices can be constructed for the four channels at different centre-of-

mass energy (eight channels in total) as shown in Fig. 6.22. Each matrix is obtained by generating

5×104 pseudo-experiments to ensure the symmetry and positive semi-definiteness. Notice that those

matrices represent simplified versions and the total low pile-up correlation matrix that involves all

the channels and categories has dimension 6400 × 6400, i.e. 3200 bins coming from pℓT and 3200

bins from mT .

6.7.3 Fit results for mW

The fitting strategy in this case considers two overall normalization factors Φ, one to normalize

the signal at 5.02 TeV and one for the signal at 13 TeV. The fits are performed as an unrolled
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Figure 6.22: Correlation matrices generated with Ntoy = 5 × 104 pseudo-experiments for (a) W− →
e−ν̄e (b) W− → µ−ν̄µ channels at 5.02 TeV and (c) W− → e−ν̄e and (d) W− → µ−ν̄µ channels at
13 TeV.
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distribution of the 8 channels W± → e±ν, W± → µ±ν at 5 and 13 TeV for each observable, pℓT

and mT , and the joint fit taking into account the statistical correlations generated by bootstrap

toys. Contrary to the 7 TeV analysis, the dataset at low pile-up is blinded and the central value

of the fit is not crucial in the study. However, the interest lies in the potential precision that

can be reached in the future mW measurement. Additionally, it is important to understand the

uncertainty components of each fit and the contribution of each systematic source to the total

systematic uncertainty.

Results for each fit using all channels are shown in Table 6.11. The mT fit has a total uncertainty

of 16.2 MeV, precision that is comparable to the result obtained at 7 TeV. For pℓT , a total uncertainty

of 18.2 MeV is obtained that is larger than the 7 TeV pℓT result but smaller than the mT one. The

total joint fit allows to potentially reduce the total uncertainty reaching a value of 14.3 MeV that

is so far, the most precise value of mW with LHC dataset. This corresponds to an improvement of

11.7% in mT and 21.4% in pℓT in the low pile-up fit.

The statistical components for each observable, mT and pℓT , are 13.1 MeV and 14.7 MeV, respec-

tively. For the joint fit, the statistical component is further reduced to 12 MeV, which corresponds

to an improvement of 8.4% in mT and 18.4% in pℓT . Similarly, the systematic uncertainty for each

observable is 9.6 MeV for mT and 10.8 MeV for pℓT that is further constrained to 7.7 MeV, represent-

ing an improvement of 19.8% in mT and 28.7% in pℓT . This not only shows the power of the PLH fit

in constraining the systematic sources but also the statistical component. The implemented dataset

is still work in progress and by consequence the modelling needs further work. This is reflected in

the fit quality with χ2/n.d.f of about 1.1. However, for the final fit the precision is expected to

improve with a better fit quality.

The uncertainty decomposition for the systematic sources is showed in Table 6.12 for the single

observable fit (pℓT or mT ) and the joint fit. The sources of uncertainty are highly reduced as for

example the PDF, which represents about 30% and 37% reduction with respect to mT and pℓT ,

respectively. Similarly for the muon calibration which shows a reduction of about 30% and 35%

with respect to the single fits. In the case of pWT , the larger uncertainty comes from pℓT which is

more sensitive to the modelling of pWT but the joint fit allows the mT fit to dominate. This leads to
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a final result of 1.5 MeV which represent a reduction of 44% with respect to pℓT result.

The preliminary ranking plots for shift induced in the POI by the NPs and the uncertainty

decomposition are shown in Fig. 6.23. The shifts in the mW showed in Fig. 6.23a are obtained

using Eq. (4.43) that rely in a full analytical calculation. On the other hand, results in Fig. 6.23b

are ranked by the contribution of the systematic source to the total systematic uncertainty. These

contributions are obtained by fluctuating the NP global observable as described in Eq. (4.52). These

plots show that some nuisance parameters as the CT18A PDF EV are pulled considerably after the

fit, which is indicative of the work that remains.

Table 6.11: Fit results in MeV for mT , pℓT and joint fit at 5.02 TeV and 13 TeV. The first columns
represent the total uncertainty (σtotal), the statistical component (σstat) and the total systematic
(σsyst). The last column is the χ2/n.d.f of each fit.

Fit σtotal σstat σsyst χ2/n.d.f
mT 16.2 13.1 9.6 3469.8/3197
pℓT 18.2 14.7 10.8 3423.9/3197
Joint fit (pℓT , mT ) 14.3 12.0 7.7 6974.3/6397

Table 6.12: Uncertainty components for pℓT , mT and joint fit results for mW measurement using the
low pile-up dataset.

Unc. [MeV] mT pℓT Joint (pℓT , mT )
e−SF 2.3 2.2 1.3
e−calib. 6.5 6.7 5.3
µ−SF 2.4 3.3 2.0
µ−calib. 2.4 2.6 1.7
uT 2.5 2.5 2.4
Lumi 0.6 0.7 0.5
Backg. 2.0 3.1 2.1
pWT 1.5 2.7 1.5
PDF 4.6 5.1 3.2
σsyst 9.6 10.8 7.7

Reducing uncertainties and prospects

One of the objectives of the present work is to improve the muon calibration by implementing the

calibration procedure described in chapter 5. The procedure described has for objective to reduce

the uncertainty in the muon calibration as well as the sagitta bias uncertainty. Since these results
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Figure 6.23: Ranking plot for (a) largest shifts induced in the POI and (b) largest systematic
uncertainty component in mW for the joint fit (pℓT , mT ) with low pile-up dataset.
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are not currently applied in the presented low pile-up datasets a projection of the possible impact

into the mW uncertainty is carried out. For this, the sensitivity of these nuisance parameters to the

probability model is reduced by different scale factors. This means, the uncertainty in the muon

calibration and the uncertainty in the sagitta bias is reduced by factors 2, 3, 4 and 5. Results of the

expected total, statistical and total systematic uncertainty are shown in Fig. 6.24. These results

show a reduction in the total uncertainty of 1 MeV when the sensitivity in the muon calibration is

reduced by a factor of 5 (Fig. 6.24a).

Notice that contrary to a traditional fit, reducing the systematic uncertainty has not only effect in

the systematic component. Fig. 6.24b shows that the statistical component is reduced by 1.2 MeV.

On the other hand, the systematic component increases when the uncertainties are reduced up to

a factor 3 and then both components, σstat and σsyst, start to decrease. In a traditional fit, if the

systematic component is reduced by a given factor f , it might straightforwardly be expected,

σ2
total = σ2

stat + (σsyst/f)2 , (6.29)

but this is not the case in PLH fits since as described in Section 4.3, there is an interplay between

systematic sources. This means that each component of the POI uncertainty is directly affected by

the scale factor. Therefore, reducing the uncertainty in one systematic source can affect the con-

straints on other correlated systematic sources. For example, if the reduced systematic uncertainty

was previously providing an anti-correlation effect with another systematic source, reducing it can

lead to a less constrained total systematic uncertainty. Similarly, if some sources are directly affect

by a charge effect, the scale factor could has zero impact.

Results in Fig. 6.24 show an small effect in scaling the sagitta bias uncertainty. This is due to

the fact that the sagitta is a charge dependent effect and by consequence when performing a joint

fit, this benefits from the opposite charge cancellation. However, this cancellation is not perfect

since the number of W+ and W− candidates are not exactly the same, and by consequence, the

symmetry is broken. To know what is the effect of the scale factors in the uncertainty components a

similar study is performed only with the muon channels by electric charge as shown in Fig. 6.25. In
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Figure 6.24: Uncertainty components in mW for (a) total uncertainty, (b) statistical uncertainty
and (c) systematic uncertainty in W → eν and W → µν by reducing the muon calibration and
sagitta bias uncertainties in the joint fit (pℓT , mT ) at 5.02 + 13 TeV.
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Figure 6.25: Uncertainty components in the W± → µ±ν channel by scaling the sagitta bias uncer-
tainty for the joint 5.02 + 13 TeV for positive and negative electric charges.

fact, reducing the sagitta uncertainty leads to a reduction of about 4.5 MeV in the total uncertainty

and 5.2 MeV in the statistical component. In the case of the total systematic component, this

increases when the sensitivity is reduced by two and it starts to decrease for larger factors leading

to a maximum reduction of 0.25 MeV. Notice that these results also show that the effect in positive

and negative muons is not the same due to the fact that W+ and W− number of candidates are

not the same. Similar to the previous result, reducing a systematic source sensitivity produces an

impact on the statistical component with an overall reduction in the total uncertainty. Taking into

account that the global fit benefits from the charge cancellation this is not relevant for obtaining

the global mW value, however, it is for estimating the mass of W+ and W− independently in each

category.

6.8 Expected precision for mW at
√
s = 5.02, 7 and 13 TeV

Two independent studies have been carried out, the high pile-up at 7 TeV and the low pile-up

at 5.02 TeV and 13 TeV. Results at 7 TeV benefits from a high statistics compared to the low

pile-up. Meanwhile, the low pile-up benefits from a better resolution in the hadronic recoil and a

new pWT modelling that is unbiased by construction and that allows to reduce the corresponding
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uncertainties. To exploit the current ATLAS datasets, a single measurement at 5.02 + 7 + 13 TeV

is carried out through a joint fit. For this, the correlations among the datasets should be accounted

properly. As discussed in section 6.6, the pℓT and mT datasets at 7 TeV were prepared with different

PCA in some systematics sources, leading to different NPs for both distributions. For this reason a

joint fit is not straightforward. However, the studies showed that a pℓT −mT statistical combination

at 7 TeV is mainly dominated by pℓT and for that reason only this observable is considered to perform

a joint fit.

Since the pℓT high pile-up dataset and low pile-up datasets are from different data-taking periods

(Run 1 and Run 2), they are fully statistical uncorrelated and by consequence no bootstrap toys

are required. Nevertheless, the systematics sources need to be correlated. The common systematic

sources shared by the datasets are the parton distribution functions corresponding to the CT18A

PDF set with 29 eigen vectors (EV). Taking this into account and correlating only the systematic

sources, a joint fit in bin number
(
pℓT +mT

)5 + 13 TeV
+ pℓ, 7 TeV

T is performed.

Fit results are shown in Table 6.13 where a total uncertainty of 10.3 MeV is obtained. The main

constraining power comes from the statistical component with a reduction of 4 MeV and 1.2 MeV

in the total systematic uncertainty with respect to the low pile-up joint fit. This represents a

reduction of 28% in the total uncertainty, 33.3% in the statistical component and 15.6% in the total

systematic. Notice that the central value of the fit, mW , at 7 TeV is unblinded while the low pile-up

dataset is blinded. This leads to a bad quality fit that will be improved once all the systematic

sources are completed in the low pile-up analysis and the muon calibration is improved. The present

study is carried to study the prospects in precision.

Table 6.13: Fit results in MeV for mT , pℓT and joint fit at 5.02 TeV, 7 TeV and 13 TeV. The first
columns represent the mW value, total uncertainty (σtotal), the statistical component σstat and the
total systematic (σsyst). The last column is the χ2/n.d.f of each fit.

Fit σtotal σstat σsyst χ2/n.d.f
mT 16.2 13.1 9.6 3469.8/3197
pℓT 18.2 14.7 10.8 3423.9/3197
Joint fit: 5.02 + 13 TeV 14.3 12.0 7.7 6974.3/6397
Joint fit: 5.02 + 7 + 13 TeV 10.3 8.0 6.5 7449.9/6536
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6.9 Compatibility and combination of world W -boson mass

measurements

Several high-precision measurements of mW have been carried out by different experiments at the

LEP (ALEPH, DELPHI, L3 and OPAL), Tevatron (CDF and D0) and the LHC (ATLAS and

LHCb). However, recent results, particularly from the CDF experiment, have shown significant

deviations when compared to other measurements, raising questions about the compatibility of

these results. For that reason, a dedicated study of combination and compatibility is necessary to

study the potential precision reached by the current results.

At hadron colliders like the LHC and Tevatron, the W -boson mass is typically measured by

analyzing the kinematics of the W -boson’s leptonic decay into a charged lepton and a neutrino,

W → ℓν. The major kinematic variables used in these measurements are the transverse momentum

of the charged lepton (pℓT ), the transverse mass (mT ) and the recoil transverse momentum (uT ).

Each experiment used a large dataset and sophisticated statistical techniques to measure mW with

high precision leading to the results in Table 6.14.

Table 6.14: W -boson mass measurement by different experiments.

Facility Experiment mW (MeV)

LEP ALEPH + DELPHI 80376.0 ± 33.0+ L3 + OPAL

Tevatron CDF 80433.5 ± 9.4
D0 80375.0 ± 23.0

LHC
LHCb 80354.0 ± 32.0
ATLAS 2017 80370.0 ± 19.0
ATLAS 2024 (This work) 80366.5 ± 15.9

The accuracy of mW measurements is influenced by the choice of Parton Distribution Functions

(PDFs). Different experiments have used various PDF sets, such as CT14, CT18, MMHT2014,

MSHT20 NNPDF3.1 and NNPDF4.0, each offering distinct parametrizations and uncertainties.

Since mW depends on the initial-state partons, the choice of PDF set can introduce significant

systematic uncertainties.
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Previous work in Ref. [82] performed the compatibility and combination study of mW using the

measurement of the W -boson mass by the ATLAS collaboration in 2017 [76]. In this work, the

compatibility and combination studies using the latest mW results by ATLAS 2024 in Table 6.6 are

carried out.

Combining these measurements into a single, precise value of mW requires dedicated treatment

of the systematic uncertainties and correlations. First, each measurement is reinterpreted within

a common theoretical framework to compare the central values and uncertainties, ensuring that

differences in the PDF sets are accounted for. This reference model includes the description of

W -boson production, the Breit-Wigner lineshape, and W -boson polarization. The formalism to

bring all the measurements to a common framework follows the methodology described in Ref. [82]

where an exhaustive analysis is discussed.

The adjustment process involves emulating the measurement procedures using Monte Carlo

event generation and simplified detector simulations. The Monte Carlo samples are produced with

a reference W -boson mass and width. Events are reweighted to different W -boson mass values using

a Breit-Wigner distribution. This reweighting has been validated to provide accurate mass values

within a statistical uncertainty of approximately 0.2 MeV.

The uncertainties from the different experiments, which have different center-of-mass energies,

initial states, and lepton pseudorapidity coverage, are evaluated to account for non-trivial correla-

tions. The shift in the mW resulting from a change in the generator model is estimated by creating

templates accounting for the experiment’s model and the same kinematics distributions of an alter-

nate model, i.e. Pseudo-data. The impact, δmW , of this pseudo-data is determine via the χ2 off-set

method as described in section 4.1.

A consistent set of uncertainties and correlations between experiments is established by evalu-

ating δmW across multiple PDF sets within the reference theoretical model. The total theoretical

shift, δmW , is obtained by summing the individual contributions. This total shift is then added

to each experimental measurement to determine the adjusted value used in the final combination.

Finally, for each PDF set, a final covariance matrix is constructed accounting for experimental and

theoretical uncertainties. The combination of mW is performed using the fitting strategy described
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in section 4.3 that incorporates the adjusted measurements and their correlation as follows,

−2 ln Lcmb(θ⃗) =
∑
i,j

(
mi −

∑
p

Uipθp

)
C−1
ij

(
mj −

∑
q

Ujqθq

)
, (6.30)

where i, j run over the measurements and p, q over the POI. m⃗ is the measurements vector with

covariance matrix C. θ⃗ is the POI vector and Uip is 1 when measurement i is an estimator of POI

p, and 0 otherwise [132].

Combinations are performed in two cases. First, for each PDF set all measurements are combined

while the second case consider all measurements except CDF. These results are showed in Tables 6.15

and 6.17, respectively. Where final values are in agreement with Ref. [82].

For the first case, a combination of all measurements results in uncertainties from 8.6 MeV

to 10.2 MeV and χ2 probabilities of 10−6 to 2 × 10−3, respectively. This reflects the discrepancy

between the measurement with respect to the CDF result. Due to the larger uncertainties, the

CT18 PDF set is chosen as the baseline with a combination value of mW = 80388.4 ± 10.3 MeV

with a probability of 0.2%. The relative weights in the combination are shown in Table 6.16 that

for CT18 corresponds to 38.6%, 10.0%, 5.3%, 36.4% and 9.6% for ATLAS (2024), LHCb, D0, CDF

and LEP respectively. This shows a larger contribution of the new mW measurement by ATLAS,

which, compared to the 2017 measurement, has a weight of 28% with total uncertainty of 11.5 MeV

and PDF uncertainty of 7.7 MeV [82]. This means that the new ATLAS result improves the total

uncertainty in 10% and the PDF uncertainty in 19%.

Table 6.15: Combination of all mW measurements with all experiments. Shown for each PDF are
the PDF uncertainty, χ2, and probability of obtaining this χ2 or larger. mW and σPDF units are in
MeV.

All experiments
PDF set mW σPDF χ2 Prob(χ2, n.d.f)
CT14 80389.2 ± 10.2 6.3 17.3 0.2%
CT18 80388.4 ± 10.3 6.2 16.5 0.2%
MMHT2014 80394.0 ± 8.5 4.8 18.5 0.1%
MSHT20 80389.0 ± 8.7 5.1 19.8 0.1%
NNPDF3.1 80397.7 ± 8.5 5.0 28.7 0.001%
NNPDF4.0 80397.7 ± 8.6 5.0 33.8 0.0001%
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Table 6.16: Relative combination weights (in percent) for all experiments.

Measurement CT14 CT18 MMHT2014 MSHT20 NNPDF3.1 NNPDF4.0
ATLAS 2024 38.6 40.6 28.4 32.2 25.2 29.5
LHCb 10.0 10.5 8.2 9.1 7.9 8.3
CDF 36.4 34.7 49.0 44.7 52.2 47.8
D0 5.3 4.4 7.7 7.0 8.1 7.6
LEP 9.6 9.8 6.7 7.0 6.6 6.8

In the second case, a combination excluding CDF measurement is performed with uncertainties

ranging from 11.0 MeV to 11.8 MeV and χ2 probability of 53% and 96%, respectively. This shows

a good compatibility between the measurements with an increase of 1.5 MeV to 2.4 MeV with

respect to the full combination. The significance (in σ units) is also quantified with respect to

the CDF measurement ranging 4σ to 5.7σ. For the CT18, the final combination retrieves a value

of mW = 80366.1 ± 11.7 MeV with 92% probability that differs from CDF by 3.8σ. Relative

combination weights are shown in Table 6.18, with 54.2%, 13.9%, 19.3% and 12.6% for ATLAS,

LHCb, D0 and LEP, respectively. The addition of the new mW result improves considerably its

contribution with respect to the 2017 result, where ATLAS weight was 42% with a total uncertainty

of 13.3 MeV and PDF uncertainty of 6.2 MeV [82]. This is a reduction of 12% and 26% in the total

uncertainty and the PDF uncertainty, respectively.

The 2017 and 2024 ATLAS mW results as well as the mW combinations for all experiments and

all experiments except CDF are shown in Fig. 6.26. It is necessary to highlight the difference in

the mW values obtained in 2017 and 2024 (this work) with the various PDF sets. Since the 2024

results implemented the profile likelihood fit, a constraining power in the PDF uncertainties plays

a relevant role and the results show a similar tendency for common PDF sets. This also reflects the

viability of the profiling technique with respect to the χ2 off-set method.

6.10 Summary

The current status of mW and ΓW has been discussed for the high pile-up at 7 TeV. Furthermore,

the prospects and expected precision for mW in low pile-up at 5.02 TeV and 13 TeV have been
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Figure 6.26: The first and new ATLAS mW result and combined mW values and uncertainties for
all experiments and all experiments except CDF using the CT14, CT18, MMHT2014, MMHT20,
NNPDF3.1, and NNPDF4.0 PDF sets.
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Table 6.17: Combination of all mW measurements except CDF. Shown for each PDF are the PDF
uncertainty, χ2, and probability of obtaining this χ2 or larger. mW and σPDF units are in MeV.

All experiments except CDF

PDF set mW σPDF χ2 Prob(χ2, n.d.f)
Significance with
respect to CDF

(σ units)
CT14 80365.4 ± 11.8 4.7 0.3 96% 4.0
CT18 80366.1 ± 11.7 4.6 0.5 92% 3.8
MMHT2014 80363.6 ± 11.1 3.3 0.6 89% 4.2
MSHT20 80360.7 ± 10.8 3.5 0.3 96% 4.3
NNPDF3.1 80359.4 ± 11.2 4.0 1.1 78% 5.3
NNPDF4.0 80359.2 ± 11.0 3.6 2.2 53% 5.7

Table 6.18: Relative combination weights (in percent) for all experiments except CDF.

Measurement CT14 CT18 MMHT2014 MSHT20 NNPDF3.1 NNPDF4.0
ATLAS 2024 53.5 54.2 50.3 54.3 51.5 52.9
LHCb 13.7 13.9 13.8 13.4 13.6 13.3
D0 20.2 19.3 24.5 21.5 23.4 22.6
LEP 12.7 12.6 11.4 10.8 11.5 11.1

evaluated. For both analyses, the dataset and simulation have been largely discussed as well as

the different background estimation, modelling of uncertainties and uncertainty propagation. One

of the breakthroughs correspond to the pWT modelling at low pile-up using the Iterative Bayesian

Unfolding approach. In this, a direct measurement of the W boson transverse momentum has been

performed to reduce the uncertainties related to the pZT extrapolation. This leads to a pWT spectrum

that is unbiased by construction and can potentially reduce the corresponding uncertainties.

A new fitting strategy to evaluate the systematic uncertainties has been introduced. This is, the

profile likelihood fit contrary, the χ2 offset method used in previous studies. This fitting strategy

has been evaluated in both scenarios numerical and analytical. The numerical approach considered

uncertainties with a Poisson distribution. Meanwhile, the analytical solution assumed uncertainties

that are Gaussian-distributed. The analytical solution allowed to obtain the uncertainty components

such as total, statistical and systematic. To asses the uncertainty decomposition of the systematic

sources, the global shifted observable method was implemented. This allowed to obtain components

that recover the total systematic uncertainty when they are summed in quadrature, contrary to the
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impact method.

Results at 7 TeV are revisited from the first ATLAS publication [76] showing a compatibility

between the new and old measurements and an improvement in the precision from 19 MeV to

16 MeV. The PDF has been largely studied by implementing different PDF sets, showing that mW

result is driven by the pre-fit PDF uncertainties, and is strongly reduced when allowing for enlarged

uncertainties. The baseline result corresponds to the one with CT18 PDF set, which is the most

conservative one and leads to current value of mW of [107],

mW = 80366.5 ± 9.8(stat.) ± 12.5(syst.) MeV = 80366.5 ± 15.9 MeV. (6.31)

No deviation with respect to the SM was found. By a similar approach, the first W boson width

(ΓW ) measurement was performed with similar studies showing no strong dependence with the PDF

set. Result with CT18 PDF set correspond to,

ΓW = 2202 ± 32(stat.) ± 34(syst.) MeV = 2202 ± 47 MeV. (6.32)

This is, the most precise single ΓW measurement and it agrees with the SM within two standard

deviations.

In the low pile-up scenario, the prospects in precision were studied for two observables, pℓT and

mT with CT18A PDF set. These independent fits showed a preliminary blinded result of,

mmT
W = XY Z ± 13.1(stat.) ± 9.6(syst.) MeV = XY Z ± 16.2 MeV.

m
pℓ

T
W = XY Z ± 14.7(stat.) ± 10.8(syst.) MeV = XY Z ± 18.2 MeV.

(6.33)

These results were further improved by performing a joint fit of the two observables in which the

statistical correlations were properly evaluated in the different uT and ηℓ categories for all the

channels and centre-of-mass energy. Taking this into account, the expected precision obtained in

the low pile-up is given by,

m5 + 13 TeV
W = XY Z ± 12.0(stat.) ± 7.7(syst.) MeV = XY Z ± 14.3 MeV, (6.34)
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showing a reduction in the PDF uncertainties and muon calibration of about 30% with respect to the

single fits and 44% in pWT with respect to the pℓT fit result. To determine the potential improvement

in precision by improving the muon calibration and sagitta bias, different exercises by reducing

the sensitivity of these nuisance parameters were carried out. Results showed an improvement of

about 1 MeV in the total uncertainty when uncertainties are reduced by a factor of 5. Getting the

most of the ATLAS datasets, a preliminary joint fit between the pℓT 7 TeV and the full low pile-up

dataset was performed with the CT18A PDF set (common PDF set between the data), giving a

final precision of,

m5+7+13 TeV
W = XY Z ± 8.0(stat.) ± 6.5(syst.) MeV = XY Z ± 10.3 MeV, (6.35)

where a reduction of 28% in the total uncertainty, 33.3% in the statistical uncertainty and 15.6%

in the total systematic was obtained with respect to the low pile-up fit.

Finally, the compatibility and combination between the new ATLAS 2024 result at 7 TeV (Ta-

ble 6.6) and other experimental results, such as those from LHCb, CDF, D0, and LEP, were studied.

Different PDF sets were considered in a consistent framework accounting for the different corre-

lations. Two combinations of all measurements were performed: one including CDF (w/ CDF)

and one without CDF (w/o CDF), using various PDF sets with CT18 as the baseline. Results

with CDF showed uncertainties ranging from 8.6 MeV to 10.2 MeV with probabilities from 10−6 to

2×10−3. On the other hand, when CDF is removed the total uncertainty spans values from 11 MeV

to 11.8 MeV implying an increase in the uncertainty from 1.5 MeV to 2.4 MeV with respect to the

full combination. However, these results shows a χ2 probability from 53% to 96%. CT18 baseline

results lead to the world averages,

m
w/ CDF
W = 80388.4 ± 10.3 MeV,

m
w/o CDF
W = 80366.1 ± 11.7 MeV.

(6.36)

where a compatibility of 0.2% is obtained when CDF is included and 92% compatibility is obtained

when CDF is removed differing from CDF by 3.8σ.
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Conclusion

This work presents the current status of the W boson mass and width using the Run 1 dataset

at 7 TeV, and the prospects of the W boson mass with the Run 2 low pile-up dataset at 5.02 TeV

and 13 TeV. For this, a dedicated calibration procedure of the ATLAS Inner Detector and Muon

Spectrometer was designed and implemented. A fitting strategy based on profile likelihood fits was

largely explored and the analytical solution in the regime where the uncertainties are Gaussian-

distributed was utilized. A consistent way to study the uncertainty components: total, statistical

and systematic uncertainties was provided and a method to obtain the uncertainty decomposition

based on global shifted observable was discussed. This method was also introduced for general

distributions and in the Gaussian limit a consistent analytical result was described. In the same

way, a method for combining profile likelihood fit results using decomposed uncertainties was also

introduced and applied.

The calibration procedure considered possible charged dependent biases related to the muon

track sagitta that was evaluated by minimising the variance of the invariant mass distribution.

After correction, the bias was reduced from an average value of 0.05 TeV−1 to 2 × 10−4 TeV−1

improving the resolution in the invariant mass of the Z boson and J/ψ meson. To calibrate the

ID for possible geometrical deformations, a large study using J/ψ → µµ was performed showing a

global scale bias and modulations in the invariant mass with a 0.02% deviation with respect to the

simulation. To correct these deformations, different models accounting for radial, longitudinal, and

magnetic field distortions were simulated to generate templates. These templates were then used

to perform an analytical fit of the data with respect to the simulation. A final magnetic field-radial

model was implemented with relative bias of ⟨εB⟩ = −1.5 × 10−3 and ⟨εR⟩ = 1.0 × 10−3 for the
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magnetic field and radial distortions, respectively. After correction, the scale and modulations in

the invariant mass were corrected leading to a data-to-simulation agreement at the per mille level

in the scales.

In the case of the MS, the alignment residuals between the ID and MS were investigated showing

a bias of about 1.5 mm in the longitudinal impact parameter and few mrad in the polar angle. To

this bias, a charge dependent effect was observed with possible origin in the toroidal magnetic field

in the tile calorimeter region. To mitigate this, the magnetic field in the tile calorimeter was re-

evaluated, proposing an effective correction of 25% of the current field strength. Additionally, a

more sophisticated approach involved computing a dedicated correction map in (η, ϕ)-space, which

effectively reduced the charge-dependent effects. For the bias in the impact parameters, a dedicated

map in the second coordinates, transverse impact parameter and azimuthal angle, was obtained and

injected as a correction function in the tracks. After correction, the track reconstruction between

the MS and ID was improved and a good agreement between data and simulation was obtained.

To complete the calibration procedure, after the pre-corrections a dedicated muon momentum

calibration (MMC) was carried out. This MMC considers the scale and resolution parameters that

account for magnetic field mismodelling and multiple scattering effects. The di-muon invariant mass

was fitted using the template fit approach and the final calibration was retrieved by an analytical

fit. The scale and resolution final maps were obtained as a function of the muon rapidity and the

simulation was corrected. A final data-to-simulation agreement at the per mille level was obtained.

For the W boson mass and width, a fitting strategy based on profile likelihood fit was im-

plemented. The particular case where the uncertainties are Gaussian-distributed was considered

and the analytical solution was proposed. This approach allowed a proper decomposition of the

fit uncertainties and to determine the actual contribution of each systematic source to the final

measurement uncertainty. Moreover, the PDF dependency of both mW and ΓW was studied with

different PDF sets showing that mW result is driven by the pre-fit PDF uncertainties, and it is

strongly reduced when allowing for enlarged uncertainties. For ΓW a weak dependence with the
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PDF set was found. The final result for the W mass measurement at 7 TeV was found to be,

mW = 80366.5 ± 9.8(stat.) ± 12.5(syst.) MeV = 80366.5 ± 15.9 MeV. (6.37)

while for the width,

ΓW = 2202 ± 32(stat.) ± 34(syst.) MeV = 2202 ± 47 MeV. (6.38)

In the case of the low pile-up, a new pWT modelling was largely explored by implementing the

Iterative Bayesian Unfolding instead of the usual pZT extrapolation. This new approach allowed to

obtain a better modelling that is unbiased by construction and it allowed for a reduction in the

uncertainty. For the low pile-up dataset a preliminary blinded result for mW was obtained to be,

m5.02 + 13 TeV
W = XY Z ± 12.0(stat.) ± 7.7(syst.) MeV = XY Z ± 14.3 MeV. (6.39)

Combining with the 7 TeV data the final result is given by,

m5.02 + 7 + 13 TeV
W = XY Z ± 8.0(stat.) ± 6.5(syst.) MeV = XY Z ± 10.3 MeV. (6.40)

The presented results are still work in progress for both muon calibration and W boson mass

measurement. However, this work aims to show the prospects in mW while also highlighting areas

requiring further work, which will potentially improve the precision.

Finally, the compatibility and combination of the world W -boson mass measurements were

assessed by taking into account the latest results from LEP, CDF II, D0 and LHCb, with the

current ATLAS 2024 result at 7 TeV in Table 6.6. This study leads to the current world average

for both with CDF and without the CDF measurement,

m
w/ CDF
W = 80388.4 ± 10.3 MeV,

m
w/o CDF
W = 80366.1 ± 11.7 MeV.

(6.41)
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where a compatibility of 0.2% is obtained when CDF is included and 92% compatibility is obtained

when CDF is removed differing by 3.8σ using the CT18 PDF set.
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Appendix A

Extra results in muon muomentum

calibration

A.1 Di-muon invariant mass reconstruction

This section describes the behavior of the angle between two muons in the rest frame under an

infinitesimal transformation. The di-muon invariant mass in the rest frame is given by,

m2 = 2p1p2(1 − cos θ12), (A.1)

where p1 and p2 are the momentum of the two muons and θ12 is the angle between the two particles

that can be expressed as a function of the laboratory frame angles, the polar angle, θ and the

azimuthal angle, ϕ, as,

cos θ12 = cos θ1 cos θ2 + sin θ1 sin θ2 cos(ϕ1 − ϕ2). (A.2)

Under an infinitesimal transformation of the angles |ε| ≪ 1, cot θ changes as follows,

cot θ → cot θ · (1 + ε), (A.3)
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which implies,

cos θ → cos θ · (1 + ε sin2 θ),

sin θ → sin θ · (1 − ε cos2 θ).
(A.4)

Then, cos θ12 transforms as,

1 − cos θ12 → (1 − cos θ12) · (1 + ε∆θϕ), (A.5)

with,

∆θϕ = sin2 θ1 + sin2 θ2

1 − sec θ1 sec θ2 + tan θ1 tan θ2 cos(ϕ1 − ϕ2)
− (cos2 θ1 + cos2 θ2) cos(ϕ1 − ϕ2)

cot θ1 cot θ2 + cos(ϕ1 − ϕ2) − csc θ1 csc θ2
.

(A.6)

A.2 MS/ID residual biases for bottom region 2D maps
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Figure A.1: Asymmetry 2D bottom region maps for (left) δzs±
θ and (right) δθ± for µ− − µ+ with

nominal magnetic field at pT > 20 GeV.
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Figure A.2: Asymmetry 2D bottom region maps (left) δzs±
θ and (right) δθ± for µ− − µ+ with

1.25 ×Bϕ modified magnetic field at pT > 20 GeV.
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Figure A.3: Asymmetry 2D bottom region maps δzs±
θ and δθpm for µ− − µ+ with bmagatlas field

at pT > 20 GeV.
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Figure A.4: Asymmetry 2D bottom region maps (left) δzs±
θ and (right) δθ± for µ− − µ+ after

correction at pT > 20 GeV.
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