
INFLUENCE OF GROUND MOTION ONTHE TIME EVOLUTION OF BEAMS INLINEAR COLLIDERSAndrey SERY �and Olivier NAPOLYCEA, DSM/DAPNIACE-Saclay, F-91191 Gif-sur-Yvette Cedex, FranceAugust 7, 1995AbstractThis paper resumes a series of investigations devoted to the in
uenceof ground motion on linear colliders in the TeV energy range. We attemptto modelize the variety of measured data about ground motion and thento calculate the behavior of beams in the linear collider a�ected by thismotion. An adequate description of ground motion is found in the form ofa two dimensional power spectrum P (!; k), that carries information bothabout time and space dependence of displacements. We then discuss theuse of this spectrum to calculate the time evolution of beam position andbeam size at the interaction point. An approximation of this spectrum fortypical seismic conditions is proposed for a wide range of ! and k basedon the results of absolute and relative seismic measurements. Examples ofcalculations of the time evolution of the beam size and position in the �nalfocus system of a linear collider are presented.
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1 Introduction1.1 Linear collidersIn order to allow e�ective search of new particles e+e� linear colliders envisionedfor the future [1] should provide a center of mass energy in the range of 300 GeV -1 TeVwith a luminosity as high as 1033 � 1034 cm�2s�1. Given the expression ofthe luminosity L = frepN2=(4���x��y) (1)where frep is the repetition rate of collisions of the e+ and e� bunches, N is thenumber of particles per bunch and, ��x and ��y are the transverse rms sizes ofthe bunch at the collision point, the possible set of parameters of the existingprojects [2] is as follows: repetition rate frep = 10� 1000 Hz, number of particlesN = 1010 � 1011, horizontal size ��x = 0:25 � 2 �m, vertical size ��y = 3 � 30 nm.One of the most critical parameters is the extremely small vertical size of thebeam at the interaction point and, therefore, the very small required value of thevertical emittance of the beam. A proper alignment of the focusing and acceler-ating elements of a linear collider is necessary to achieve the high luminosity. Themost obvious e�ect of misaligned focusing lenses is that the e+ and e� bunchescan simply miss each other at the collision point. Even if the bunches collide,their emittance can be already degraded during acceleration in the linacs or dis-persion can appear in the focusing section before collision due to misalignment.This degradation a�ects in turn the vertical spot size and the luminosity.The precision of the alignment has to be so high (less than the micrometer)that no conventional technique for position measurement can be used becausethere is no way to get a reference line with the required precision. The onlyway seen up to now is to have rough pre-alignment and then to use the bunchesthemselves as sensors to detect the position of misaligned elements relatively tothe desired trajectory of the bunch. Therefore the alignment should be \beambased" and also it should be dynamical (i.e., the alignment should work contin-uously), because once aligned the collider does not stay aligned forever due toground motion. A prototype of such a scheme has already been applied on theSLC [3].The goal of this work is to derive a mathematically consistent model describingground motion, and to use it to predict the evolution of the beam properties withtime over wide range of time intervals { from a few pulses to years{ eventuallytaking the beam based dynamical alignment system into account.1.2 Ground motion descriptionWhen the importance of ground motion for a linear collider was recognized, at-tempts have been made to get the necessary information to describe this motion.A pioneer work was done at SLAC more than ten years ago [4] to understand3



the in
uence on the 50 GeV SLC linear collider, for which the ground motionwas not negligible already. For TeV linear colliders new studies have been madein di�erent places. In Protvino (Russia) investigations of di�erent ground mo-tion characteristics were made six years ago [5] and since then similar studieshave been made and are being continued in many other sites (at Novosibirsk [6],CERN [7], KEK [8], DESY [9], Finland [10], SLAC [11] etc.). One can mentionalso seismic studies performed for large circular colliders like HERA [12] or SSC[13], because some results obtained there can be interesting for a linear collideras well.Let us brie
y describe what kind of measurements have been performed andwhat kind of information has been obtained in these studies.All measurements of ground motion can be split in two categories. The �rstone is the so-called absolute measurements. In this case usually an accelerometerwith a pendulum inside is used. It allows to measure acceleration of a single pointof the ground surface versus time. If the spectral analysis is then applied, thespectrum of displacements can be obtained from the acceleration spectrum. Thismethod is called absolute measurements because the measurements are maderelatively to an object (center of the earth) placed almost in�nitely far. Thesecond category consists of the relative measurements. In this case the relativeposition of two separated points of the surface is measured. Some reference line(strained wire, laser beam, water level in gravity �eld etc.) must be used in thiscase. The �rst method is sometime re�ned: simultaneous measurements with twodistanced and synchronized sensors can give additional information (correlationmeasurements).1.2.1 Absolute measurementsLet us consider data treatment methods used in measurements of an absolutemotion. Once a time-dependent signal x(t) is measured, one can introduce itsdispersion � as follows: �2 = hx2i = limT!1 1T T=2Z�T=2 x2(t)dt (2)Here and below we assume that the mean value of the signal is zero hxi = 0namely hxi = limT!1 1T T=2Z�T=2 x(t)dt = 0 (3)Performing the spectral analysis of the signal is useful because di�erent vi-bration frequencies cause di�erent e�ects on the linear collider. One should note,however, that seismic noise is a random process, so the usual Fourier spectrum4
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 Figure 1: Power spectrum of absolute ground motion. Measured in Protvino(1992), CERN (1993), DESY (1994) and in Finland (1994).does not exist (it equals to in�nity) and the power spectral density (power spec-trum in brief) should be considered.The power spectral density is de�ned asp(f) = limT!1 1T ������� T=2Z�T=2 x(t)e�i!tdt �������2 (4)Here f is frequency, f = !=2�. One of the main properties of the power spectrumis that its integral gives squared dispersion:�2 = 1Z�1 p(f)df (5)In practice the measurement time T is limited and the power spectrum canonly be estimated by averaging Fourier spectra obtained from several measure-ments. The number of averagings �xes the precision on this spectra: it is usuallynot better than a few percents. Also, the measurement technique with discretesampling requires to replace the integral by a discrete sum in the formulae. Datameasured over time T at sampling frequency f0 allow to �nd a spectrum in therange from 1=T to f0=2. The dimension of the power density is m2/Hz if x(t)is the position; sometimes it is more convenient to use �m2/Hz. This kind ofspectra is usually plotted in logarithmic scale because of big changes over thefrequency range.Typical power spectra measured in underground tunnels during quiet time areshown on Fig.1 for di�erent places. On this picture the measurements at Protvino5
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uence of watermotion in the nearest ocean is the peak in the band 0.1-0.2 Hz. This peak, calledsometimes as \7-second hum", is generated by the interaction of ocean waveswith the coastline: its amplitude depends on the distance from the ocean and onthe weather conditions there. In general, vibrations in this low frequency bandf < 1 Hz depend not only on the local conditions: rather remote sources can givesigni�cant contribution to this slow motion.From the other side, in the band f > 1 Hz the human produced noises areusually dominating and the power spectrum depends very much on the localconditions. For example, all except one spectra shown on the Fig.1 were measuredduring a quiet time (night, minimum of cultural noises). The spectrum measuredat DESY presents much bigger amplitudes at f > 1 Hz due to noises generated6
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1.2.2 Correlation measurementsThe absolute measurements, performed simultaneously by two sensors, allow to�nd out the mutual power spectrum of two signals x1 and x2 :p12(f) = limT!1 1T T=2Z�T=2 x1(t)e�i!tdt T=2Z�T=2 x�2(t0)ei!t0dt0 (7)In contrast with p(!) this spectrum is complex. For a real signal x(t) one canwrite p�12 = p21 so that the imaginary part is given by:2 i Im(p12) = p12 � p21 (8)One can note that if characteristics of ground motion do not depend on thelocation then this imaginary part should be equal to zero. This condition assumedto be always satis�ed.The normalized mutual power spectrum can also be used:N12(f) = p12pp1p2 (9)The real part of N12 is called \correlation" and its module is called \coherence".In the frame of the mentioned assumption N12 should be equal to its real part.Perfect correlation between the two points corresponds to N12(f) = 1, absenceof correlations to N12(f) = 0, perfect anticorrelation (phase shift �) to N12(f) =�1.In a simple case when there are only transverse waves with velocity of prop-agation v, no dissipation and the sources of the waves are remote enough, thecorrelation (9) will be equal toN12(f) = cos(c !L=v) (10)where L is the distance between the probes and c is a coe�cient of order onewhich depends on spatial distribution of the sources of the waves.An example of the correlation measured in the CERN LEP tunnel [7] is shownon Fig.3. Di�erent curves correspond to di�erent distance between sensors. Onecan see a good correlation in the low frequency part f > 0:1 Hz of the spectrum.At high frequencies the correlation between separated probes disappears. Thesemeasurements have shown that the correlation at f > 0:1 Hz can be approximatedby (10) with the parameter v(f) close to the velocity of sound (about 3000 m/sin that case). At smaller frequency, however, the value v(f) was observed ([5],[7] , [9]) to be much smaller (limited precision of the used probes does not allowto measure the value, however). 8



10
-3

10
-2

10
-1

10
0

10
1

10
2

Frequency, Hz

10
-12

10
-10

10
-8

10
-6

10
-4

10
-2

10
0

10
2

10
4

10
6

m
ic

ro
n*

*2
/H

z

Figure 4: Comparison of the spectrum of relative ground motion (distance 5 mbetween probes, circles) with the spectrum of absolute ground motion (stars).Measured in the laboratory building in Protvino.1.2.3 Relative measurementsMeasurements of a relative motion give an information about the quantity x1(t)�x2(t). The power spectrum �(!;L) associated to it is given by�(!;L) = limT!1 1T ������� T=2Z�T=2 (x1(t)� x2(t))e�i!tdt �������2 (11)in such a way thath[x(t; s+ L)� x(t; s)]2i = 1Z�1 �(!;L)d!=(2�) (12)It depends explicitely on the distance L between points of measurements. Notethat �(!;L) and p(!) have the same dimension [m2/Hz].An example of the spectrum of relative motion of two points separated by 5 mis shown on Fig.4. The measurements were performed in the laboratory buildingin Protvino using the strained wire technique with pick-up sensors mounted onthe tables [14]. On the same plot the results of the absolute measurements at thesame place are shown. The amplitudes in this spectrum is large compared withthe quiet spectra of Fig.1 because of noisy conditions in the laboratory. One cansee that amplitudes of relative motion are much smaller than those of absolutemotion at low frequencies. At some high frequency where correlations disappearthey starts to be similar. 9



The previous picture shows results of relative measurements for relatively highfrequencies. There is also a lot of data about relative measurements performedwith the geodesic technique. The time scale of these data is usually days or yearsand distances are of the order of hundreds of meters. A typical example of suchdata is the measurements of the long time scale displacements of the SLC tunnel[19].It was found in [5] that data about slow relative motion measured in di�erentsites of the world can be described by a simple law:h�X2i = A � T � L (13)where �X is the relative displacement after a time T of the two points sepa-rated by a distance L. A is a constant whose value was found to be A � 10�4�m2/sec/m and the variation of this value for di�erent places in the world is notmuch more than one order of magnitude [5], [15]. This formula (13) is known asthe \ATL law".One can see that the displacement in (13) is proportional to the square rootof the time: this stresses the random, di�usional character of the slow relativemotion. The square root dependence on the distance L can be understood bysupposing that the number of step-like breaks that appears between two pointsis proportional to the distance between them. There are of course more complexexplanations of these dependencies, for example in [16] where a fractal model ofground was developed to explain this behavior.Although the \ATL law" was found from the direct analysis of measurementsof ground motion, its most interesting con�rmations come from the observationsof beam motion in big accelerators produced by displacements of the focusingelements. For example in [17] the measurements of the motion of the closed orbitin the HERA circular collider have proved this \ATL law" within a wide rangeof time intervals.The ranges of T and L where the \ATL law" is valid are very wide. In [15] itwas reported that this law is con�rmed by measurements in di�erent acceleratortunnels in the range from minutes to tens of years and from a few meters to tensof kilometers.1.3 Using measured dataLet us discuss now how the available measured data on ground motion can beused for studying the stability of linear collider.Let us consider the power spectrum of absolute motion. Measurements show(see above) that this spectrum behaves approximately as p(f) / 1=f4 in ratherwide frequency diapason. One can notice that this spectrum, if it behaves so atlow frequencies too, gives an in�nite value for the dispersion that is typical of arandom signal. This is also true for the di�erence of the absolute displacements10



with �nite time separation � . The associated dispersion is given by the integral:h[x(t+ � )� x(t)]2it = 1Z�1 p(f) 2[1 � cos(!� )] df (14)which is also in�nite 1. Equation (14) shows that the low frequency motion(! � 1=� ) contributes to the integral with an attenuation factor (!� )2, but it isstill not enough to make the integral �nite.However, for the stability of linear colliders one is only interested in relativedisplacements between two elements separated by a distance L, and hence in thespectrum of relative motion �(!;L).Let us try to obtain this spectrum �(!;L) from the spectrum of absolutemotion. In principle, it can be done if simultaneous absolute measurements bythe probe \1" and probe \2" are performed. These spectra are connected asfollows: �(!;L) = p1(!) + p2(!)� p12(!;L)� p21(!;L) (16)where p1 ,p2 and p12 ,p21 are the usual and mutual spectra. Assuming that thespectra of these two signals are the same p1 = p2 = p(!), one can rewrite (16)using de�nition of the correlation as:�(!;L) = p(!) 2 [1 �Re (N12(!;L))] (17)At �rst sight it seems that the spectrum of relative motion can be extractedfrom the spectrum of absolute motion using (17). But in practice it is onlypossible at high frequencies where the correlation is close to zero, and �(!;L) �2 p(!). A problem appears at low frequencies where the correlation is close toone: the correlated part of motion has usually a much bigger amplitude that theuncorrelated part. So, because of the limited accuracy of sensors, the correlationcannot be measured with the necessary precision and the formula (17) cannot beused.The spectrum of relative motion can be obtained, of course, directly from rela-tive measurements. The problem here is that the measurements can be performedonly in some limited region of parameters (frequency or distance). For example,measurements with water level system give information only about slow motion.The strained wire technique can measure fast vibrations also, but the distance1This formula can be obtained using the parity of p(f) and the fact that the autocorrelationhx(t+ � )x(t)it and the power spectrum are connected via Fourier transformation:limT!1 1T T=2Z�T=2 x�(t)x(t+ � )dt = 1Z�1 p(f)ei!�df (15)11



between measured points is limited for this method as for the previous one too.Optical methods have problems of accuracy over long distances etc. So there is noideal instrument for measuring the characteristics of ground motion. Thereforeboth absolute and relative measurements should be used in complement to eachother in order to cover a wider range of parameters.There is one essential drawback with using the spectrum of relative motion: itdoes not separate contributions from di�erent spatial wavelengths to the relativemotion of two points. These contributions may have very di�erent impact on thelinear collider stability especially for wavelengths close to harmonics of betatronwavelengths.This is the main reason why a new mathematical tool describing ground mo-tion has to be built which incorporates both results from absolute and relativemeasurements and at the same time is adequate to calculate beam stability inlinear colliders.2 Generalized description of ground motion2.1 Two dimensional power spectrum of ground motionAs already mentioned, TeV linear colliders are very sensitive to ground motion.But, of course, if ground motion would displace the linear collider as a wholerigid body, it would not in
uence its operation. Rather smooth changes of theshape of the collider are not dangerous too. For example, vibrations with longspatial periods like waves from the ocean have a very small in
uence on thelinear collider in spite of their big amplitudes. From the other side, vibrationswith spatial periods of a few tens of meters can be dangerous, even though theiramplitudes are much smaller. Thus, it is necessary to have informations aboutboth time and spatial characteristics of ground motion. An adequate descriptionof ground motion is through the two dimensional power spectrum proposed in[10].Let us denote s the longitudinal position of an element along linear colliderand x(t; s) the transverse position of this element, which depends also on the timet. The displacement x(t; s) is an absolute one, i.e. it is measured relatively to anin�nitely remote object. We consider only transverse displacements of elementsbecause they are known to have the most signi�cant in
uence on linear collider.One can introduce a two dimensional power spectrum of this displacementx(t; s) as: P (!; k) = limT!1 limL!1 1T 1L ������� T=2Z�T=2 L=2Z�L=2 x(t; s) e�i!te�iksdt ds �������2 (18)12



where k = 2�=� and � is the spatial period of displacements. We will see laterthat this spectrum contains all the necessary information for a linear collider.The two dimensional spectrum (18) contains informations both about relativeand absolute motions. For example, it is related to the one dimensional spectrumby the formula p(!) = 1Z�1 P (!; k) dk=(2�) (19)The value of dispersion of the displacement x(t; s) is then given by�2 = 1Z�1 1Z�1 P (!; k) d! dk=(2�)2 (20)It should of course be in�nite as it is for the usual spectrum too, since the integralextends down to ! = 0.Other spectral characteristics can be determined from this two dimensionalpower spectrum. For example, the real part of the normalized mutual powerspectrum (9) for two points separated by the distance L is equal toRe(N12(!)) = 1R0 P (!; k) cos(kL) dk1R0 P (!; k) dk (21)For a linear collider we have to know the behavior of relative displacements oftwo elements of the collider. Let us assume for simplicity that at the beginning(t = 0) the collider is perfectly aligned and let us introduce the misalignmentafter the time T : X(T; s) = x(t = T; s)� x(t = 0; s). Then the dispersion of therelative misalignment over a distance L and after a time T is given by�2(T;L) = h[X(T; s+ L)� X(T; s)]2i = 1R�1 1R�1 P (!; k) 2[1 � cos(!T )]2[1 � cos(kL)] d! dk=(2�)2 (22)This is a main formula to evaluate linear collider stability with the help of thetwo dimensional power spectrum.2.2 Approximation of the two dimensional power spec-trum based on measured data of ground motionUnlike the absolute p(!) and relative �(!;L) power spectra the two dimensionalpower spectrum P (!; k) is not directly measured in an experiment. But if one13



knows p(!) and �(!;L) for a wide enough range of parameters, one can determinethe two dimensional power spectrum through the following identities:�(!;L) = 1Z�1 P (!; k) 2[1 � cos(kL)] dk=(2�) (23)and, for the back transformation:P (!; k) = 1Z0 cos(kL) [�(!;L =1)� �(!;L)] dL (24)In (24) �(!;L =1) is equal to 2 p(!) (see (17) ) because correlations vanish atL =1.Let us consider the two dimensional spectrum that corresponds to the motiondescribed by the \ATL law" (13). It can be written asP (!; k) = A!2k2 (25)which can be easily shown by direct substitution of (25) into (22) and comparisonwith (13). The relative spectrum �(!;L) for the \ATL law" is then given by:�(!;L) = A � L!2 (26)We are going to use this formula as an approximation of �(!;L) in the region ofparameters where it does not contradict measured data or where it is known towork. This formula can be used as an approximation of �(!;L) only in the regionof small frequencies, because it behaves like 1=!2 while the spectrum of absolutemotion in a quiet place behaves like 1=!4. Thus for some high frequencies (26)will contradict to the condition �(!;L) � 2 p(!) which follows from (17).From the other side, we know from correlation measurements that for somedistance L there are no correlations for some band in the high frequency region.Thus one can use the absolute spectrum as an approximation to �(!;L) in thisregion of parameters: �(!;L) = 2 p(!). One can take p(!) = B=(2!4) as anapproximation for a quiet place (see Fig.1).Let us take these two approximations with the border between them corre-sponding to B=!40 = A � L=!20 :�(!;L) = A � L!2 ; 0 < ! < !0�(!;L) = B!4 ; !0 < ! <1 (27)where !0 = (B=(A �L))1=2. From Eq.(27) one then obtains the following approx-imation for the power spectrum P (!; k):P (!; k) = A!2k2 (1� cos(L0k)) (28)14



with L0 = B=(A �!2). In the rest of the paper we will use this approximation as amodel for "quiet seismic conditions" with A = 10�4 �m2/sec/m for the parameterof the ATL law, and B = 10�3 �m2/sec3 for the parameter of the spectrum ofabsolute motion, a typical value for a quiet place.The exact result for the dispersion of the relative misalignment correspondingto this model is then given, from Eq.(22), byh�X2i = A � T � L + A � T � L 2� �Si(2x0)� 1�cos(2x0)2x0 �++BT 36� �2Si(2x0) + cos(2x0)x0 + sin(x0)�(sin(x0)+x0 cos(x0))x30 � (29)where x0 = T=2qB=(L �A) and Si(x) is de�ned asSi(x) = � 1Zx sin(t)t dt (30)One can show from this formula that the chosen form of the P (!; k) spectrumgives a square root dependence of the relative misalignment versus time for largeT (corresponding to the \ATL law"):h�X2i = A � T � L T � T0 (31)while for small T the relative misalignment is just proportional to the time T :h�X2i = A � T 2 � L=T0 T � T0 (32)where T0 = �=2qA � L=B.In fact, with a reasonable accuracy one can use the following simple formulah�X2i � A � T � L TT + T0 (33)as an approximation of (29).2.3 Improvements of the approximationLet us compare the measured correlation with the one calculated from the ap-proximation of P (!; k) expressed by (28). Using (21) and (28) one can show thatthe correlation disappears for !2 > B=(A � L). This contradicts the measureddata at least in the region 0.1 Hz< f < 100 Hz, where a linear dependence ofthe cut frequency on the distance L has been observed [5] , [7]. The reason ofthis contradiction could be the fact that contributions of elastic waves (like wavesfrom the ocean, for example) are not included in the power spectrum. An elasticwave of a given frequency ! may be added to the spectrum P (!; k) with somedistribution on the wave number k from 0 to kmax; the case k = 0 corresponds to15
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Figure 5: 3-d plot of the approximation of the two dimensional power spectrumwith additional contribution of elastic waves.wave going perpendicular to the linear collider (transverse waves), and k = kmaxcorresponds to the wave traveling along the collider. Let us add the e�ect of thiskind of waves to (28) in the following way:P (!; k) = A!2k2 (1� cos(L0k)) + D(!) � U(k; kmax) (34)The function U(k; kmax) describes the wave number distribution of the waveswith frequency !. The following expression:U(k; kmax) = 8<: 2pk2max�k2 if jkj � kmax0 if jkj > kmax (35)corresponds to transverse waves propagating at the surface of the ground withuniform distribution over azimuthal angle, with kmax = !=vo and vo the velocityof wave propagation.Since the integral over dk=(2�) of U(k; kmax) equals one, the function D(!)describes contribution of these waves to the absolute spectrum p(!). WritingD(!) as D(!) = ao1 + [do(! � !o)=!o]4 (36)allows one to take into account the peak of the waves from the oceans and also,because of the 1=!4 dependence, to add some wave contribution at high frequen-cies. To reproduce the spectrum corresponding to quiet conditions, like in theLEP or UNK tunnels, we consider the following parameters: !o = 2� � 0:14 Hz16
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element, say a beam position monitor, at the entrance of the considered section3.With this assumption, the time evolution of all the coordinates (x�i )i=0;N can bedescribed by the 2d-power spectrum like in Eq.(22)h[x�i (T )� x�j (T )]2i = 1R�1 1R�1 P (!; k) 2[1 � cos(!T )]2[1� cos(k(s�i � s�j )] d! dk=(2�)2 (37)where s�i is the longitudinal position of the i-th element in the e+ and e� beamlines.The most harmful e�ect of focusing element displacements for the luminosityis the transverse o�set (x+ � x�) of the opposite beams at the IP. Let ai be the�rst derivative of the beam transverse displacement at the IP with respect to thedisplacement of the element i. At the �rst order, the e+ and e� beam o�sets atthe IP are given by(x� � xref) = R11(x�0 � xref) + NXi=1 ai(x�i � xref) (38)where R is the transfer matrix of the section. We have assumed that the coe�-cients ai are the same for the e� and for the e+ parts. They can be easily calcu-lated using optical functions of the channel. For example for a short quadrupole,ai = kir12 where ki is the integrated strength of the quadrupole and r12 is theelement of transfer matrix from this element to the IP (for horizontal displace-ments, for the vertical one should take r34). By considering a rigid displacementof the whole beam line, with x0 = xi = x, it is easy to show that they satisfy theidentity NXi=1 ai = 1�R11 (39)Since only the relative displacement of the beams at the IP in
uences theluminosity, one can write for this relative o�set:x+ � x� = NXi=0 ai(x+i � x�i ) (40)with the notation a0 = R11 (41)The mean value hx+ � x�i is equal to zero. The mean square value is given by:h(x+ � x�)2i = NXi=0 NXj=0 aiajh(x+i � x�i )(x+j � x�j )i (42)3The case where the beam is injected with an angle is not considered in this paper.19



To relate the above expression to square dispersions calculated from the 2d-spectrum by Eq.(37), one uses the following identity(x1 � x2)(x3 � x4)= 12 h(x1 � x4)2 + (x2 � x3)2 � (x1 � x3)2 � (x2 � x4)2i (43)Assuming that the spectrum P (!; k) is homogeneous in such a way that h(x+i �x+j )2i = h(x�i � x�j )2i and h(x+i � x�j )2i = h(x�i � x+j )2i, one gets for the rms ofthe relative beam o�seth(x+ � x�)2i = NXi=0 NXj=0 aiaj �h(x+i � x�j )2i � h(x+i � x+j )2i� (44)Combining this expression with Eq.(22) allows one to calculate, from a givenmodel of the 2d-power spectrum P (!; k), the time evolution of the rms relativeo�set after the time t = 0 when it is zero.For a pure \ATL" motion it is simply given by:h(x+ � x�)2i = AT NXi=0 NXj=0 aiaj �js+i � s�j j � js+i � s+j j� (45)In general, Eq.(44) can be expressed ash(x+ � x�)2i = 1Z�1 1Z�1 P (!; k) 2[1 � cos(!T )]G(k) d!2� dk2� (46)with the spectral function G(k) given byG(k) = NXi=0 NXj=0 2 aiaj �cos(k(s+i � s+j ))� cos(k(s+i � s�j ))� (47)By taking the origin of the longitudinal coordinate s = 0 at the IP, one hass+i = �s�i and the above expression simpli�es toG(k) = 4 NXi=0 ai sin(ks+i )!2 (48)The positive function G(k) describes the spectral response to harmonic excita-tions of spatial period of 2�=k, of the considered focusing section in terms ofrelative displacement of beams at the IP. For large k it 
uctuates around N(if all jaij � 1). For harmonics with long wavelengths it is proportional to k2,except when R12 = 0 which is the most interesting case of beam lines with aphase advance equal to a multiple of �. Indeed one can easily show by tilting the20



whole beam line by a constant angle x00 that the coe�cients ai verify to a goodapproximation - namely for thin lenses - the following identityNXi=0 aisi +R12 = sIP (49)Since we took sIP = 0 in Eq.(48), one gets for small kG(k) ' 4 �kR12 +O(k3)�2 (50)showing that the spectral function G(k) behaves as k6 for k ! 0 if R12 = 0.Once G(k) has been calculated for a given focusing structure Eq.(46) is usefulfor comparing the behavior of beams through this structure in di�erent seismicconditions. It also allows one to calculate the e�ect of di�erent parts of the spatialwave-number spectrum.3.2 Beam spot size at the IPTransverse displacements of focusing elements can generate other e�ects at the IP.For example, for the �nal focus system of a linear collider the next most importante�ect is the spot size growth at the IP induced by dispersion, longitudinal shift ofthe beam waists and xy-coupling generated by o�set beams in quadrupoles andsextupoles. At the �rst order in the normalized transfer matrix error at the IP�Q = �R �R�1 (51)the vertical spot size growth is given by4���y��y = 12 24 �Q34��y !2 +  �Q31��x��y !2 +  �Q32��x��y��x !2 +  �Q36 ����y !235 (52)The �rst term corresponds to the �y waist-shift generated by quadrupole andsextupole horizontal displacements. The second and third terms correspond toxy and x0y couplings, and the fourth term to vertical dispersion generated byquadrupole and sextupole vertical displacements.The spot size growth induced by these e�ects can be calculated as for the o�setin Eq.(44) but with di�erent coe�cients. For instance, the vertical dispersion�Q36 can be written as follows��y = �Q36 = T336(y0 � yref) + NXi=1 bi (yi � yref) (53)4The linear contribution from the vertical demagni�cation error �Q33 is usually negligible.21



Again a constant translation of the whole beam line leads to the identityNXi=1 bi = �T336 (54)in such a way that the dispersion error is given by�Q36 = NXi=1 bi (yi � y0) (55)As for the o�set rms, the dispersion rms error is then related to the 2d-powerspectrum through the following equalityh(�Q36)2i = 12 NXi=1 bibj �h(yi � y0)2i+ h(yj � y0)2i � h(yi � yj)2i� (56)This expression can also be used to de�ned a spectral function G�(k) associatedto the dispersion:G�(k) = NXi=1 NXj=1 bibj (1� 2 cos(k(si � s0)) + cos(k(si � sj))) (57)By applying the same treatment to the other error terms in Eq.(52) and bysumming them with the dispersion term, the time evolution of the vertical spotsize of one beam can be calculated from the 2d-power spectrum P (!; k). Sincethe horizontal displacements are responsible for the degradation of the spot sizeinduced by the waist-shift �Q34 term, we will assume in the next section thatthe horizontal and vertical ground motions are described by the same powerspectrum.4 Application to �nal focus systemsThe �nal focus system (FFS) of a linear collider is the special optical systemplaced immediately before IP. It provides the required big demagni�cations ofthe transverse beam dimensions down to the desired beam sizes at collision. Itsoptics is based on the SLC �nal focus system [20, 21]. Big demagni�cations resultin strong focusing of the beam which in turn leads to large chromatic aberrations.These aberrations are compensated in chromatic correction sections using bend-ing magnets and sextupoles. Usually a �nal focus system has a �rst telescope,two dispersive FODO sections for correction of the horizontal and vertical chro-maticities, and a �nal telescope. The tightest tolerances to transverse magnetdisplacements are found in the FFS (last quads, sextupoles). It is therefore natu-ral to illustrate the use of the above formalism to describe the in
uence of groundmotion on such systems. 22



Figure 8: Layout and optics functions of the TESLA FFSAn example of a FFS optics with magnet layout and betatron functions forTESLA [18] is shown in Fig.8. The relevant beam parameters at the IP of someexisting linear collider projects are shown in Table 1 for a �nal beam energy of250 TeV [2]. ��x;y are the beta functions and ��x;y the rms transverse beam size atthe IP, �z is the rms bunch length, �� the rms relative energy spread within onebunch or one bunch train, and frep the repetition frequency of the bunch trains.Usually the repetition rate of collisions within the same train in the multibunchcase is too high for the trajectory of a single bunch to be corrected separately. ForTESLA, however, this repetition rate (shown in brackets) may be small enoughto allow some fast bunch to bunch correction scheme. One can see from Table 1that the vertical beam sizes at the IP are much smaller than the horizontal ones.We therefore concentrate on the time stability of the vertical o�set and spot sizewhich are expected to set the most severe tolerances on displacements.TESLA SBLC VLEPP CLIC��x;y [mm] 25 , .7 22 , .8 100,.2 10 , .18��x;y [nm] 845 , 19 678 , 30 2000 , 6 250 , 7.5�z [mm] .7 0.5 0.75 0.2frep [Hz] 5 (1:4 � 106) 50 300 3200��[10�3] 1 5 5 2Table 1: Beam parameters at the IP for some �nal focus systems23



Figure 9: Coe�cients ai (left) and bi (right) for the vertical displacement and ver-tical dispersion of the beams at the IP of the TESLA FFS. White bars correspondto positive values, black bars to negative ones.4.1 Beam stability for typical quiet seismic conditionsThe linear response of the FFS optics to ground motion is mainly characterizedby the coe�cients ai and bi de�ned above, namely the ratio of the vertical beamo�set and dispersion at the IP to the vertical displacement of each magnet in-dexed by i. These coe�cients are plotted in Fig.9 for each magnet of the TESLAFFS. One can see from these plots that the main contribution to the beam dis-placement at the IP comes from the two last quadrupoles, while the main sourcesof dispersion errors are the �rst two lenses of the last telescope. Calculated from
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TESLA SBLC VLEPP CLICN�y 1 (1.8�105) 15 15 220N��y 210 650 540 16600Table 2: Number of pulses corresponding to 2% luminosity loss due to verticalo�set (N�y) or vertical spot size growth (N��y ) at the IP of di�erent projects.Eq.(50) over a small range only.The time evolution of the relative beam o�set, the vertical beam dispersionand spot size at the IP are shown on Figs.11, 12 and 13 assuming a perfectlyaligned system at t = 0. They are calculated as explained in the precedingsection from the 2-d power spectrum P (!; k) corresponding to the quiet seismicconditions given by Eq.(28). The o�set and dispersion curves are very closebecause of the similarity of the FFS designs. From the relative o�set and spotsize variations one can derive the time corresponding to a loss of luminosity of2% induced by either of these e�ects5. Then from the repetition rate given inTable 1, one gets the corresponding number of pulses, reported in Table 2.One can see from this table that, except for CLIC, the number of pulsescorresponding to 2% luminosity loss due to beam o�set caused by ground motionis very small. It means that a fast correction is necessary to keep beams head onat the interaction point. For TESLA a fast correction within each train seems tobe required: the number of bunches in a train colliding before 2% luminosity islost, given in brackets, then exceeds largely the total number of bunches in thetrain. One should say however that the relative o�set of the beams is due at 90%to the relative motion of the two opposing �nal doublets. One may hope thatthese four quadrupoles, separated by less than ten meters, will be placed on somestabilized support.If the o�set of the beams at the IP is corrected by a fast correction scheme,the luminosity degradation is due the growth of the beam spot size. The numberof pulses before 2% luminosity loss is then of the order of one thousand. Anothercorrection scheme is required to realign the elements of the FFS.4.2 E�ect of di�erent seismic conditionsBesides of the power spectrum typical of quiet sites used above, we have intro-duced in Sect.2.3 a model for the power spectrum of the HERA tunnel with ahigh level of cultural noise (cf. Fig1). In fact, to account for the recent measure-ment of the constant A entering the ATL law made at HERA [17], we shouldalso consider a third model obtained by taking A = 10�5 �m2/sec/m, that is5The tolerances to o�set do not take the beam-beam attraction into account.25
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uence of ground motion is expected to be very important for the fu-ture TeV linear colliders. It will require precise alignment techniques probablycombined with damping of the magnet vibrations. To describe this in
uencequantitatively in terms of beam properties and luminosity at the IP, we proposeto use the power spectrum P (!; k), previously introduced by one of the author.This two dimensional power spectrum describes both the time and spatial prop-erties of ground motion. It also encompasses the power spectra associated to theabsolute and to the relative displacements such as the ATL law describing slowdi�usive motion. Various expressions of this spectrum can be built to modelizethe information about absolute and relative measurements of ground motion. Wehave derived two such models to account for typical low or high cultural noiseconditions.We then described the formalism which allows to express the time evolution of29



typical beam properties, such as beam o�set, dispersion or spot size, for a beamline submitted to transverse vibrations corresponding to a given power spectrumP (!; k) of ground motion. Finally we applied this formalism to analyze the sensi-tivity of various �nal focus systems for linear collider designs to ground vibrationsover short and long time ranges, using and comparing the power spectra for quietand noisy conditions.AcknowledgementThe authors would like to thank St�ephane Fartoukh for help in the calculations,John Irwin and Vladimir Shiltsev for useful discussions and Vladimir Balakin forinterest in the work.
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