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Abstract

This paper resumes a series of investigations devoted to the influence
of ground motion on linear colliders in the TeV energy range. We attempt
to modelize the variety of measured data about ground motion and then
to calculate the behavior of beams in the linear collider affected by this
motion. An adequate description of ground motion is found in the form of
a two dimensional power spectrum P(w, k), that carries information both
about time and space dependence of displacements. We then discuss the
use of this spectrum to calculate the time evolution of beam position and
beam size at the interaction point. An approximation of this spectrum for
typical seismic conditions is proposed for a wide range of w and k based
on the results of absolute and relative seismic measurements. Examples of
calculations of the time evolution of the beam size and position in the final
focus system of a linear collider are presented.
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1 Introduction

1.1 Linear colliders

In order to allow effective search of new particles ete™ linear colliders envisioned
for the future [1] should provide a center of mass energy in the range of 300 GeV -
1 TeV with a luminosity as high as 10%* — 10** cm™2s~!. Given the expression of
the luminosity

L= frepNz/(ZlWU;U;) (1)

where f,., is the repetition rate of collisions of the et and e~ bunches, N is the
number of particles per bunch and, o} and o are the transverse rms sizes of
the bunch at the collision point, the possible set of parameters of the existing
projects [2] is as follows: repetition rate f.., = 10 — 1000 Hz, number of particles
N = 10" — 10", horizontal size o = 0.25 — 2 um, vertical size o, =3 —30 nm.

One of the most critical parameters is the extremely small vertical size of the
beam at the interaction point and, therefore, the very small required value of the
vertical emittance of the beam. A proper alignment of the focusing and acceler-
ating elements of a linear collider is necessary to achieve the high luminosity. The
most obvious effect of misaligned focusing lenses is that the et and e~ bunches
can simply miss each other at the collision point. Even if the bunches collide,
their emittance can be already degraded during acceleration in the linacs or dis-
persion can appear in the focusing section before collision due to misalignment.
This degradation affects in turn the vertical spot size and the luminosity.

The precision of the alignment has to be so high (less than the micrometer)
that no conventional technique for position measurement can be used because
there is no way to get a reference line with the required precision. The only
way seen up to now is to have rough pre-alignment and then to use the bunches
themselves as sensors to detect the position of misaligned elements relatively to
the desired trajectory of the bunch. Therefore the alignment should be “beam
based” and also it should be dynamical (i.e., the alignment should work contin-
uously), because once aligned the collider does not stay aligned forever due to
ground motion. A prototype of such a scheme has already been applied on the
SLC [3].

The goal of this work is to derive a mathematically consistent model describing
ground motion, and to use it to predict the evolution of the beam properties with
time over wide range of time intervals — from a few pulses to years— eventually
taking the beam based dynamical alignment system into account.

1.2 Ground motion description

When the importance of ground motion for a linear collider was recognized, at-
tempts have been made to get the necessary information to describe this motion.
A pioneer work was done at SLAC more than ten years ago [4] to understand



the influence on the 50 GeV SLC linear collider, for which the ground motion
was not negligible already. For TeV linear colliders new studies have been made
in different places. In Protvino (Russia) investigations of different ground mo-
tion characteristics were made six years ago [5] and since then similar studies
have been made and are being continued in many other sites (at Novosibirsk [6],
CERN [7], KEK [8], DESY [9], Finland [10], SLAC [11] etc.). One can mention
also seismic studies performed for large circular colliders like HERA [12] or SSC
[13], because some results obtained there can be interesting for a linear collider
as well.

Let us briefly describe what kind of measurements have been performed and
what kind of information has been obtained in these studies.

All measurements of ground motion can be split in two categories. The first
one is the so-called absolute measurements. In this case usually an accelerometer
with a pendulum inside is used. It allows to measure acceleration of a single point
of the ground surface versus time. If the spectral analysis is then applied, the
spectrum of displacements can be obtained from the acceleration spectrum. This
method is called absolute measurements because the measurements are made
relatively to an object (center of the earth) placed almost infinitely far. The
second category consists of the relative measurements. In this case the relative
position of two separated points of the surface is measured. Some reference line
(strained wire, laser beam, water level in gravity field etc.) must be used in this
case. The first method is sometime refined: simultaneous measurements with two
distanced and synchronized sensors can give additional information (correlation
measurements).

1.2.1 Absolute measurements

Let us consider data treatment methods used in measurements of an absolute
motion. Once a time-dependent signal x(¢) is measured, one can introduce its
dispersion o as follows:

| T/2
2 o b 2
a_<x>_TlggoT/x(t)dt (2)
~T/2
Here and below we assume that the mean value of the signal is zero (x) = 0
namely
| T/2
() = Jim — / c(t)dt =0 (3)
~T/2

Performing the spectral analysis of the signal is useful because different vi-
bration frequencies cause different effects on the linear collider. One should note,
however, that seismic noise is a random process, so the usual Fourier spectrum
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Figure 1: Power spectrum of absolute ground motion. Measured in Protvino

(1992), CERN (1993), DESY (1994) and in Finland (1994).

does not exist (it equals to infinity) and the power spectral density (power spec-
trum in brief) should be considered.
The power spectral density is defined as

| T/2 2
p(f) = Jim | [ a(ne (4)
—-T/2

Here f is frequency, f = w/27. One of the main properties of the power spectrum
is that its integral gives squared dispersion:

o0

ot = [ p(dr (5)

— 00

In practice the measurement time 7' is limited and the power spectrum can
only be estimated by averaging Fourier spectra obtained from several measure-
ments. The number of averagings fixes the precision on this spectra: it is usually
not better than a few percents. Also, the measurement technique with discrete
sampling requires to replace the integral by a discrete sum in the formulae. Data
measured over time T" at sampling frequency fy allow to find a spectrum in the
range from 1/7T to fo/2. The dimension of the power density is m?/Hz if x(¢)
is the position; sometimes it is more convenient to use ym?/Hz. This kind of
spectra is usually plotted in logarithmic scale because of big changes over the
frequency range.

Typical power spectra measured in underground tunnels during quiet time are
shown on Fig.1 for different places. On this picture the measurements at Protvino
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Figure 2: The rms amplitude in different frequency bands versus time. Measured
in Finland, October — November 1994.

(Russia) in the 30 m underground tunnel of the UNK storage ring being under
construction [5], in the CERN 80 m underground LEP tunnel [7], in the cave
situated 40 km from Helsinki in Finland [10] and in the HERA tunnel at DESY
[9] are shown. The lines shown on the plot are approximations to be explained
later. The frequency band of the data presented on this picture is limited by the
working frequency diapason of the sensor, that is the diapason where the ratio
of signal to noise of electronics is sufficient. In order to cover a wider frequency
band, different sensors with different self-frequencies of pendulum must be used.

The power spectra in Fig.1 grow very fast with decreasing frequency. In quiet
conditions they behave approximately as p(f) o 1/f* (compare with the straight
line on this picture that corresponds to 1/f*). Sources that contribute to the
spectrum are different at different frequencies. At very low frequency f < 1 Hz
the main sources of ground motion are atmospheric activity, water motion in the
oceans, temperature variations etc. A famous example of the influence of water
motion in the nearest ocean is the peak in the band 0.1-0.2 Hz. This peak, called
sometimes as “7-second hum”, is generated by the interaction of ocean waves
with the coastline: its amplitude depends on the distance from the ocean and on
the weather conditions there. In general, vibrations in this low frequency band
f < 1 Hz depend not only on the local conditions: rather remote sources can give
significant contribution to this slow motion.

From the other side, in the band f > 1 Hz the human produced noises are
usually dominating and the power spectrum depends very much on the local
conditions. For example, all except one spectra shown on the Fig.1 were measured
during a quiet time (night, minimum of cultural noises). The spectrum measured
at DESY presents much bigger amplitudes at f > 1 Hz due to noises generated
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by different technical devices of the HERA collider.
The power spectrum allows to see contributions from different frequencies to
the dispersion according to the formula:

f1

o< f < )= [ (6)

fo

This is illustrated by Fig.2, where the contributions of different frequency bands
to the dispersion are shown. This plot is the result of continuous measurements
in Finland in the Hiidenvesi cave during October 1994 [10]. In the high frequency
part the rms amplitude is one order of magnitude larger during the working hours
than during the night time and holidays. Smooth variation of amplitudes in the
low frequency part is due to weather variations above the ocean mainly, and sharp
isolated peaks are earthquakes, usually remote.

One should note that since the power spectrum of a real signal is symmetrical,
it is sufficient to consider only positive frequencies with the proper normalization.
On all pictures in this article the measured spectra are defined so that the integral
for only positive f in (5) equals to the dispersion (2). However, in all formulae
except (6), we will use spectra defined from —oo to +o00 in such a way that for
example (5) is valid.



1.2.2 Correlation measurements

The absolute measurements, performed simultaneously by two sensors, allow to
find out the mutual power spectrum of two signals x; and x5 :

1 T/2 T/2
p12(f) = 711_{{)10 T / wl(t)e—iwtdt / w;(t/)eiwt’dt/ (7)
-T/2 -T/2

In contrast with p(w) this spectrum is complex. For a real signal x(¢) one can
write py, = pa1 so that the imaginary part is given by:

2i[m(p12) = P12 — P21 (8)

One can note that if characteristics of ground motion do not depend on the
location then this imaginary part should be equal to zero. This condition assumed
to be always satisfied.

The normalized mutual power spectrum can also be used:

Niz(f) = prll;z (9)

The real part of Ni; is called “correlation” and its module is called “coherence”.

In the frame of the mentioned assumption Ny, should be equal to its real part.
Perfect correlation between the two points corresponds to Nio( f) = 1, absence
of correlations to Nio(f) = 0, perfect anticorrelation (phase shift 7) to Ni2(f) =
—1.
In a simple case when there are only transverse waves with velocity of prop-
agation v, no dissipation and the sources of the waves are remote enough, the
correlation (9) will be equal to

Nia(f) = cos(cwL/v) (10)

where L is the distance between the probes and ¢ is a coefficient of order one
which depends on spatial distribution of the sources of the waves.

An example of the correlation measured in the CERN LEP tunnel [7] is shown
on Fig.3. Different curves correspond to different distance between sensors. One
can see a good correlation in the low frequency part f > 0.1 Hz of the spectrum.
At high frequencies the correlation between separated probes disappears. These
measurements have shown that the correlation at f > 0.1 Hz can be approximated
by (10) with the parameter v(f) close to the velocity of sound (about 3000 m/s
in that case). At smaller frequency, however, the value v(f) was observed ([5],
[7] , [9]) to be much smaller (limited precision of the used probes does not allow
to measure the value, however).
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1.2.3 Relative measurements

Measurements of a relative motion give an information about the quantity x1(¢)—
x4(t). The power spectrum p(w, L) associated to it is given by

2

T/2
ol D)= Jim | [ (ealt) = aaft))e s (11)
~T/2
in such a way that
(felt s+ L) = a(t, ) = [ (e, D)o/ (27) (12)

It depends explicitely on the distance L between points of measurements. Note
that p(w, L) and p(w) have the same dimension [m?/Hz].

An example of the spectrum of relative motion of two points separated by 5 m
is shown on Fig.4. The measurements were performed in the laboratory building
in Protvino using the strained wire technique with pick-up sensors mounted on
the tables [14]. On the same plot the results of the absolute measurements at the
same place are shown. The amplitudes in this spectrum is large compared with
the quiet spectra of Fig.1 because of noisy conditions in the laboratory. One can
see that amplitudes of relative motion are much smaller than those of absolute
motion at low frequencies. At some high frequency where correlations disappear
they starts to be similar.



The previous picture shows results of relative measurements for relatively high
frequencies. There is also a lot of data about relative measurements performed
with the geodesic technique. The time scale of these data is usually days or years
and distances are of the order of hundreds of meters. A typical example of such
data is the measurements of the long time scale displacements of the SLC tunnel
[19].

It was found in [5] that data about slow relative motion measured in different
sites of the world can be described by a simple law:

(AX?)=A-T-L (13)

where AX is the relative displacement after a time 71" of the two points sepa-
rated by a distance L. A is a constant whose value was found to be A ~ 10~*
pm? /sec/m and the variation of this value for different places in the world is not
much more than one order of magnitude [5], [15]. This formula (13) is known as
the “ATL law”.

One can see that the displacement in (13) is proportional to the square root
of the time: this stresses the random, diffusional character of the slow relative
motion. The square root dependence on the distance L can be understood by
supposing that the number of step-like breaks that appears between two points
is proportional to the distance between them. There are of course more complex
explanations of these dependencies, for example in [16] where a fractal model of
ground was developed to explain this behavior.

Although the “ATL law” was found from the direct analysis of measurements
of ground motion, its most interesting confirmations come from the observations
of beam motion in big accelerators produced by displacements of the focusing
elements. For example in [17] the measurements of the motion of the closed orbit
in the HERA circular collider have proved this “ATL law” within a wide range
of time intervals.

The ranges of T' and L where the “ATL law” is valid are very wide. In [15] it
was reported that this law is confirmed by measurements in different accelerator
tunnels in the range from minutes to tens of years and from a few meters to tens
of kilometers.

1.3 Using measured data

Let us discuss now how the available measured data on ground motion can be
used for studying the stability of linear collider.

Let us consider the power spectrum of absolute motion. Measurements show
(see above) that this spectrum behaves approximately as p(f) o 1/f* in rather
wide frequency diapason. One can notice that this spectrum, if it behaves so at
low frequencies too, gives an infinite value for the dispersion that is typical of a
random signal. This is also true for the difference of the absolute displacements

10



with finite time separation 7. The associated dispersion is given by the integral:

(o)

[+ 7) =2 = [ p()201 = cos(wr)]df (14)

— 00

which is also infinite *. Equation (14) shows that the low frequency motion
(w < 1/7) contributes to the integral with an attenuation factor (w7)?, but it is
still not enough to make the integral finite.

However, for the stability of linear colliders one is only interested in relative
displacements between two elements separated by a distance L, and hence in the
spectrum of relative motion p(w, L).

Let us try to obtain this spectrum p(w, L) from the spectrum of absolute
motion. In principle, it can be done if simultaneous absolute measurements by
the probe “1”7 and probe “2”7 are performed. These spectra are connected as
follows:

plw, L) = pi(w) + p2(w) = prz(w, L) = par(w, L) (16)

where py ,py and piy ,p2; are the usual and mutual spectra. Assuming that the
spectra of these two signals are the same p; = py = p(w), one can rewrite (16)
using definition of the correlation as:

plw, L) = p(w)2 [I = Re(Niy(w, [))] (17)

At first sight it seems that the spectrum of relative motion can be extracted
from the spectrum of absolute motion using (17). But in practice it is only
possible at high frequencies where the correlation is close to zero, and p(w, L) ~
2p(w). A problem appears at low frequencies where the correlation is close to
one: the correlated part of motion has usually a much bigger amplitude that the
uncorrelated part. So, because of the limited accuracy of sensors, the correlation
cannot be measured with the necessary precision and the formula (17) cannot be
used.

The spectrum of relative motion can be obtained, of course, directly from rela-
tive measurements. The problem here is that the measurements can be performed
only in some limited region of parameters (frequency or distance). For example,
measurements with water level system give information only about slow motion.
The strained wire technique can measure fast vibrations also, but the distance

1This formula can be obtained using the parity of p(f) and the fact that the autocorrelation
(x(t + 1) 2(t)): and the power spectrum are connected via Fourier transformation:

T/2 00
Jim o [ et nde= [ pnerd (15)
-T/2 — 00

11



between measured points is limited for this method as for the previous one too.
Optical methods have problems of accuracy over long distances etc. So there is no
ideal instrument for measuring the characteristics of ground motion. Therefore
both absolute and relative measurements should be used in complement to each
other in order to cover a wider range of parameters.

There is one essential drawback with using the spectrum of relative motion: it
does not separate contributions from different spatial wavelengths to the relative
motion of two points. These contributions may have very different impact on the
linear collider stability especially for wavelengths close to harmonics of betatron
wavelengths.

This is the main reason why a new mathematical tool describing ground mo-
tion has to be built which incorporates both results from absolute and relative
measurements and at the same time is adequate to calculate beam stability in
linear colliders.

2 Generalized description of ground motion

2.1 Two dimensional power spectrum of ground motion

As already mentioned, TeV linear colliders are very sensitive to ground motion.
But, of course, if ground motion would displace the linear collider as a whole
rigid body, it would not influence its operation. Rather smooth changes of the
shape of the collider are not dangerous too. For example, vibrations with long
spatial periods like waves from the ocean have a very small influence on the
linear collider in spite of their big amplitudes. From the other side, vibrations
with spatial periods of a few tens of meters can be dangerous, even though their
amplitudes are much smaller. Thus, it is necessary to have informations about
both time and spatial characteristics of ground motion. An adequate description
of ground motion is through the two dimensional power spectrum proposed in
[10].

Let us denote s the longitudinal position of an element along linear collider
and x(t, s) the transverse position of this element, which depends also on the time
t. The displacement x(Z, s) is an absolute one, i.e. it is measured relatively to an
infinitely remote object. We consider only transverse displacements of elements
because they are known to have the most significant influence on linear collider.

One can introduce a two dimensional power spectrum of this displacement
x(t,s) as:

Ly | T e
P(w,k) = lim lim —— / / x(t,s) e e dt ds (18)

T—oco L—oo T L
-T/2-L/2

12



where k = 27 /) and A is the spatial period of displacements. We will see later
that this spectrum contains all the necessary information for a linear collider.

The two dimensional spectrum (18) contains informations both about relative
and absolute motions. For example, it is related to the one dimensional spectrum
by the formula

plw) = [ Plok) dif(2r) (19)

The value of dispersion of the displacement x(t, s) is then given by

o’ = /Oo /Oo P(w, k) dw dk/(27)? (20)

—00 —0O0

It should of course be infinite as it is for the usual spectrum too, since the integral
extends down to w = 0.

Other spectral characteristics can be determined from this two dimensional
power spectrum. For example, the real part of the normalized mutual power
spectrum (9) for two points separated by the distance L is equal to

SEN:

P(w, k) cos(kL)dk
Re(Nip(w)) = — (21)
[ Plw, k) dk

For a linear collider we have to know the behavior of relative displacements of
two elements of the collider. Let us assume for simplicity that at the beginning
(t = 0) the collider is perfectly aligned and let us introduce the misalignment
after the time T: X(T,s) = a(t =T,s) — x(t = 0,s). Then the dispersion of the

relative misalignment over a distance L and after a time 7' is given by

o} T, L) = {[X(T.s + L)— X(T,s)]2)= | [ P(w,k)2[l — cos(wT)]

— 00 — 00

2[1 — cos(kL)] dw dk/(2m)* (22)
This is a main formula to evaluate linear collider stability with the help of the

two dimensional power spectrum.

2.2 Approximation of the two dimensional power spec-
trum based on measured data of ground motion

Unlike the absolute p(w) and relative p(w, L) power spectra the two dimensional
power spectrum P(w, k) is not directly measured in an experiment. But if one

13



knows p(w) and p(w, L) for a wide enough range of parameters, one can determine
the two dimensional power spectrum through the following identities:

plw, L) = / P(w,k)2[1 — cos(kL)]dk/(2m) (23)
and, for the back transformation:

Plw,k) = [ cos(bL) [p(w, L = 00) = plee, L)) dL (24)
0

In (24) p(w, L = 00) is equal to 2 p(w) (see (17) ) because correlations vanish at
L = oc.

Let us consider the two dimensional spectrum that corresponds to the motion
described by the “ATL law” (13). It can be written as

A

w?k?
which can be easily shown by direct substitution of (25) into (22) and comparison
with (13). The relative spectrum p(w, L) for the “ATL law” is then given by:

A-L

w2

P(w, k) =

(25)

plw, L)

We are going to use this formula as an approximation of p(w, L) in the region of
parameters where it does not contradict measured data or where it is known to
work. This formula can be used as an approximation of p(w, L) only in the region

(26)

of small frequencies, because it behaves like 1/w? while the spectrum of absolute
motion in a quiet place behaves like 1/w*. Thus for some high frequencies (26)
will contradict to the condition p(w, L) < 2p(w) which follows from (17).

From the other side, we know from correlation measurements that for some
distance L there are no correlations for some band in the high frequency region.
Thus one can use the absolute spectrum as an approximation to p(w, L) in this
region of parameters: p(w, L) = 2p(w). One can take p(w) = B/(2w?) as an
approximation for a quiet place (see Fig.1).

Let us take these two approximations with the border between them corre-
sponding to Bjwi = A- L/wi:

A-L
plw, L) = - 0<w<wy
B
plw, L) = i W Sw<oo (27)

where wy = (B/(A- L))"/%. From Eq.(27) one then obtains the following approx-
imation for the power spectrum P(w, k)

k)
A

w?k?

P(w, k) = (1 — cos(Lok)) (28)

14



with Lo = B/(A-w?). In the rest of the paper we will use this approximation as a
model for ”quiet seismic conditions” with A = 107* ym?*/sec/m for the parameter
of the ATL law, and B = 1072 um?/sec® for the parameter of the spectrum of
absolute motion, a typical value for a quiet place.
The exact result for the dispersion of the relative misalignment corresponding
to this model is then given, from Eq.(22), by
(AX%) = AT L+ A-T-L2(8i(2r) — =opml) 4

21’0

_I_B6_j: (25@(21’0) + cos(2x0) + sin(aco)*(sin(x%)—l—aco Cos(xo))) (29)

o 1’0

where 2o = T/2+/B/(L - A) and Si(x) is defined as

o0

Si(z) = —/Smtﬂdt (30)

xr

One can show from this formula that the chosen form of the P(w,k) spectrum
gives a square root dependence of the relative misalignment versus time for large
T (corresponding to the “ATL law”):

(AX*Y=A-T-L T > 1Ty (31)
while for small T" the relative misalignment is just proportional to the time T"
(AXYY=A-T?. LT, T < Ty (32)

where Ty = 7/24/A- L/B.
In fact, with a reasonable accuracy one can use the following simple formula

T

(AXH~A-T-L
T+ Ty

(33)

as an approximation of (29).

2.3 Improvements of the approximation

Let us compare the measured correlation with the one calculated from the ap-
proximation of P(w, k) expressed by (28). Using (21) and (28) one can show that
the correlation disappears for w? > B/(A - L). This contradicts the measured
data at least in the region 0.1 Hz< f < 100 Hz, where a linear dependence of
the cut frequency on the distance L has been observed [5] , [7]. The reason of
this contradiction could be the fact that contributions of elastic waves (like waves
from the ocean, for example) are not included in the power spectrum. An elastic
wave of a given frequency w may be added to the spectrum P(w, k) with some
distribution on the wave number & from 0 to k,,,.; the case k = 0 corresponds to

15



"pwk.dat" —

log10(P)

&
N\
X
N

X

N —
=
X

%
R
XXX
R
X
B
5
"
5
55
%
!
A
o
%
5§
S
55

X

\:\\s
XX
0
0
58
i
s
0
X
i
0
5
8
S
!
i

X
3
o

Q
3
S

B
565

g

S

5
5

%
S5

30 ;0

S OSSN S S S S SN SISO S SIS
S SIS SN ’;“‘,‘;‘%‘;‘ﬂﬂ‘;"“&&“‘

‘,"’ S —

=
RS
‘::“::
NN

X
R

—
e
X ?

N
N
X

N
R
XX
X
R
52
55
!

5
:

.
5
5
%!
o
5
S
o
oY
()

AX
N
N

X
5
X
\\@S
\

R

&
N
R

R
R

N
W\
X

X

X
o

X

S OSSOSO
SO S S SN
e e el et else et
SIS S S
’Q‘W“
SIS

X

&
R
X
N
NN
AR
X
0

3
Q
X
X

&
N

“:\

X

X

25 3

2
15
05 1

0
3 15 1 ‘ log10(w)

Figure 5: 3-d plot of the approximation of the two dimensional power spectrum
with additional contribution of elastic waves.

wave going perpendicular to the linear collider (transverse waves), and k = ko,
corresponds to the wave traveling along the collider. Let us add the effect of this
kind of waves to (28) in the following way:

A

w?k?

P(w, k) = (1 —cos(Lok)) + D(w) - Uk, kmaz) (34)
The function U(k, kpa:) describes the wave number distribution of the waves
with frequency w. The following expression:

. R
Ulk, ko) = VEnaa=h? (35)
0 if |k > kpas

corresponds to transverse waves propagating at the surface of the ground with
uniform distribution over azimuthal angle, with k., = w/v, and v, the velocity
of wave propagation.

Since the integral over dk/(2m) of U(k, knas) equals one, the function D(w)
describes contribution of these waves to the absolute spectrum p(w). Writing
D(w) as
aO

Dlw) =17 [dy(w — w,) /o]

allows one to take into account the peak of the waves from the oceans and also,
because of the 1/w?* dependence, to add some wave contribution at high frequen-
cies. To reproduce the spectrum corresponding to quiet conditions, like in the
LEP or UNK tunnels, we consider the following parameters: w, = 27 * 0.14 Hz

(36)

16



Correlation

rrrrrrrrrr 500 m
-—-—--1000 m
— — 2000 m

107 10" 10° 10" 10°

Frequency, Hz
Figure 6: Correlation function Nijy(w, L) for different distances calculated with

the analytic model of P(w, k) for quiet UNK or LEP tunnel conditions.

for the frequency of the peak, a, = 10um?/Hz for its amplitude and d, = 5 for
its width, and, v, = 3000 m/s for the velocity. The resulting approximation of
the two dimensional spectrum P(w, k) is shown on Fig.5 (with the (1 — cos(&))
term in (34) replaced by 1/(1 4 2/£?) to smooth the plot). The absolute power
spectrum calculated from this analytic form of P(w,k) is plotted in Fig.1 as a
solid line: one can see that it is in good agreement with the LEP and UNK power
spectra. Also, the correlation function Nis(w, L) plotted on Fig.6 exhibits a de-
creasing of the correlation in the region f = 0.01 — 0.1 Hz which was observed in
measurements ([5], [7], [9]) but not understood completely. In the framework of
our model, this behavior of correlations can be explained by the fact that below
0.1 Hz there is no more significant sources of elastic waves.

One can also build an approximation for P(w, k) which corresponds to seismic
conditions with big contributions from cultural noises (as in the HERA tunnel
[9]). In this case we introduce the three additional peaks with the following
parameters: w, = 27 * 0.14 Hz, a, = 10um?/Hz, d, = 5, v, = 1000 m/s for the
first peak, w, = 27 x 2.5 Hz, a, = 10™*um?/Hz, d, = 1.5, v, = 400 m/s for the
second, w, = 27 * 50 Hz, a, = 10~ um?/Hz, d, = 1.5, v, = 400 m/s for the
third. The thick dashed line on Fig.1 shows the spectrum of absolute motion,
calculated from P(w, k), corresponding to these parameters. The parameters a,
and d, have been chosen to fit the absolute spectrum, while the parameter v, has
been derived [22] from correlation measurements at the HERA tunnel [23] and
measurements of the closed orbit motion in HERA [17].

One can conclude that some additional data allows to build an approximation
of the P(w, k) based on (28) corresponding to local conditions with a reasonable
accuracy. At some point improving this accuracy would be useless because of
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Figure 7: Layout of the et and e~ parts of a linear collider near interaction region.

the uncertainty about conditions in which the linear collider will be operating.
Variations of local conditions seem to be larger than the uncertainty of the approx-
imations. For example the constant A can vary by about one order of magnitude
in different places and the level of cultural noise may be very different as well.
Nevertheless we believe that the two approximations for the power spectrum of
very quiet and very noisy places should be useful to investigate the beam stability
in a given collider design.

3 Calculation of beam behavior using the two
dimensional power spectrum

In this section we want to show how the two dimensional power spectrum P(w, k)
can be used to describe the beam stability in a linear collider. We will restrict
ourselves to the effects of displacements at the leading linear order on the relative
beam offset and at the leading quadratic order on the beam spot size at the IP.

3.1 Beam offset at the IP

We consider two sections of the linear collider which are symmetrical relative to
the IP (see Fig.7). We assume that both channels have been perfectly aligned
at the time ¢ = 0 on some reference coordinate? z,. Let z1 be the transverse
position of the focusing element 7 on the et side and z; on the e~ side measured
at some later time T relative to some reference line as shown on Fig.7. The
elements are enumerated from the entrance of each channel, the first element
having number 1 and the last before the IP number N. We assume that the
positions of the beams at injection 2 and x5 are related to the position of some

?This reference coordinate z..; may vary along the line: this does not affects the main results
of this paragraph.
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element, say a beam position monitor, at the entrance of the considered section®.
With this assumption, the time evolution of all the coordinates (:11;7—L

F)izon can be
described by the 2d-power spectrum like in Eq.(22)

(@E(T)= 5O = ] ] Ple,k)20L - cos(wT)]
2[1 — cos(k(sF — sT)] dw dk/(2m)? (37)

where s is the longitudinal position of the i-th element in the et and e~ beam
lines.

The most harmful effect of focusing element displacements for the luminosity
is the transverse offset (z¥ — 27) of the opposite beams at the IP. Let a; be the
first derivative of the beam transverse displacement at the IP with respect to the
displacement of the element i. At the first order, the et and e~ beam offsets at
the IP are given by

N
(le: - xref) — Rll(xat - xref) + Z az(x;t - xref) (38)

=1

where R is the transfer matrix of the section. We have assumed that the coeffi-
cients a; are the same for the e™ and for the et parts. They can be easily calcu-
lated using optical functions of the channel. For example for a short quadrupole,
a; = k;rio where k; is the integrated strength of the quadrupole and ry5 is the
element of transfer matrix from this element to the IP (for horizontal displace-
ments, for the vertical one should take rs4). By considering a rigid displacement
of the whole beam line, with xg = x; = x, it is easy to show that they satisfy the

identity
N

SNai=1-Ry (39)

=1
Since only the relative displacement of the beams at the IP influences the
luminosity, one can write for this relative offset:

et -2 = Zaz(:pj’ — ;) (40)

K3

N
=0
with the notation

g = Rll (41)
The mean value (x* — z7) is equal to zero. The mean square value is given by:

((@F —27)%) =22 aiaj{(af —27)(af —a7)) (42)

=0 5=0

3The case where the beam is injected with an angle is not considered in this paper.
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To relate the above expression to square dispersions calculated from the 2d-
spectrum by Eq.(37), one uses the following identity

(01— 2a)* + (22— 3)* — (21 — 3)* — (22 — 24)?] (43)

[N

(x1 — @2) (23 — a4) =

Assuming that the spectrum P(w, k) is homogeneous in such a way that ((z}
) = ((z7 —27)?) and ((zf — 27)?) = ((#7 — 2])?), one gets for the rms of

the relative beam offset

(2t —27)) =Y ey (((2F — 7)) = ((&F —2F)D) (44)

=0 5=0

Combining this expression with Eq.(22) allows one to calculate, from a given
model of the 2d-power spectrum P(w, k), the time evolution of the rms relative
offset after the time ¢ = 0 when it is zero.

For a pure “ATL” motion it is simply given by:

((xt —27)?) = AT ZZaiaj (|SZ+ — 57| —]sf - 3;"|) (45)

In general, Eq.(44) can be expressed as

o dk
27 27

(2t —27)?) = / /P(w,k)Q[l—cos(wT)] G(k)

—00 —0O0

(46)
with the spectral function G/(k) given by

G(k) = Z Z 2a;a; (cos(k(s;»" — 5;")) — cos(k(sf — SJ_))) (47)

=0 5=0

By taking the origin of the longitudinal coordinate s = 0 at the IP, one has
sf = —s7 and the above expression simplifies to

2

G(k) =4 (fj a; sm(ksj)) (48)

=0

The positive function G/(k) describes the spectral response to harmonic excita-
tions of spatial period of 27 /k, of the considered focusing section in terms of
relative displacement of beams at the IP. For large k£ it fluctuates around N
(if all |a;] & 1). For harmonics with long wavelengths it is proportional to k2,
except when Rjs = 0 which is the most interesting case of beam lines with a
phase advance equal to a multiple of 7. Indeed one can easily show by tilting the
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whole beam line by a constant angle z{ that the coefficients a; verify to a good
approximation - namely for thin lenses - the following identity

N
> aisi + Riz = sip (49)

=0

Since we took sip = 0 in Eq.(48), one gets for small &
30\ 2
G(k) = 4 (kRiz + O(K")) (50)

showing that the spectral function G(k) behaves as k° for & — 0 if Ry5 = 0.

Once G/(k) has been calculated for a given focusing structure Eq.(46) is useful
for comparing the behavior of beams through this structure in different seismic
conditions. It also allows one to calculate the effect of different parts of the spatial
wave-number spectrum.

3.2 Beam spot size at the IP

Transverse displacements of focusing elements can generate other effects at the IP.
For example, for the final focus system of a linear collider the next most important
effect is the spot size growth at the IP induced by dispersion, longitudinal shift of
the beam waists and xy-coupling generated by offset beams in quadrupoles and
sextupoles. At the first order in the normalized transfer matrix error at the IP

§Q =38R - R (51)

the vertical spot size growth is given by*

50; - 1 034 ? Qs 0% ? Q320 ? 0Q)36 05 :
Ty 2 s, Ty oy Ty
The first term corresponds to the 3, waist-shift generated by quadrupole and

sextupole horizontal displacements. The second and third terms correspond to
xy and 2’y couplings, and the fourth term to vertical dispersion generated by

quadrupole and sextupole vertical displacements.

The spot size growth induced by these effects can be calculated as for the offset
in Eq.(44) but with different coefficients. For instance, the vertical dispersion
0()3¢ can be written as follows

N
1y = 0Qs6 = Ta36(Yo — Yrer) + Z bi (Yi — Yrer) (53)

=1

4The linear contribution from the vertical demagnification error §@33 is usually negligible.
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Again a constant translation of the whole beam line leads to the identity

N
Z bz — —T336 (54)
=1

in such a way that the dispersion error is given by

0Q)36 = Z b; (yi - yo) (55)

=1

As for the offset rms, the dispersion rms error is then related to the 2d-power
spectrum through the following equality

((0Qs6)") = %Z_; bib; ({((yi = 90)®) + (w5 — w0)®) — (i — w))"))  (56)

This expression can also be used to defined a spectral function G, (k) associated
to the dispersion:

Gy(k) = Z Z bib; (1 — 2cos(k(s; — so)) + cos(k(s; — s5))) (57)

=1 7=1

By applying the same treatment to the other error terms in Eq.(52) and by
summing them with the dispersion term, the time evolution of the vertical spot
size of one beam can be calculated from the 2d-power spectrum P(w, k). Since
the horizontal displacements are responsible for the degradation of the spot size
induced by the waist-shift §Q)34 term, we will assume in the next section that
the horizontal and vertical ground motions are described by the same power
spectrum.

4 Application to final focus systems

The final focus system (FFS) of a linear collider is the special optical system
placed immediately before IP. It provides the required big demagnifications of
the transverse beam dimensions down to the desired beam sizes at collision. Its
optics is based on the SLC final focus system [20, 21]. Big demagnifications result
in strong focusing of the beam which in turn leads to large chromatic aberrations.
These aberrations are compensated in chromatic correction sections using bend-
ing magnets and sextupoles. Usually a final focus system has a first telescope,
two dispersive FODO sections for correction of the horizontal and vertical chro-
maticities, and a final telescope. The tightest tolerances to transverse magnet
displacements are found in the FFS (last quads, sextupoles). It is therefore natu-
ral to illustrate the use of the above formalism to describe the influence of ground
motion on such systems.
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Figure 8: Layout and optics functions of the TESLA FFS

An example of a FFS optics with magnet layout and betatron functions for
TESLA [18] is shown in Fig.8. The relevant beam parameters at the IP of some
existing linear collider projects are shown in Table 1 for a final beam energy of
250 TeV [2]. 3;, are the beta functions and o7 , the rms transverse beam size at
the IP, o, is the rms bunch length, o5 the rms relative energy spread within one
bunch or one bunch train, and f,., the repetition frequency of the bunch trains.
Usually the repetition rate of collisions within the same train in the multibunch
case 1s too high for the trajectory of a single bunch to be corrected separately. For
TESLA, however, this repetition rate (shown in brackets) may be small enough
to allow some fast bunch to bunch correction scheme. One can see from Table 1
that the vertical beam sizes at the IP are much smaller than the horizontal ones.
We therefore concentrate on the time stability of the vertical offset and spot size
which are expected to set the most severe tolerances on displacements.

TESLA SBLC | VLEPP | CLIC
3 [mm]| 25,7 | 22,8 | 100,2 | 10, 18
or [nm] | 845,19 | 678,30 [ 20006 | 250 , 7.5
o, [mm] T 0.5 0.75 0.2
frop[Hz] |5 (14 % 10°) | 50 300 | 3200
75[107%] 1 5 5 2

Table 1: Beam parameters at the IP for some final focus systems
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Figure 9: Coefficients a; (left) and b; (right) for the vertical displacement and ver-
tical dispersion of the beams at the IP of the TESLA FFS. White bars correspond

to positive values, black bars to negative ones.

4.1 Beam stability for typical quiet seismic conditions

The linear response of the FF'S optics to ground motion is mainly characterized
by the coefficients a; and b; defined above, namely the ratio of the vertical beam
offset and dispersion at the IP to the vertical displacement of each magnet in-
dexed by i. These coefficients are plotted in Fig.9 for each magnet of the TESLA
FFS. One can see from these plots that the main contribution to the beam dis-
placement at the IP comes from the two last quadrupoles, while the main sources
of dispersion errors are the first two lenses of the last telescope. Calculated from

3
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Figure 10: Spatial spectral functions G/(k) and G, (k) for the TESLA FFS.
these coefficients with Eqs.(48,57), the spatial spectral functions G'(k) and G, (k)
associated to the vertical relative offset and dispersion are plotted in Fig.10. For

small k, G,(k) behaves as k* and G(k) exhibits the &% behavior predicted in
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TESLA SBLC | VLEPP | CLIC
N5, | T (IL8x10°) | 15 15 220
N, 210 650 540 16600

Table 2: Number of pulses corresponding to 2% luminosity loss due to vertical
offset (NVs,) or vertical spot size growth (/N,x) at the IP of different projects.

Eq.(50) over a small range only.

The time evolution of the relative beam offset, the vertical beam dispersion
and spot size at the IP are shown on Figs.11, 12 and 13 assuming a perfectly
aligned system at ¢t = 0. They are calculated as explained in the preceding
section from the 2-d power spectrum P(w, k) corresponding to the quiet seismic
conditions given by Eq.(28). The offset and dispersion curves are very close
because of the similarity of the FFS designs. From the relative offset and spot
size variations one can derive the time corresponding to a loss of luminosity of
2% induced by either of these effects®. Then from the repetition rate given in
Table 1, one gets the corresponding number of pulses, reported in Table 2.

One can see from this table that, except for CLIC, the number of pulses
corresponding to 2% luminosity loss due to beam offset caused by ground motion
is very small. It means that a fast correction is necessary to keep beams head on
at the interaction point. For TESLA a fast correction within each train seems to
be required: the number of bunches in a train colliding before 2% luminosity is
lost, given in brackets, then exceeds largely the total number of bunches in the
train. One should say however that the relative offset of the beams is due at 90%
to the relative motion of the two opposing final doublets. One may hope that
these four quadrupoles, separated by less than ten meters, will be placed on some
stabilized support.

If the offset of the beams at the IP is corrected by a fast correction scheme,
the luminosity degradation is due the growth of the beam spot size. The number
of pulses before 2% luminosity loss is then of the order of one thousand. Another
correction scheme is required to realign the elements of the FFS.

4.2 Effect of different seismic conditions

Besides of the power spectrum typical of quiet sites used above, we have intro-
duced in Sect.2.3 a model for the power spectrum of the HERA tunnel with a
high level of cultural noise (cf. Figl). In fact, to account for the recent measure-
ment of the constant A entering the ATL law made at HERA [17], we should
also consider a third model obtained by taking A = 107° pm?/sec/m, that is

5The tolerances to offset do not take the beam-beam attraction into account.
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colliders.

ten times smaller than for the two preceding spectra. It is then interesting to
resume the analysis of the sensitivity of final focus systems for these spectra and
to compare it with the previous results. This is done in Fig.14 and Fig.15 for the
vertical offset and vertical dispersion at the IP of the TESLA FFS.

In these plots, curve (1) corresponds to the quiet spectrum given by Eq.(28),
curve (2) to the spectrum given by Eq.(34) with the 4 additional waves (one
from the ocean and three local ones) and A = 107" um?/sec/m, while curve (3)
should describe more accurately the conditions prevailing at DESY with the same
waves and A = 107° pm?/sec/m. The approximation with only the additional
contribution of waves from the ocean gives the same results as curves (1) within
2%. This can be explained by the fact that these waves are very well correlated.

These comparisons show that the impact of the cultural noise is very impor-
tant for the short time correction of the offset jitter, and is negligible for the
long time correction of the dispersion. For TESLA the tolerance on the vertical
dispersion from 2% luminosity loss is around 4 pm: it is therefore set by the ATL
part of the spectrum. On the contrary, the tolerance on the offset is around 5
nm and corresponds to the offset predicted after only 1 msec, that is roughly the
length of one bunch train. This means that a continuous offset correction inside
of the bunch train would just start to be required for a higher level of local noise.

The effect of the local cultural waves appears also clearly in the integral of
the spectral function G/(k) for the relative offset

/Ok ‘;—]:/Om P(w, k) Gk 2(1 — cos(wT)) g—j (58)
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wake number k to the offset of the beams at IP of the TESLA FFS for 7" = 0.03
s. Solid line: quiet spectrum, dashed line: HERA spectrum.

up to a given wave number £ and normalized by its total integral i.e. by the
rms offset according to Eq.(46). This integral is plotted in Fig.(16) for the quiet
and HERA seismic conditions for TESLA after a time 7' = 0.03 s. The regions
of wave numbers where it increases rapidly are therefore the most harmful ones.
It is clear that the local waves of the HERA spectrum contribute mostly in the
region of wavelengths around 10 meter comparable to the lattice periods and
beta-functions. This is of course the most dangerous region.

5 Conclusion

The influence of ground motion is expected to be very important for the fu-
ture TeV linear colliders. It will require precise alignment techniques probably
combined with damping of the magnet vibrations. To describe this influence
quantitatively in terms of beam properties and luminosity at the IP, we propose
to use the power spectrum P(w, k), previously introduced by one of the author.
This two dimensional power spectrum describes both the time and spatial prop-
erties of ground motion. It also encompasses the power spectra associated to the
absolute and to the relative displacements such as the ATL law describing slow
diffusive motion. Various expressions of this spectrum can be built to modelize
the information about absolute and relative measurements of ground motion. We
have derived two such models to account for typical low or high cultural noise
conditions.

We then described the formalism which allows to express the time evolution of
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typical beam properties, such as beam offset, dispersion or spot size, for a beam
line submitted to transverse vibrations corresponding to a given power spectrum
P(w, k) of ground motion. Finally we applied this formalism to analyze the sensi-
tivity of various final focus systems for linear collider designs to ground vibrations
over short and long time ranges, using and comparing the power spectra for quiet
and noisy conditions.
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