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Abstract

Aiming at increasing the apparent bunchlength and hence the beam life
time in electrons storage rings, RF phase modulation near one parametric
resonance has been experimentally investigated. Since the possible bene�t
of this technique depends greatly on the ring parameters, we studied the
e�ect of such a modulation for di�erent RF parameters on the longitudinal
emittance. Theoretical predictions and results of simulations are compared
and discussed. It is shown that synchrotron radiation tends to spoil the
parametric resonance. In particular, a criterion for islands survival has been
found.

1 Introduction

In order to reach very high brilliance, Synchrotron Radiation Light Sources de-

mand intense bunches with very small transverse and longitudinal emittances.

However the high density of electrons increases the Touschek e�ect (e�,e� colli-

sions at large angle) and thus reduces the beam lifetime. In order to reduce the

electron density, di�erent approaches have been considered: a higher harmonic

cavity operating in the bunch lengthening mode or a RF phase modulation [1]

which increases the apparent bunchlength but also the energy spread of the beam.

This paper focuses on the second method, especially near the third-integer reso-

nance, more appropriate than the integer resonance. The latter, widely explained

in previous papers [2], is too strong to be useful in storage rings - distinct bunch-

lets with large spacing are formed - and is brie
y discussed in Chapter 2. The
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third-integer resonance, more promising, can be controlled through the two mod-

ulation parameters, frequency !m and amplitude Am, which must be �rst prop-

erly chosen. Analytical expressions of �xed points and island widths are given

in Chapter 3 and help for the optimization of the modulation. For illustration,

three Synchrotron Light Sources are compared: BESSY I, SOLEIL and Super-

ACO. Lastly, the combined e�ect of both synchrotron radiation and parametric

resonance is studied in Chapter 4. Islands created by RF modulation tend to

vanish as soon as radiation damping is introduced. A criterion, which guarantees

island formation is then inferred from the Fokker-Planck equation. The validity

of the criterion is �nally tested with di�erent parameters of the three machines.

2 Integer Resonance

The integer resonance has been thoroughly analysed in [2]. The particle motion

can be characterized by three regimes according to the value of modulation tune,

with respect to a bifurcation frequency, given by:

!c = !s[1� 3
16(4Am)

2=3]

with !s the synchrotron frequency and Am the amplitude of the perturbation of

the �rst harmonic.

Well-below the bifurcation frequency !c, two stable �xed points de�ne two

well separated domains, that particles �ll with about the same proportion. Above

!c, only the farthest stable �xed point is left and the particles di�use towards

this o�-centered island.

The three regimes of the integer resonance have been simulated with the pa-

rameters of the SOLEIL storage ring. Figure 1 shows for example the gathering

of particles, initially uniformly distributed in phase space, into the islands after
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Figure 1: Particles in normalized phase space (�; �) with RF phase modulation
at the integer resonance.

a few damping times for di�erent modulation tunes. As soon as the modula-

tion amplitude is large enough so that the integer resonance takes place, dipole

oscillations of large magnitude are created, whatever the regime. The integer

parametric resonance is de�nitively not an appropriate method for decreasing

the electron density of the bunch.

3 Third-integer resonance

3.1 Hamiltonian of the third-integer resonance: !m � 3!s

Only the main results are recalled hereafter and detailed derivations can be found

in Appendix A. We consider a phase modulation with frequency close to three

times the synchrotron frequency. The complete perturbated Hamiltonian, as a

function of the phase � and the energy deviation � of one particle can be written

as:

H(�; �) = !s
2 �

2 + !s tan�s(sin� cos(Am sin !mt) + cos� sin(Am sin !mt))
�!s cos� cos(Am sin!mt) + !s sin� sin(Am sin !mt)� !s� tan�s

(1)

where !s is the synchrotron frequency and we de�ne �s = � � �s with �s the

synchronous angle.
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We examine the Hamiltonian in the coordinate frame, rotating at the modu-

lation frequency, by using the action-angle variables ( ~J; ~ ) de�ned as:

� = �
p
2 ~J cos( ~ + !m t=3); � = �

p
2 ~J sin( ~ + !m t=3)

Expanding into Bessel functions and assuming to be close to the third-integer

parametric resonance, the time-averaged Hamiltonian, representing the motion

invariant, takes the simple form:

< K >t= (!s � !m
3
) ~J � !s ~J2

16
� !s Am (2 ~J)3=2

48
cos 3 ~ � !s (2)

In addition to the �rst linear term of the third-integer resonance, the hamil-

tonian comprises higher order functions of ~J . The cosine term provides the

~ -periodicity of 2�=3 . The terms, like !s, which do not depend on ~J and ~ , do

not a�ect the di�erential equations and can hence be ignored. In the new phase

space ( ~J; ~ ), the stationary trajectories are given by the K-constant contours.

Position and width of the three islands, which determine the phase space

occupied by the beam, are controlled by the modulation parameters and must be

properly adjusted.

3.2 Fixed Points

The coordinates (�� ; ��) of the three stable �xed points are (for ~ = 0; 2�
3 ;

4�
3 ):

�� =
am
2 [1 + RFP ]; �am

4 [1 +RFP ]; �am
4 [1 +RFP ]

�� = 0;
p
3 � am4 [1 +RFP ]; �p3 � am4 [1 +RFP ]

(3)

with the factorRFP =
q
1 + 64Q2

s
a2m(��h�)2

� (1� !m
3!s

), where am is the normalized

modulation amplitude (Am is in units of rms bunchlength), Qs is the synchrotron

tune, �� is the natural energy spread, � is the momentum compaction and h is

the harmonic number.
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The �xed points position depends on ring and RF modulation parameters.

In order to depopulate the bunch center as much as possible, islands have to be

large enough on one hand, and to be placed close to the bunch core on the other

hand. However, the previous equation (3) shows that the stable �xed points can

never reach the origin, even for a vanishing distance to the resonance (!m� 3!s)

and are bounded by the lower limit am. Figure 2 illustrates this limit.
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Figure 2: SOLEIL: Evolution of the amplitude �� of the stable �xed point versus
the third-integer resonance coe�cient (1� !m=3!s).

3.3 Island width

The island width is given by the distance between the separatrice, curve joining

the unstable �xed points, and the stable �xed points, where the hamiltonian is

maximum [3]. The normalized width (in � units) expressed in terms of storage

ring parameters is given by:

� �� = � 16

r
2

3
� ( Qs
��� h

)3=2 � (1� !m=3!s)
3=4 � 1p

am � RFP (4)
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Figure 3: K-constant contours plotted in normalized phase space (�; �) for
SOLEIL ring parameters (curves surrounding the stable �xed points are in solid
lines and curves surrounding the unstable �xed points are in dashed lines).
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The K-constant contours, calculated for the SOLEIL ring, are shown in �gure

3. At small amplitude, the motion is nearly not a�ected by the resonance. Moving

away from the origin, the circles become more and more distorted, until reaching

the islands. The expression (4) reveals that the more !m tends to 3!s, the more

the island width is reduced. The width is drawn in Figure 4 as a function of the

distance to the resonance and scales as the power one quarter. There is then a

trade-o� between island position (!m very close to 3!s) and the island width

(!m not too close to 3!s).
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Figure 4: � �� in � units versus the modulation frequency coe�cient (1 �
!m=3!s).

3.4 Chirikov criterion

The Chirikov criterion [4] is used to estimate the onset of stochastic instability.

In particular, chaotic behavior can occur when islands of two successive para-

metric resonances are too close and the overlap of resonances begins when their

separatrices are in contact. As we will see later, this chaotic motion has been

observed in some simulations with SOLEIL parameters.
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(a) chaotic behaviour
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(b) nonchaotic behaviour

Figure 5: Single bunch tracking in normalized phase space (��; ��). Dark points
represent the third-integer resonance e�ect, grey points represent the �fth-integer
resonance e�ect.

The Chirikov criterion is given by [4]:

� ~J1 +� ~J2 << � ~J (5)

where � ~J1 and � ~J2 are the island widths of the third-integer and the �fth-integer

resonances, respectively, and � ~J is the island spacing in amplitude.

In case of RF phase modulation, and possible interaction between the third-

and �fth-integer resonances, the criterion becomes:

(Am6 )1=2 � (1� !m
3!s

)3=4 << �!s
!s

with �!s=!s = 1=6m2 and m = 3 for the third-integer resonance.

Expressed in terms of the normalized modulation amplitude, the condition

on the modulation tune for a nonchaotic behaviour can be written as:

!m
!s

>> 3� [1� [
1

54
(

6!s
!RF ��� am

)1=2]4=3] (6)

Figure 5 reproduces two numerical simulations for SOLEIL (chaotic behaviour)

and for BESSY I (nonchaotic behaviour). In a nonchaotic behaviour, the �fth-
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integer resonance has islands very far from the third-integer one, more than 15 �

(�gure 5-b) with small widths, in comparison to the island spacing. The particles

are then independently governed by each resonance. Conversely, the �fth-integer

islands hit the separatrices of the third-integer islands in case of chaotic behaviour

(�gure 5-a). The particles can then di�use from one resonance to the next one,

leading to particle loss.

3.5 Optimization of the RF phase modulation parameters

The modulation parameters, frequency !m and amplitude Am, have been �rst

optimized with the help of the analytical expressions (3) and (4), together with

di�erent storage ring parameters [5]. Table 1 summarizes the relevant parameters

used for three light sources: SOLEIL, BESSY I and SuperACO.

SOLEIL BESSY I SuperACO

Frequency (MHz) 352.2 499.2 100.0

Harmonic Number 396 104 24

Momentum Compaction 4:77 � 10�4 1:5 � 10�2 1:48 � 10�2
Nominal Energy (MeV) 2500 800 800

Energy loss/turn (keV) 800 20 21.3

Total RF Voltage (MV) 3.8 0.2 0.17

Longitudinal Damping Time (ms) 4:33 10:0 8:5

Natural Energy Spread 9:24 � 10�4 5:0 � 10�4 5:5 � 10�4
Bunchlength/wavelength: �L=�RF (%) 2 7:9 4:5

Table 1: Synchrotron Light Sources main parameters.

Both parameters, amplitude Am and frequency !m of RF phase modulation,

are given in table 2 after optimization. The corresponding stationary trajectories

are plotted in �gure 6. It is worth noting that the am value is moderate for

preventing any coherent motion of the whole bunch and that the �xed points are

close enough to the bunch core, while keeping a su�cient island width.

When the bunch is short compared to the RF wavelength, especially for

SOLEIL, the modulation frequency has to be moved very close to 3!s in or-
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(c) SuperAco

Figure 6: Separatrices and K-constant contours in normalized phase space
(�� ; ��) with RF phase modulation of the third-integer.

SOLEIL BESSY I SuperACO

!m=!s 2.9995 2.9850 2.9950

Am (degrees) 1.48 5.68 3.24

SFPs coordinates (0;+2:54) (0;+3:39) (0;+3:43)
(��; ��) (+2:20;�1:27) (+2:94;�1:69) (+2:97;�1:71)

(�2:20;�1:27) (�2:94;�1:69) (�2:97;�1:71)
Island width (� units) 2.29 2.71 2.77

Table 2: Final optimization of the RF phase modulation parameters and islands
characteristics for each machines.
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der to draw the �xed points to the origin. With these optimized parameters, we

note that the particles, initially located at 1 �, will be drawn out up to nearly 3 �

for the three machines. A signi�cant bunchlengthening is therefore expected.

4 Synchrotron radiation e�ect

In the previous analytical treatment, the synchrotron radiation e�ect, including

radiation damping and quantum excitation, has not been taken into account.

However, this e�ect cannot be neglected in storage rings, where these terms can

be as large as the parametric resonance terms.

4.1 Fokker-Planck treatment

Due to the dissipative nature of the system, the previous Hamiltonian treatment

can not be directly applied in presence of synchrotron radiation. The present

analysis is based on the Vlasov equation with the Fokker-Planck collision term:

@ F

@ t
+ fH;Fg = R (7)

where F (�; �; t) is the distribution function of particles in the bunch, R =

@
@� (
d F �+�

@ F
@� ) is the collision term describing the synchrotron radiation e�ect

and f� � �g denotes the Poisson bracket term. K is the perturbated Hamiltonian,


d = 1=Trad is the radiation damping rate and � is the quantic di�usion factor,

related to 
d with �� =
q

�

d
.

With the help of the four partial derivatives:

@ ~J
@ � = �

p
2 ~J cos ~ ; @ ~J

@ � = �
p
2 ~J sin ~ ; @ ~ 

@ � = � sin ~ p
2 ~J
; @ ~ 

@ � = � cos ~ p
2 ~J
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the new Fokker-Planck equation, in terms of ( ~J; ~ ) variables, is:

@ F

@ t
+
@ F

@ ~ 

@ K

@ ~J
� @ F

@ ~J

@ K

@ ~ 
= 2

@

@ ~J
[
d ~JF + � ~J

@ F

@ ~J
] (8)

Replacing K in eq. (8) by its expression in ( ~J; ~ ) variables, and as this equa-

tion has now a stationnary solution (@ F=@ t = 0), then the problem is reduced

to:

@ F
@ ~ 

� [(!s � !m=3)� !s ~J
8 � !sAm cos3 ~ 

16 (2 ~J)1=2]

= 2 � ~J @2 F
@ ~J2

+ @ F
@ ~J

� [!sAm(2 ~J)3=2

16 sin 3 ~ + 2
d ~J + 2�] + 2
d F
(9)

We are interested in the part which contains the @
@ ~J

derivatives. The sep-

aration needs to �x the variable ~ = ~ 1 in the rotating frame, and using the

usual separating variables method (F ( ~J; ~ ) = g( ~ )� h( ~J)), the equation can be

written as:

a( ~J)
@2 h

@ ~J2
+ b( ~J)

@ h

@ ~J
+ c( ~J) h = 0 (10)

where 8>>>>>><
>>>>>>:

a( ~J) = 2 � ~J

b( ~J) = 2[!sAm (2 ~J)3=2

32 sin 3 ~ 1 + 
d ~J + �]

c( ~J) = 2 
d

If the amplitude of the third-integer modulation is equal to zero, we �nd the

well-known Haissinski steady state solution, where h describes a gaussian bunch:

h( ~J) = 
d
� e

� 
d
�

~J or h(�; �) = 
d
� e

� 
d
�

(�
2+�2

2 )

Finally, the bunch shape, given by the distribution h( ~J), will get the form:

A( ~J)� e
� b( ~J)

a( ~J) (where A( ~J) is an amplitude term coming from the resolution of

eq. (10)).
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The relevant term b( ~J), which contains the third-integer resonance pertur-

bation with the synchrotron radiation e�ect, will determine the bunch gaussian

shape or the modulated shape by islands formation. Thus the RF phase modula-

tion is still e�cient if the magnitude of the �rst coe�cient is larger than the two

last coe�cients.

4.2 Island formation criterion

The three coe�cients of the bracket term are:

C1 =
!sAm(2 ~J)3=2

32 sin 3 ~ 1 ; C2 = 
d ~J ; C3 = �

The C3 term, generally much smaller than C1 and C2, can be neglected.

When the modulation parameters are optimized to catch the particles located

in the bunch core (1 �), it is particularly interesting to estimate if the particles

are attracted in the islands or if they stay damped. With physical phase space

variables (�; �), and the assumption that 1� particles are treated, then the coef-

�cients can be written as:

C1 =
!sAm
16 (�h ��Qs

)3 ; C2 =
1

Trad
(�h��Qs

)2 ;

Expressing the perturbation amplitude Am in � units of the bunch, i.e. Am =

am �� and am is an integer, we �nd a limit value of the radiation damping time

for the formation of islands:

Trad >
16Qs

!RF �2 h am
� 1

�2�
(11)

Whenever the radiation damping time will be larger, third-integer resonance

dominates and islands will be formed.
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4.3 Simulations of formation or destruction of islands

The validity of the island survival criterion has been checked for various parame-

ters of the three previous machines with the help of a multi-particle tracking code,

which simulates the motion of particles with RF phase modulation, synchrotron

radiation and quantum excitation. The simulation is based on the following re-

cursive equations:

��n+1 = �n + 2�Qs � �n
� �n+1 = (1� 2

TradF0
) � �n + 2p

TradF0
��RI � 2�Qs

cos�s
(sin(�s + (�n+1 + Am sin!mt))� sin�s)

(12)

where RI is a random number of normal distribution and Fo the revolution fre-

quency.

For each calculation, the RF phase modulation parameters (!m; am) have

been �rst optimized to get well-shaped islands. Furthermore, in order to shorten

the simulation time for the criterion checking, it is preferable to use the en-

ergy spread parameter �� instead of Trad. Thus the criterion is now written as:

�� >
q

1
Trad

� 16Qs

!RF �2 h am
.

For each machine, island formation and destruction were looked for, by using

two values of energy spread: the natural one and a �ctive one, giving the reverse

situation.

Figures 7, 8 and 9 give the particle distribution in phase space, showing the

island destruction for Soleil (�gure 7-left), SuperAco (�gure 9-left) and the island

formation for Bessy I (�gure 8-right) with their natural energy spread. Table

3 summarizes the energy spread values, which were tested, as well as the limit

value (natural energy spread are in bold characters). The energy spread of Su-
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SOLEIL BESSY I SuperACO

�� lim 11:13 10�3 4:14 10�4 14:02 10�4

Island formation �� = 15:0 10�3 ������ = 5:0 10�45:0 10�45:0 10�4 �� = 18:33 10�4

!mchaos=!mmodul 1.05 0.93 0.96

No Island ������ = 9:24 10�49:24 10�49:24 10�4 �� = 2:3 10�4 ������ = 5:5 10�45:5 10�45:5 10�4

!mchaos=!mmodul 0.81 0.89 0.89

Table 3: �� parameter of island formation or island absence due to the strong
damping force.
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(a) Soleil: natural value of �� = 9:24 10�4.
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(b) Soleil: �� = 15:0 10�3 modi�ed for is-
land formation in agreement with the crite-
rion limit.

Figure 7: Snapshots (105 particles) in normalized phase space (��; ��) with island
destruction (left) and island formation (right) for Soleil.

perAco, which was chosen for island creation, is larger than the natural one, but

corresponds nevertheless to a real situation, when the beam current is well above

the turbulent regime.

It is worthwhile noting that, the required energy spread for island formation

is much higher for the SOLEIL ring than for the other ones, due mainly to the

low value of the momentum compaction. In addition, assuming an energy spread

larger than the limit value, chaotic motion and particle loss can be observed in

Figure 7, as predicted by the Chirikov criterion (cf. Table 3).
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(a) Bessy I: �� = 2:3 10�4 modi�ed for is-
land destruction in agreement with the cri-
terion limit.
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(b) Bessy I: natural value of �� = 5:0 10�4.

Figure 8: Snapshots (105 particles)in normalized phase space (�� ; ��) with island
destruction (left) and island formation (right) for Bessy I.
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(a) SuperAco: natural value of �� =
5:5 10�4 for a bunch current equal to zero,
there is island destruction in agreement with
the criterion limit.
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(b) SuperAco: natural value of �� =
18:33 10�4 for a bunch current equal to 60
mA, there is island formation in agreement
with the criterion limit.

Figure 9: Snapshots (105 particles) in normalized phase space (��; ��) with island
destruction (left) and island formation (right) for SuperAco.
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(b) Bessy I
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(c) SuperAco

Figure 10: Distribution in charge versus the normalized angle �� of a bunch of
100000 particles in situations where islands are formed.

Finally, �gure 10 shows the enlarged charge distributions at di�erent times ,

as well as the initial gaussian distribution for comparison. Except for SOLEIL,

the net bunchlength has been increased by a factor between 2 and 3, but at the

expense of a similar widening in energy spread, since islands are rotating in phase

space at the modulation frequency !m.

5 Conclusion

With properly chosen parameters, the RF phase modulation method allows to

enlarge the phase space occupied by the beam. However, the energy spread is also

increased, by the same bunchlengthening factor. The Touschek lifetime can then

be increased by a factor two, as it has been observed in BESSY I and ASTRID

[6], but at the expense of beam quality, a�ecting in particular the brilliance in

synchrotron light sources. In addition, synchrotron radiation e�ect can prevent

island formation in some cases, which can be predicted by a criterion on the

minimum required energy spread.
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A APPENDIX

The properties of the Hamiltonian for the synchrotron motion with RF phase

modulation are discussed. The longitudinal phase space will be transformed to

action-angle coordinates, where the Hamiltonian in the rotating frame will be

derived. We would explain why odd resonances are only considered and the

complete perturbated Hamiltonian is calculated. Fixed points coordinates and

island widths are derived in both frames (�; �) and ( ~J; ~ ).

The action angle of the perturbed hamiltonian (RF phase modula-

tion with amplitude Am and frequency !m)

8><
>:

d�
dt = !s � �

d�
dt = � !s

cos�s
(sin(�s + (�+ Am sin!mt))� sin�s)

The complete perturbated Hamiltonian in (�; �) variables is given by:

H1(�; �) =
!s
2 �

2 + !s tan�s(sin� cos(Am sin !mt) + cos� sin(Am sin !mt))

�!s cos� cos(Am sin!mt) + !s sin� sin(Am sin !mt) � !s� tan�s
(13)

The �rst canonical tranformation in action-angle coordinates (J;  ) gives the

new Hamiltonian:

H1(J;  ) = !s J sin 2 + !s tan�s[sin(
p
2J cos +Am sin(!mt))]

�!s[cos(
p
2J cos +Am sin !mt)]� !s tan�s(

p
2J cos )

(14)

The perturbated Hamiltonian is much more complicated and the perturbated

part is not clearly de�ned. The Hamiltonian, expanding into Bessel functions, is

written as:

H1(J;  ) = !s J sin 
2 � !s Jo(

p
2J)� 2!s

P1
k=1(�1)k � J2k(

p
2J) � cos(2k )

�!s tan�s
p
2J � cos + !s tan�sAm sin(!mt) � Jo(

p
2J)
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+2!s tan�s
P1

k=0(�1)k � J2k+1(
p
2J) � cos((2k+ 1) )

+!sAm
P1

k=0(�1)k � J2k+1(
p
2J) � [sin(!mt� (2k+ 1) )| {z }

odd resonances

]

+!s tan�sAm
P1

k=1(�1)k � J2k(
p
2J) � [sin(!mt � 2k )| {z }

even resonances

]

All resonances appear: odd resonances sin(!mt � (2k + 1) ) and even res-

onances sin(!mt � 2k ) (terms with plus sign are non-resonnant terms). All

the terms containing tan�s are neglected in the following, because generally in

storage rings, bunches are placed for the maximum RF acceptance, so the syn-

chronous phase �s �! 0. For this reason even resonances can be neglected,

compared to the odd ones.

Study of the third-integer resonance: !m � 3!s

Assuming to be close to the third-integer resonance (k=1) and that all non-

resonant terms in the Hamiltonian can be neglected, then the Hamiltonian be-

comes:

H1(J;  ) = !s J � !s J2

16 �!s � !s J
2 cos 2 � 2!s

P1
k=1(�1)k � J2k(

p
2J) � cos(2k )

�!s Am � J3(
p
2J) � sin(!mt� 3 )

H1 is time dependant again. A new canonical transformation in a rotating

system in phase space suppress this constraint. The generating function of the

second type is used for the new transformation:

F2( ~J; ~ ) = ( � !mt
3 � �

2 )� ~J

with ~J = J and ~ =  � !m t=3� �=2.

The new hamiltonian K is independant of the time, thus it is a constant of

the motion:
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K = H1 +
@ F2
@ t = H1 + (�!m

3 ) ~J

In the rotating frame, the particle trajectories are described by the total time-

averaged Hamiltonian K:

< K >t= (!s � !m
3
) ~J � !s ~J2

16
� !s Am (2 ~J)3=2

48
cos 3 ~ � !s (15)

Terms in the Hamiltonian which are not functions of ~J and ~ do not a�ect

the di�erential equations for ~J and ~ and thus can be ignored in the following

(!s is also forgotten).

Fixed Points Calculation

These �xed points are obtained by the following conditions:8>><
>>:

d ~J
dt = �@ K

@ ~ 
= 0

d ~ 
dt = @K

@ ~J
= 0

(16)

With both equations, 6 �xed points are found for which the sign of cos 3 ~ 

determines their stability or the instability:

� 3 Stable Fixed Points (SFPs) for ~ = 0; 2�3 ;
4�
3 .

They are stable because the term cos 3 ~ is positive, the potential has a

minimum.

� 3 Unstable Fixed Points (UFPs) for ~ = �
3 ; �;

5�
3 .

They are unstable because the term cos 3 ~ is negative, the potential has a

maximum.

The trajectories surrounding the stable �xed points are closed and formed

islands of stability for particles, whereas the trajectories surrounding the UFP's

are hyperbolics and these curves are separatrices, which are the boundaries of
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the stable islands. In the new phase space ( ~J; ~ ), the stationary trajectories cor-

respond to the K-constant contours.

The coordinates (��; ��) of the three stable �xed points are (for ~ = 0; 2�
3 ;

4�
3 ):

�� =
am
2 [1 + RFP ]; �am

4 [1 +RFP ]; �am
4 [1 +RFP ]

�� = 0;
p
3 � am4 [1 +RFP ]; �p3 � am4 [1 +RFP ]

(17)

The coordinates (��; ��) of the three unstable �xed points are:

�� = �am
2 [1�RFP ]; �am

4 [1�RFP ]; �am
4 [1� RFP ]

�� = 0;
p
3 � am4 [1�RFP ]; �p3 � am4 [1�RFP ] (18)

with the factorRFP =
q
1 + 64Q2

s
a2m(��h�)2

� (1� !m
3!s

), where am is the normalized

modulation amplitude (Am is in units of rms bunchlength), Qs is the synchrotron

tune, �� is the natural energy spread, � is the momentum compaction and h is the

harmonic number. When !m tends to 3!s, the UFPs coordinates are cancelled.

Islands width Calculation

The boundaries of the stable islands are formed by curves joining the un-

stable �xed points. As K is a constant of the curve, we can write: K( ~J; ~ ) =

K( ~JUFP ; ~ UFP ) where ~JUFP is the action at the unstable �xed points ; also on

the separatrice we �nd:

( ~J � ~JUFP )
2 ' Am (16 (1� !m=3!s))3=2 (1 + cos 3 ~ )

3
(19)

The island width � ~J is given by the distance between the separatrice and the

stable �xed poins, where the hamiltonian is maximum [3]:

� ~J = � 8

r
Am � 2 (1� !m=3!s)3=2

3

For the easiest stable �xed point, where ~ = 0, and with the variable changing,

� ~J = ( ~JSFP � ~JUFP ) =
(�2SFP��2UFP )

2 and �2SFP � �2UFP = (�SFP � �UFP ) (�SFP +
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�UFP ) = �� � (�SFP + �UFP ), then the island width in phase space coordinates

is:

� � = � 16

r
Am � 2(1� !m=3!s)3=2

3
� 1

�SFP + �UFP

The island width, normalized in � units and expressed with storage ring

parameters, is:

� �� = � 16

r
2

3
� ( Qs
��� h

)3=2 � (1� !m=3!s)3=4� 1p
amRFP

(20)

Generally, 64Q2
s

a2m(��h�)2
� (1 � !m

3!s
) >> 1, then we can make approximation for

eq. (20), so we obtain:

� �� ' � 2

r
2

3
� ( Qs
��� h

)1=2 � (1� !m=3!s)1=4� pam (21)

The island width grows with am, but it is reduced when !m tends to 3!s (� �� /

(1� !m
3!s

)1=4).
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