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Abstract--We present the first results in the elaboration of a 

design and development process that tackles recurrent problems 
encountered when developing acquisition and triggering systems 
for high-energy physics experiments. These problems include 
software/hardware frontier definition and the impact of both 
intrinsic and performance-related parallelism on software 
development. Based on the UML (Unified Modeling Language) 
and its extension mechanisms, the process aims at capturing 
rules, constraints and simple mechanisms that 1) separate 
functional concerns from deployment specifications, including 
hardware-software separation, and 2) transparently and 
automatically derive distribution patterns from system-level 
definitions. The process is intended to grow progressively into a 
design framework that will both enforce its rules and constraints 
and implement design patterns that result from our experience of 
HEP (High Energy Physics) TDAQ (Trigger and Data 
Acquisition) system development. 

I. INTRODUCTION 

HE digital systems developed for data acquisition and 
real-time processing in HEP experiments keep getting 

bigger and globally more complex [1], [2], [3]. The 
constraints on such systems are more stringent than ever both 
in terms of performance and robustness. To be able to cope 
with the design and development challenges that such 
growing complexity and size entail, the engineers of the HEP 
community have to fathom new methods and tools that make 
these future systems feasible, cost-effective and maintainable 
over many years. 

Computer science experience and applied research [4]-[9] 
show that major solutions to system design rationalization 
always involve the abstraction of processes and patterns 
specific to the application domain and their implementation as 
reusable components inside a domain-specific framework. We 
have therefore started a reflection leading us to elaborate on a 
design methodology specifically adapted to data acquisition 
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and trigger systems such as those developed in HEP-like 
experiments. We have begun expressing the results of our 
reflection in the form of a development process or 
‘conceptual’ framework that will be the basis for the 
progressive development of an ‘actual’ design framework that 
will include generic design architectures and reusable 
components [7]-[9]. We believe that a successful design 
framework cannot be built a priori with components that are 
supposed to be generic from the beginning. Instead, we try, 
more pragmatically, to capture rules and constraints that will 
seemingly enhance design quality, using the experience of 
HEP TDAQ designers and in the light of new concepts, 
methodologies and technologies provided by the industrial 
and research communities of embedded and real-time 
electronic systems. Hence, the purpose of this paper, which is 
to discuss a number of concepts and ideas related to recurrent 
problems encountered in the design of TDAQ systems. 

In section II we discuss the necessity of a separation of 
concerns in the overall development process, between 
functional and distribution issues. This necessity pertains to 
the need for multiple distribution schemes, flexibility in the 
definition of hardware/software frontier and difference in 
design impacts of performance-related parallelism and 
intrinsic parallelism. Distribution issues are raised by the 
necessity to implement the functional specifications of a 
system over computing resources that are somehow “spread-
out.” What we call “deployment” is any scheme that aims at 
realizing this implementation. 

In section III, we briefly justify our choice of the UML 
notation and, using a toy example, we present two classes of 
UML diagrams respectively devoted to functional and 
deployment specifications. We also point out some UML 
extensions needed for our purposes. 

In section IV, we present a scheme for the automation of 
distribution-specific patterns through the analysis of 
functional and deployment specifications. 

Section V is devoted to a discussion on the choice of 
development and distribution technologies for a TDAQ 
framework in the context of HEP experiments, especially 
taking into account maintainability and evolution in projects 
with lifetimes that span over many years. 

We conclude the paper in section VI by showing the 
benefits of these first ideas for a TDAQ conceptual design 
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framework and presenting future research plans on the 
subject. 

II. SEPARATING FUNCTIONAL DESIGN AND SYSTEM 

DEPLOYMENT 

A. Multiple Distribution Schemes During Design and 
Development 

HEP TDAQ systems are large-scale, complex systems that 
necessitate a progressive and incremental design process. 
Basically, we have physics detectors whose topology and 
qualities are essentially determined by the scientific principles 
on which the experiment is based. They produce signals that 
are digitized by the front-end electronics. The function of the 
TDAQ system is to process the data produced by the front-
end electronics and store the results for further scientific 
analysis. Therefore, the TDAQ subsystem designers are 
basically given the geometrical organization of an input data-
flow together with a quantitative estimation of its extent. 
From that, they must design a subsystem that carries out the 
required processing and/or acquisition. 

The development process goes through a general 
specification phase in which the principle of the final 
distribution scheme is devised by specifying the processing 
nodes (participants) and their interconnections (topology). 
The actual design and development of the subsystem then 
consists in a considerable number of successive 
hardware/software developments, design refinements, tests 
and optimizations. We might say that the final system will 
progressively grow from a seminal simple system through 
successive "complexifications." This is an iterative process in 
which each cycle will produce an intermediary distribution 
scheme. For instance, we might begin with a purely functional 
program running on a single computer and then deploy the 
program on a small multi-node network, then on a 
heterogeneous network involving more specific processor 
types needed in different parts of the system, etc. until the 
system reaches its final size and complexity. Each cycle might 
involve redeployments, hardware/software design and 
development, software porting, and actual tests and 
measurements of the corresponding setup that lead to further 
optimizations. As a consequence, before the final distribution 
scheme is actually implemented, the TDAQ designers have to 
implement numerous smaller, tentative schemes. During this 
iterative process, the functional design of the system is likely 
to evolve at a different (slower) pace than the distribution 
architecture. Consequently, in order to minimize re-designs 
and code re-development, a design process for TDAQ 
systems should provide for means of separating these two 
aspects, so that evolutions of the distribution scheme entail 
minimal modifications in the system’s functional architecture. 

B. The Hardware/Software Frontier Problem 

High-energy physics experiments always depend on 
custom-made front-end detectors that need specific electronic 
systems for read-out and acquisition. Behind the physics 

detectors – such as photomultipliers, wire chambers or CCDs 
– specific hardware is necessary to give form to detector 
signals, digitize and do some real-time processing on the 
resulting data flow. However, specific hardware must stop as 
soon as possible in the acquisition chain in order to pass on 
the data to flexible (i.e. software) subsystems running over 
COTS (Commodity Off-The-Shelf) electronics and a standard 
OS (Operating System). The necessity of such flexibility 
stems from the fact that time scales of both the design and the 
exploitation of HEP physics experiments tend to extend over 
many years, which calls for possibilities of modifying designs 
even during the development cycle in order to keep up with 
technological advances and evolving standards. 
Consequently, the frontier between hardware and software 
components inside a subsystem should be decided for as late 
as possible in the design process. This calls for techniques 
that allow the design process to go on without having to 
specify which components will be hardware and which will be 
software. The results of this design process must be then 
deployed over a specific hardware configuration. The core of 
any framework solution tackling this problem will therefore 
be a separation of concern between functional system design 
and deployment design. In other terms, the hardware/software 
frontier determination can actually be treated as a deployment 
problem: if an object is deployed as a hardware component, 
then no code is generated for it (or firmware code such as 
VHDL code), and the designer must only define a precise 
interface for communication between code and hardware. 

C. Intrinsic and Performance Distribution 

The data acquisition systems and their associated trigger 
systems are usually distributed by nature, because detectors 
are spread out — sometimes over great distances. In collider 
experiments, for instance, tens of thousands (if not millions) 
of electronic channels must be digitized, data-formatted, 
processed and stored [3]; in some astroparticle experiments 
such as ANTARES [10], detector nodes are spread over 
volumes of millions of cubic meters. We call this kind of 
distributed feature “intrinsic distribution,” i.e. distribution that 
arises because of  “intrinsic parallelism.” 

In addition to that, the data flows in HEP TDAQ systems 
are often considerable and consequently call for processing 
power that cannot be provided by single machines. In such 
systems, intrinsic distribution is therefore accompanied by 
“performance distribution,” that is, distribution that arises due 
to the scaling up of processing power through parallelization, 
such as in computing farms. In short, whether intrinsically or 
for the sake of processing power, HEP TDAQ systems are 
most often massively distributed systems, and the distinction 
between performance distribution and intrinsic distribution 
has non-negligible impact on their design. 

1) Design Impacts of Intrinsic Distribution 
Intrinsic distribution stems from the spreading out of 

processing nodes that are close to the front-end electronics. 
These nodes contain specific electronics and are often 
embedded and hard –if not impossible– to access. As a 
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consequence, they may evolve frequently during the design 
process but are not liable to evolve much after that. Intrinsic 
distribution in HEP TDAQ systems is therefore quite static 
throughout the detector lifetime. Moreover, the computing 
nodes associated to intrinsic distribution are often of 
embedded nature because of their proximity to the detector. 
As a consequence, they are very difficult (if not impossible) 
to reach physically. Failures in these nodes will tend to be 
long-term failures if not permanent ones. That is why the 
intrinsically distributed part of a TDAQ system often calls for 
more robust designs.  

2) Design Impacts of Performance Distribution 
Performance distribution, on the other hand, is mostly 

found in the form of processor farms that are accessible and 
easily upgradeable. Performance-distributed subsystems are 
therefore likely to have a fast evolution rate in order to keep 
up with technological advances. Also, their scalability makes 
them less sensitive to failures, as processor failures do result 
in a degradation of performance but are less liable to cause a 
complete breakdown. Of course, sensitive devices such as key 
servers or switches can cause global breakdowns if they fail; 
however, they are usually easily replaceable because they are 
within easy reach of human operators. 

3) Impact on Design Process 
These qualitative differences in design requirements 

between intrinsically distributed and performance distributed 
subsystems imply that any design framework for HEP TDAQ 
systems must allow for such a distinction. Indeed, the design 
process must be able to apply specific procedures for each. 

III. FUNCTIONAL AND DEPLOYMENT DIAGRAMS 

A. Why Use the UML? 

An HEP TDAQ design framework that enforces the 
separation of concerns discussed in subsections A and B 
should clearly distinguish two classes of specifications, one 
for functional and one for deployment concerns. The UML 
notation [11] provides for diagrams that are quite adapted for 
that purpose. It also provides for standard extension 
mechanisms for specializing the notation and adapting it the 
specific domains (such as HEP TDAQs in our case). 
Moreover, the UML is today universally recognized as the 
definitive standard for object systems modeling [12], [13] and 
all modern methods and software development frameworks 
are UML-based (e.g. [14]). We have therefore decided to 
base our own TDAQ design process on UML notation and 
modeling. This will ensure maximum compatibility with 
COTS development frameworks and prevent us from heavily 
relying on proprietary languages and notations. 

B. The Two Classes of UML Diagrams 

The twofold system specification in our TDAQ process 
would rely on two classes of UML diagrams: the first class 
would be devoted to functional design and would include all 
the UML static and dynamic specification diagrams such as 
class, collaboration, sequence, activity or state transition 

diagrams. The second class of diagrams would be essentially 
based on the UML deployment and/or component diagrams. 
Ideally, the system designer should be able to: 1) define the 
system as one program in the form of a set of interacting 
functional objects that implement the processing algorithms 
that the system is expected to perform and 2) specify many 
deployment schemes that represent as many ways of running 
the program on different network topologies. 

C. Diagrams for a Simple Example 

Let us consider, for instance, a Simplistic Astrophysical 
Multi-Spectral Analysis (SAMSA) system that processes 
images coming from two detectors attached to a telescope. 
Detector 1 is sensitive to infrared light and detector 2 to 
visible light. The system must first bundle pairs of images, 
then find correlation patterns between the infrared and visible 
images and then store the images and the results in a 
compressed format. 

1) Functional Diagrams 
Fig. 1 and Fig. 2 respectively show the sequence diagram 

that represents the typical call sequence between objects of 
the system and the class diagram that defines the static 
architecture of the system. Each detector is coupled with a 
DetectorReadout object that produces digitized data (images) 
and sends them (through an asynchronous 
acquire(RawImage) call)  to a PairBuilder object. PairBuilder 
merges each pair of images into one Pair data object and then 
sends the result to a PairProcessor object through a 
correlate(Pair) call for correlation computation. The Pair 
object together with the computation result Correlation are 
then sent to Storage through a store() call. These two 
diagrams are clearly functional specification diagrams, as they 
define the objects we need and how they interact but do not 
specify on what hardware infrastructure they are deployed. 
We could go further and explicitly write all the code attached 
to the specified classes (for instance, the full code of the 
PairProcessor.correlate() method). Then, for that single set of 
functional specifications, the designer imagines two 
successive different deployment schemes expressed in Fig. 3 
and Fig. 4. 

2) Deployment Diagrams 
Fig. 3 features a deployment where data are produced by 

“readout,” a software component simulating the telescope 
readout device; the data are then sent through a network 
connection to the “processor object” component in which 
objects PairBuilder, PairProcessor and Storage are 
implemented. A number of implementation details are stated 
in this diagram, namely that 1) the PairBuilder, PairProcessor 
and Storage objects are implemented by the same component 
on a the same PC-Linux node and consequently run in the 
same address space whereas the DetectorReadout object runs 
in another one on another machine; 2) the two nodes running 
the “processor” and “readout” components are linked by a bi-
directional communication package called “myCORBA.” The 
framework can therefore automatically deduce that all method 
calls between PairBuilder, PairProcessor and Storage objects 



 4

take place as classical function calls (i.e. through normal post-
compilation link), whereas method calls between 
DetectorReadout and other objects have to go through proxy 
objects as defined by the “myCORBA” package. 

Fig. 4 represents a more realistic deployment that is closer 
to the final system. As expected on most TDAQ systems, the 
readout of the detector is carried out by a specific firmware, 
here implemented on an FPGA. The data merging takes place 
in the “builder” component on an embedded processor 
running a RTOS (Real-Time Operating System), whereas the 
correlation computing and the storage are carried out on a PC 
farm running Linux. Here, classical method calls are only 
between PairProcessor and Storage objects, the other ones 
having to go either through a CORBA package or a protocol 
based on interrupts and shared memory. Moreover, 
PairProcessor and Storage objects are distributed over a PC 
farm, which calls for a processor farm management system. 

3) Needed UML Extensions 
Our specific interpretation of node associations as pointers 

to communication packages is a first implicit UML extension. 
Other than considering the association name as a 
communication package name, we also agree upon 
interpreting the navigability of node associations (arrows at 
one or both ends of the association line) as directionalities 
that the communication package can support. In Fig. 4, for 
instance, the communication link between the ALTERA20K 
node and the PowerPC node is mono-directional. In other 
words, only a sender in the “readout” component and a 
receiver in the “builder” component have to be implemented, 
as opposed to the CORBA package that supports 
communications in both directions between nodes PowerPC 
and PC-Linux. We could render our interpretation of node 
associations more explicit by creating a new stereotype for 
them (such as << comm >>) in order to avoid any confusion 
with other interpretations, but we must also try to limit UML 
extensions to the most needed features and refrain from 
terminological inflation. 

Apart from that specific interpretation of node associations, 
we have introduced a few specialized stereotypes to be able to 
specify unambiguously some features in our deployment 
specifications. 

The << impl >> stereotype over “use” dependency links is 
an extension of the UML that we need to specify object 
implementations in the form of components running on a 
specific node. 

The purpose of the << fpga >> stereotype over a node 
name is to introduce the notion of firmware in system 
deployment; this allows us to specify deployments featuring 
objects implemented in hardware (or rather firmware). Any 
code generator included in the framework would then know 
which source code type is related to which objects. For 
instance, in Fig. 4, the “readout” component runs on an FPGA 
node: a code generator would then use the associated VHDL 
files to generate the code attached to the DetectorReadout 
class. In a more distant future, once the UML action language 

[15] is sufficiently specified by the OMG and developed by 
the software industry, it would be natural for any code 
generator to be able to translate action language statements 
into the right source language (VHDL, C++, Java, etc.) for 
each object, according to its placement in the deployment 
diagram. For the moment, VHDL programs have to be hand-
written, but we can already follow the rules concerning 
separation of concerns so that generic framework components 
can be factored out from these programs. 

The << farm >> stereotype over a node is of a more subtle 
nature: it means that although an object such as PairProcessor 
is seen as one object in the system (see in Fig. 2 the ‘1’ 
cardinality in the association between classes PairBuilder and 
PairProcessor), it is implemented in Fig. 4 on many nodes in 
parallel for the sake of performance and/or failure tolerance. 

IV. AUTOMATIC CONTROL OF DISTRIBUTION PATTERNS 

Although the specification of design architecture using a 
formal language such as UML diagrams is in itself useful for 
productivity and software quality [13], [14] our goal is to be 
able to achieve more than that. Indeed, apart from presenting 
a constraining environment to enforce rigor in design, the 
TDAQ design framework should also, through the cross-
analysis of the specification diagrams, 1) check the 
consistency of our design according to domain-specific 
criteria and 2) automatically execute model transformations 
that correspond to the application of recurrent patterns. 

A. Consistency Check 

Numerous consistency checks can be run on a UML design 
tool, and most of the industry’s CASE tools such as Rational 
Rose [12] or Objecteering [13] include a number of them, 
such as namespace and scope coherence. We might include 
some more that are directly attached to our development 
model. For instance, the analysis of functional diagrams 
points to objects that need to communicate with each other 
(such as PairBuilder and PairProcessor in Fig. 1 and Fig. 2). 
Therefore, on deployment diagrams, we can check if any two 
nodes that run implementations of two such objects are 
indeed associated. Other consistency checks are possible, 
especially during automatic model transformation, and they 
include checking the existence and conformity of 
communication packages. 

B. Automatic Model Transformation 

When a remote communication between two objects is 
detected, the software organization must be modified 
accordingly. Let us consider again the SAMSA example in its 
Fig. 4 deployment. From Fig. 4, the tool can readily deduce 
the existence of two address spaces, one on an RTOS-running 
PowerPC, and the other on a Linux PC. It can therefore create 
one directory associated to each one of them, corresponding 
to one executable binary for each. 

1) Proxy Generation 
Let us focus on PairBuilder and PairProcessor objects. In 

the PowerPC-RTOS directory, the PairBuilder code is 



 5

generated using directly the code developed in the functional 
specification. The same is done in the PC-Linux directory for 
the PairProcessor code. However, special code must be 
inserted in the PowerPC-RTOS directory so that all 
PairBuilder calls to PairProcessor are transparently compiled 
and run without modification of the PairBuilder code. As 
expressed in Fig. 5, that special code consists in a “proxy” 
PairProcessor, in the sense defined by ORB architectures 
(such as CORBA) [6]: it is a class that has the same name as 
the original class (PairProcessor), the same interface, but not 
the same implementation code, as the implementation of all 
methods consists only in the marshalling of parameters, their 
sending to the real object through the communication 
package, waiting for the real execution to complete, and 
finally returning the return value to the calling object. 

2) Skeleton Generation 
Symmetrically, in the PC-Linux directory, a “skeleton” 

code (in the CORBA sense, see [6]) is added to the package, 
that is an object that listens to the communication link for 
execution requests and translates them into actual method 
calls on PairProcessor. It should be noted that the 
communication package does not only provide the framework 
with precise proxy/skeleton production rules, it also has to 
implement an initialization procedure that correctly 
instantiates them (a more thorough examination of the 
instantiation question is beyond the scope of this paper). 

3) Farm Manager Generation 
The functional diagrams state that the PairProcessor object 

is supposed to be logically one single object. However, the << 
farm >> stereotype in Fig. 4 indicates that it is implemented 
as many identical components running on parallel nodes. 
Consequently, before being able to send the “correlate” 
request, a PairBuilder object must first determine which 
component will be the receiver. Inserting a new management 
object between PairBuilder and the PairProcessor proxy 
naturally solves the problem (Fig. 7). In other words, the 
PairBuilder object will see the farm management object as a 
genuine PairProcessor (same interface) but its correlate() 
requests will be routed to the right proxy according to the 
farm management policy implemented inside the manager 
object. In other words, the model transformation fools the 
caller (PairBuilder object) by presenting it the interface it 
expects and hiding the parallelism management issue from it, 
thus preserving the separation between functional code and 
farm management code. 

V. WHICH SOFTWARE TECHNOLOGY TO USE? 

The general cost-reduction pressure that is always present 
in HEP projects calls for the use of COTS products and 
industry standards. Indeed COTS theoretically allows for less 
development and maintenance effort since these activities can 
in principle be partially delegated through the use of 
industrial ready-made products. But the same concerns arise 
when COTS becomes synonym of dependency towards a 
specific vendor. Indeed, development and maintenances 

efforts are liable to rise abruptly if the vendor we depend on 
ceases to support a product or simply ceases to exist. 
Therefore, we consider that advantages of COTS should be 
evaluated against dependency problems. 

In any case (COTS or not), dependency concerns are less 
constraining if software sources are accessible (and 
understandable). The necessity of having access to software 
sources also stems from the need for performance 
optimizations, and porting constraints. If the software 
architecture is well designed and modular enough, 
performance bottlenecks can be diagnosed relatively easily 
and more effort can be put in the optimization of small 
modules. At the same time, good architectural design allows 
for easy porting of the software over evolving platforms. A 
clear example of successful software architecture both in 
terms of porting and optimization capabilities is the open-
source CORBA middleware “TAO” developed by the 
University of Washington [6], [19], [20]. We intend to use 
this middleware in our own framework because 1) TAO’s 
open-source model together with an abundant documentation 
allow us to avoid re-developing important amounts of 
software without being dependent on the goodwill of a 
vendor, and 2) TAO implements a successful industry 
standard (i.e. CORBA) that does not depend on any 
proprietary choice. Moreover, the design of TAO has been 
strongly constrained to support real-time distributed systems, 
as opposed to most COTS ORBs, which are known to behave 
poorly in real-time environments [6], [14]. 

As for the framework implementation of the design rules 
and constraints that constitute the core of our process (such as 
systematic transformations), we need a pattern language based 
on the UML. As stated in section IV, real productivity gains 
can be obtained if the framework is implemented on a CASE 
tool with automatic code-generation capabilities. 
“Objecteering”, by Softeam, is the tool we have chosen for 
this implementation and is the only vendor-dependant product 
that we intend to use. The main feature that has caught our 
attention is a “java-like” pattern language (the J language) 
that allows the users to freely implement their own design 
patterns by working directly at the metamodel level, i.e. 
before the code generation level (of course code-generation 
is, a fortiori, also modifiable). In other terms, the tool 
supports the UML extension mechanisms, and the automatic 
model transformations that translate TDAQ design patterns 
can be readily programmed at the metamodel level. In 
addition, the adaptability of this tool to the modeling of real-
time systems has been thoroughly validated by the 
development of the ACCORD framework for real time system 
prototyping in another laboratory of our institution (CEA-
LETI, Laboratory for Software for Process Safety) [16], [17]. 
As witnessed by the fact that “Rational Rose” [12] (the most 
popular tool in the industry) does not support metamodel 
programming, CASE tools with metamodel programming 
capabilities are quite rare. Apart from Objecteering, a 
research project called UMLAUT [18], developed by 
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INRIA/IRISA at Rennes in France features analogous 
capabilities although not at the same industrial maturity yet. 
Since it is an open source research project, switching to 
UMLAUT is certainly an option that is worth studying. Since 
both tools support “XMI” the XML extension devoted to the 
exchange of UML models, the switch should not be too 
painful. 

Eventually, we intend to map the core concepts of our 
TDAQ design process to an official UML profile, that is, a 
domain-specific extension of the UML adapted to the design 
and development of HEP-like TDAQ systems. 

VI. CONCLUSION AND FUTURE RESEARCH 

A. Simultaneous Implementations 

A TDAQ design process that follows the ideas presented in 
this paper would above all constitute a conceptual 
environment enforcing an iterative design and development 
philosophy. Apart from guiding the designer along a 
progressive path from simple seminal setups to the fully 
integrated real TDAQ system, it allows the simultaneous 
maintenance of different implementations of the system. The 
best example of such a feature stems from the need for 
physics analysis to maintain a functional simulation of the 
TDAQ system. Indeed HEP experiments almost always need 
to determine the precise effect of the TDAQ system on data 
quality (especially for triggers, but this remark holds for any 
computation that filters or modifies physics data) by cross-
examining the functional behavior of the system with Monte 
Carlo simulations of the detector. By itself, such a need calls 
for the coexistence of at least two deployments of the same 
system: the real system and a purely functional deployment on 
a single machine. It may also be necessary to maintain 
intermediary deployments corresponding to a subset of the 
TDAQ system for post-production debugging and 
maintenance. 

B. More Automated Model Transformations 

Model transformations other than class diagram 
modifications will also be necessary, especially the 
modification and/or creation of state diagrams included in 
special objects such as skeletons or farm managers. Indeed 
such recurrent problems are solved by patterns that are not 
always restricted to the static class structure of the system and 
often involve dynamic specifications too, and we intend to go 
further in this direction. Also, the notion of a distributed 
object (like the PairProcessor object) over a farm of 
processing nodes deserves to be extended to other useful 
concepts such as the distributed state-machine over all the 
nodes of the system. 

C. Performance Analysis 

It is worth pointing out that the Object Management Group 
(OMG) –the official institution in charge of the UML 
standard– is presently conducting work on the possibility of 
performance analysis on UML models. This work has been 

initiated under the “Scheduling, Performance and Time” 
UML profile proposal [21], [22]. The idea is to give the 
possibility to designers to include all the information that is 
required for a performance analysis inside the UML 
application model (in the form of implementation hints). This 
approach is fully compatible with the modeling process that 
we propose in the paper and should therefore leave the door 
open for our framework to include performance analysis 
modules based on future standard UML profiles. 
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Fig. 1.  Sequence Diagram of SAMSA System. 
 

 
Fig. 2.  Class Diagram of SAMSA System. 
 

 
Fig. 3.  First Deployment of SAMSA System. 

 
Fig. 4.  Second Deployment of SAMSA System. 
 

 
Fig. 5.  SAMSA Model Transformation on PowerPC-RTOS Side. 
 

 
Fig. 6.  SAMSA Model Transformation on PC-Linux Side. 
 

 
Fig. 7.  SAMSA Model Transformation on PowerPC-RTOS Side With Farm 
Management. 

 


