
 1

Abstract--We present the first results in the elaboration of a

design and development process that tackles recurrent problems
encountered when developing acquisition and triggering systems
for high-energy physics experiments. These problems include
software/hardware frontier definition and the impact of both
intrinsic and performance-related parallelism on software
development. Based on the UML (Unified Modeling Language)
and its extension mechanisms, the process aims at capturing
rules, constraints and simple mechanisms that 1) separate
functional concerns from deployment specifications, including
hardware-software separation, and 2) transparently and
automatically derive distribution patterns from system-level
definitions. The process is intended to grow progressively into a
design framework that will both enforce its rules and constraints
and implement design patterns that result from our experience of
HEP (High Energy Physics) TDAQ (Trigger and Data
Acquisition) system development.

I. INTRODUCTION

HE digital systems developed for data acquisition and
real-time processing in HEP experiments keep getting

bigger and globally more complex [1], [2], [3]. The
constraints on such systems are more stringent than ever both
in terms of performance and robustness. To be able to cope
with the design and development challenges that such
growing complexity and size entail, the engineers of the HEP
community have to fathom new methods and tools that make
these future systems feasible, cost-effective and maintainable
over many years.

Computer science experience and applied research [4]-[9]
show that major solutions to system design rationalization
always involve the abstraction of processes and patterns
specific to the application domain and their implementation as
reusable components inside a domain-specific framework. We
have therefore started a reflection leading us to elaborate on a
design methodology specifically adapted to data acquisition

Manuscript received November 3, 2000.
S. Anvar is with the Département d’Astrophysique, physique des

Particules, physique Nucléaire et Instrumentation Associée, CEA Saclay, F-
91191 Gif, France (telephone: +33(0)169087832, e-mail:
Shebli.Anvar@cea.fr).

F. Terrier is with the Département d’Electronique et d’Instrumentation
Nucléaire, LETI, CEA Saclay, F-91191 Gif, France (telephone:
+33(0)169086259, e-mail: Francois.Terrier@cea.fr).

and trigger systems such as those developed in HEP-like
experiments. We have begun expressing the results of our
reflection in the form of a development process or
‘conceptual’ framework that will be the basis for the
progressive development of an ‘actual’ design framework that
will include generic design architectures and reusable
components [7]-[9]. We believe that a successful design
framework cannot be built a priori with components that are
supposed to be generic from the beginning. Instead, we try,
more pragmatically, to capture rules and constraints that will
seemingly enhance design quality, using the experience of
HEP TDAQ designers and in the light of new concepts,
methodologies and technologies provided by the industrial
and research communities of embedded and real-time
electronic systems. Hence, the purpose of this paper, which is
to discuss a number of concepts and ideas related to recurrent
problems encountered in the design of TDAQ systems.

In section II we discuss the necessity of a separation of
concerns in the overall development process, between
functional and distribution issues. This necessity pertains to
the need for multiple distribution schemes, flexibility in the
definition of hardware/software frontier and difference in
design impacts of performance-related parallelism and
intrinsic parallelism. Distribution issues are raised by the
necessity to implement the functional specifications of a
system over computing resources that are somehow “spread-
out.” What we call “deployment” is any scheme that aims at
realizing this implementation.

In section III, we briefly justify our choice of the UML
notation and, using a toy example, we present two classes of
UML diagrams respectively devoted to functional and
deployment specifications. We also point out some UML
extensions needed for our purposes.

In section IV, we present a scheme for the automation of
distribution-specific patterns through the analysis of
functional and deployment specifications.

Section V is devoted to a discussion on the choice of
development and distribution technologies for a TDAQ
framework in the context of HEP experiments, especially
taking into account maintainability and evolution in projects
with lifetimes that span over many years.

We conclude the paper in section VI by showing the
benefits of these first ideas for a TDAQ conceptual design

A UML-based Design Process for Distributed
Data Acquisition and Triggering Systems in

High Energy Physics Experiments

Shebli Anvar, François Terrier

T

 2

framework and presenting future research plans on the
subject.

II. SEPARATING FUNCTIONAL DESIGN AND SYSTEM

DEPLOYMENT

A. Multiple Distribution Schemes During Design and
Development

HEP TDAQ systems are large-scale, complex systems that
necessitate a progressive and incremental design process.
Basically, we have physics detectors whose topology and
qualities are essentially determined by the scientific principles
on which the experiment is based. They produce signals that
are digitized by the front-end electronics. The function of the
TDAQ system is to process the data produced by the front-
end electronics and store the results for further scientific
analysis. Therefore, the TDAQ subsystem designers are
basically given the geometrical organization of an input data-
flow together with a quantitative estimation of its extent.
From that, they must design a subsystem that carries out the
required processing and/or acquisition.

The development process goes through a general
specification phase in which the principle of the final
distribution scheme is devised by specifying the processing
nodes (participants) and their interconnections (topology).
The actual design and development of the subsystem then
consists in a considerable number of successive
hardware/software developments, design refinements, tests
and optimizations. We might say that the final system will
progressively grow from a seminal simple system through
successive "complexifications." This is an iterative process in
which each cycle will produce an intermediary distribution
scheme. For instance, we might begin with a purely functional
program running on a single computer and then deploy the
program on a small multi-node network, then on a
heterogeneous network involving more specific processor
types needed in different parts of the system, etc. until the
system reaches its final size and complexity. Each cycle might
involve redeployments, hardware/software design and
development, software porting, and actual tests and
measurements of the corresponding setup that lead to further
optimizations. As a consequence, before the final distribution
scheme is actually implemented, the TDAQ designers have to
implement numerous smaller, tentative schemes. During this
iterative process, the functional design of the system is likely
to evolve at a different (slower) pace than the distribution
architecture. Consequently, in order to minimize re-designs
and code re-development, a design process for TDAQ
systems should provide for means of separating these two
aspects, so that evolutions of the distribution scheme entail
minimal modifications in the system’s functional architecture.

B. The Hardware/Software Frontier Problem

High-energy physics experiments always depend on
custom-made front-end detectors that need specific electronic
systems for read-out and acquisition. Behind the physics

detectors – such as photomultipliers, wire chambers or CCDs
– specific hardware is necessary to give form to detector
signals, digitize and do some real-time processing on the
resulting data flow. However, specific hardware must stop as
soon as possible in the acquisition chain in order to pass on
the data to flexible (i.e. software) subsystems running over
COTS (Commodity Off-The-Shelf) electronics and a standard
OS (Operating System). The necessity of such flexibility
stems from the fact that time scales of both the design and the
exploitation of HEP physics experiments tend to extend over
many years, which calls for possibilities of modifying designs
even during the development cycle in order to keep up with
technological advances and evolving standards.
Consequently, the frontier between hardware and software
components inside a subsystem should be decided for as late
as possible in the design process. This calls for techniques
that allow the design process to go on without having to
specify which components will be hardware and which will be
software. The results of this design process must be then
deployed over a specific hardware configuration. The core of
any framework solution tackling this problem will therefore
be a separation of concern between functional system design
and deployment design. In other terms, the hardware/software
frontier determination can actually be treated as a deployment
problem: if an object is deployed as a hardware component,
then no code is generated for it (or firmware code such as
VHDL code), and the designer must only define a precise
interface for communication between code and hardware.

C. Intrinsic and Performance Distribution

The data acquisition systems and their associated trigger
systems are usually distributed by nature, because detectors
are spread out — sometimes over great distances. In collider
experiments, for instance, tens of thousands (if not millions)
of electronic channels must be digitized, data-formatted,
processed and stored [3]; in some astroparticle experiments
such as ANTARES [10], detector nodes are spread over
volumes of millions of cubic meters. We call this kind of
distributed feature “intrinsic distribution,” i.e. distribution that
arises because of “intrinsic parallelism.”

In addition to that, the data flows in HEP TDAQ systems
are often considerable and consequently call for processing
power that cannot be provided by single machines. In such
systems, intrinsic distribution is therefore accompanied by
“performance distribution,” that is, distribution that arises due
to the scaling up of processing power through parallelization,
such as in computing farms. In short, whether intrinsically or
for the sake of processing power, HEP TDAQ systems are
most often massively distributed systems, and the distinction
between performance distribution and intrinsic distribution
has non-negligible impact on their design.

1) Design Impacts of Intrinsic Distribution
Intrinsic distribution stems from the spreading out of

processing nodes that are close to the front-end electronics.
These nodes contain specific electronics and are often
embedded and hard –if not impossible– to access. As a

 3

consequence, they may evolve frequently during the design
process but are not liable to evolve much after that. Intrinsic
distribution in HEP TDAQ systems is therefore quite static
throughout the detector lifetime. Moreover, the computing
nodes associated to intrinsic distribution are often of
embedded nature because of their proximity to the detector.
As a consequence, they are very difficult (if not impossible)
to reach physically. Failures in these nodes will tend to be
long-term failures if not permanent ones. That is why the
intrinsically distributed part of a TDAQ system often calls for
more robust designs.

2) Design Impacts of Performance Distribution
Performance distribution, on the other hand, is mostly

found in the form of processor farms that are accessible and
easily upgradeable. Performance-distributed subsystems are
therefore likely to have a fast evolution rate in order to keep
up with technological advances. Also, their scalability makes
them less sensitive to failures, as processor failures do result
in a degradation of performance but are less liable to cause a
complete breakdown. Of course, sensitive devices such as key
servers or switches can cause global breakdowns if they fail;
however, they are usually easily replaceable because they are
within easy reach of human operators.

3) Impact on Design Process
These qualitative differences in design requirements

between intrinsically distributed and performance distributed
subsystems imply that any design framework for HEP TDAQ
systems must allow for such a distinction. Indeed, the design
process must be able to apply specific procedures for each.

III. FUNCTIONAL AND DEPLOYMENT DIAGRAMS

A. Why Use the UML?

An HEP TDAQ design framework that enforces the
separation of concerns discussed in subsections A and B
should clearly distinguish two classes of specifications, one
for functional and one for deployment concerns. The UML
notation [11] provides for diagrams that are quite adapted for
that purpose. It also provides for standard extension
mechanisms for specializing the notation and adapting it the
specific domains (such as HEP TDAQs in our case).
Moreover, the UML is today universally recognized as the
definitive standard for object systems modeling [12], [13] and
all modern methods and software development frameworks
are UML-based (e.g. [14]). We have therefore decided to
base our own TDAQ design process on UML notation and
modeling. This will ensure maximum compatibility with
COTS development frameworks and prevent us from heavily
relying on proprietary languages and notations.

B. The Two Classes of UML Diagrams

The twofold system specification in our TDAQ process
would rely on two classes of UML diagrams: the first class
would be devoted to functional design and would include all
the UML static and dynamic specification diagrams such as
class, collaboration, sequence, activity or state transition

diagrams. The second class of diagrams would be essentially
based on the UML deployment and/or component diagrams.
Ideally, the system designer should be able to: 1) define the
system as one program in the form of a set of interacting
functional objects that implement the processing algorithms
that the system is expected to perform and 2) specify many
deployment schemes that represent as many ways of running
the program on different network topologies.

C. Diagrams for a Simple Example

Let us consider, for instance, a Simplistic Astrophysical
Multi-Spectral Analysis (SAMSA) system that processes
images coming from two detectors attached to a telescope.
Detector 1 is sensitive to infrared light and detector 2 to
visible light. The system must first bundle pairs of images,
then find correlation patterns between the infrared and visible
images and then store the images and the results in a
compressed format.

1) Functional Diagrams
Fig. 1 and Fig. 2 respectively show the sequence diagram

that represents the typical call sequence between objects of
the system and the class diagram that defines the static
architecture of the system. Each detector is coupled with a
DetectorReadout object that produces digitized data (images)
and sends them (through an asynchronous
acquire(RawImage) call) to a PairBuilder object. PairBuilder
merges each pair of images into one Pair data object and then
sends the result to a PairProcessor object through a
correlate(Pair) call for correlation computation. The Pair
object together with the computation result Correlation are
then sent to Storage through a store() call. These two
diagrams are clearly functional specification diagrams, as they
define the objects we need and how they interact but do not
specify on what hardware infrastructure they are deployed.
We could go further and explicitly write all the code attached
to the specified classes (for instance, the full code of the
PairProcessor.correlate() method). Then, for that single set of
functional specifications, the designer imagines two
successive different deployment schemes expressed in Fig. 3
and Fig. 4.

2) Deployment Diagrams
Fig. 3 features a deployment where data are produced by

“readout,” a software component simulating the telescope
readout device; the data are then sent through a network
connection to the “processor object” component in which
objects PairBuilder, PairProcessor and Storage are
implemented. A number of implementation details are stated
in this diagram, namely that 1) the PairBuilder, PairProcessor
and Storage objects are implemented by the same component
on a the same PC-Linux node and consequently run in the
same address space whereas the DetectorReadout object runs
in another one on another machine; 2) the two nodes running
the “processor” and “readout” components are linked by a bi-
directional communication package called “myCORBA.” The
framework can therefore automatically deduce that all method
calls between PairBuilder, PairProcessor and Storage objects

 4

take place as classical function calls (i.e. through normal post-
compilation link), whereas method calls between
DetectorReadout and other objects have to go through proxy
objects as defined by the “myCORBA” package.

Fig. 4 represents a more realistic deployment that is closer
to the final system. As expected on most TDAQ systems, the
readout of the detector is carried out by a specific firmware,
here implemented on an FPGA. The data merging takes place
in the “builder” component on an embedded processor
running a RTOS (Real-Time Operating System), whereas the
correlation computing and the storage are carried out on a PC
farm running Linux. Here, classical method calls are only
between PairProcessor and Storage objects, the other ones
having to go either through a CORBA package or a protocol
based on interrupts and shared memory. Moreover,
PairProcessor and Storage objects are distributed over a PC
farm, which calls for a processor farm management system.

3) Needed UML Extensions
Our specific interpretation of node associations as pointers

to communication packages is a first implicit UML extension.
Other than considering the association name as a
communication package name, we also agree upon
interpreting the navigability of node associations (arrows at
one or both ends of the association line) as directionalities
that the communication package can support. In Fig. 4, for
instance, the communication link between the ALTERA20K
node and the PowerPC node is mono-directional. In other
words, only a sender in the “readout” component and a
receiver in the “builder” component have to be implemented,
as opposed to the CORBA package that supports
communications in both directions between nodes PowerPC
and PC-Linux. We could render our interpretation of node
associations more explicit by creating a new stereotype for
them (such as << comm >>) in order to avoid any confusion
with other interpretations, but we must also try to limit UML
extensions to the most needed features and refrain from
terminological inflation.

Apart from that specific interpretation of node associations,
we have introduced a few specialized stereotypes to be able to
specify unambiguously some features in our deployment
specifications.

The << impl >> stereotype over “use” dependency links is
an extension of the UML that we need to specify object
implementations in the form of components running on a
specific node.

The purpose of the << fpga >> stereotype over a node
name is to introduce the notion of firmware in system
deployment; this allows us to specify deployments featuring
objects implemented in hardware (or rather firmware). Any
code generator included in the framework would then know
which source code type is related to which objects. For
instance, in Fig. 4, the “readout” component runs on an FPGA
node: a code generator would then use the associated VHDL
files to generate the code attached to the DetectorReadout
class. In a more distant future, once the UML action language

[15] is sufficiently specified by the OMG and developed by
the software industry, it would be natural for any code
generator to be able to translate action language statements
into the right source language (VHDL, C++, Java, etc.) for
each object, according to its placement in the deployment
diagram. For the moment, VHDL programs have to be hand-
written, but we can already follow the rules concerning
separation of concerns so that generic framework components
can be factored out from these programs.

The << farm >> stereotype over a node is of a more subtle
nature: it means that although an object such as PairProcessor
is seen as one object in the system (see in Fig. 2 the ‘1’
cardinality in the association between classes PairBuilder and
PairProcessor), it is implemented in Fig. 4 on many nodes in
parallel for the sake of performance and/or failure tolerance.

IV. AUTOMATIC CONTROL OF DISTRIBUTION PATTERNS

Although the specification of design architecture using a
formal language such as UML diagrams is in itself useful for
productivity and software quality [13], [14] our goal is to be
able to achieve more than that. Indeed, apart from presenting
a constraining environment to enforce rigor in design, the
TDAQ design framework should also, through the cross-
analysis of the specification diagrams, 1) check the
consistency of our design according to domain-specific
criteria and 2) automatically execute model transformations
that correspond to the application of recurrent patterns.

A. Consistency Check

Numerous consistency checks can be run on a UML design
tool, and most of the industry’s CASE tools such as Rational
Rose [12] or Objecteering [13] include a number of them,
such as namespace and scope coherence. We might include
some more that are directly attached to our development
model. For instance, the analysis of functional diagrams
points to objects that need to communicate with each other
(such as PairBuilder and PairProcessor in Fig. 1 and Fig. 2).
Therefore, on deployment diagrams, we can check if any two
nodes that run implementations of two such objects are
indeed associated. Other consistency checks are possible,
especially during automatic model transformation, and they
include checking the existence and conformity of
communication packages.

B. Automatic Model Transformation

When a remote communication between two objects is
detected, the software organization must be modified
accordingly. Let us consider again the SAMSA example in its
Fig. 4 deployment. From Fig. 4, the tool can readily deduce
the existence of two address spaces, one on an RTOS-running
PowerPC, and the other on a Linux PC. It can therefore create
one directory associated to each one of them, corresponding
to one executable binary for each.

1) Proxy Generation
Let us focus on PairBuilder and PairProcessor objects. In

the PowerPC-RTOS directory, the PairBuilder code is

 5

generated using directly the code developed in the functional
specification. The same is done in the PC-Linux directory for
the PairProcessor code. However, special code must be
inserted in the PowerPC-RTOS directory so that all
PairBuilder calls to PairProcessor are transparently compiled
and run without modification of the PairBuilder code. As
expressed in Fig. 5, that special code consists in a “proxy”
PairProcessor, in the sense defined by ORB architectures
(such as CORBA) [6]: it is a class that has the same name as
the original class (PairProcessor), the same interface, but not
the same implementation code, as the implementation of all
methods consists only in the marshalling of parameters, their
sending to the real object through the communication
package, waiting for the real execution to complete, and
finally returning the return value to the calling object.

2) Skeleton Generation
Symmetrically, in the PC-Linux directory, a “skeleton”

code (in the CORBA sense, see [6]) is added to the package,
that is an object that listens to the communication link for
execution requests and translates them into actual method
calls on PairProcessor. It should be noted that the
communication package does not only provide the framework
with precise proxy/skeleton production rules, it also has to
implement an initialization procedure that correctly
instantiates them (a more thorough examination of the
instantiation question is beyond the scope of this paper).

3) Farm Manager Generation
The functional diagrams state that the PairProcessor object

is supposed to be logically one single object. However, the <<
farm >> stereotype in Fig. 4 indicates that it is implemented
as many identical components running on parallel nodes.
Consequently, before being able to send the “correlate”
request, a PairBuilder object must first determine which
component will be the receiver. Inserting a new management
object between PairBuilder and the PairProcessor proxy
naturally solves the problem (Fig. 7). In other words, the
PairBuilder object will see the farm management object as a
genuine PairProcessor (same interface) but its correlate()
requests will be routed to the right proxy according to the
farm management policy implemented inside the manager
object. In other words, the model transformation fools the
caller (PairBuilder object) by presenting it the interface it
expects and hiding the parallelism management issue from it,
thus preserving the separation between functional code and
farm management code.

V. WHICH SOFTWARE TECHNOLOGY TO USE?

The general cost-reduction pressure that is always present
in HEP projects calls for the use of COTS products and
industry standards. Indeed COTS theoretically allows for less
development and maintenance effort since these activities can
in principle be partially delegated through the use of
industrial ready-made products. But the same concerns arise
when COTS becomes synonym of dependency towards a
specific vendor. Indeed, development and maintenances

efforts are liable to rise abruptly if the vendor we depend on
ceases to support a product or simply ceases to exist.
Therefore, we consider that advantages of COTS should be
evaluated against dependency problems.

In any case (COTS or not), dependency concerns are less
constraining if software sources are accessible (and
understandable). The necessity of having access to software
sources also stems from the need for performance
optimizations, and porting constraints. If the software
architecture is well designed and modular enough,
performance bottlenecks can be diagnosed relatively easily
and more effort can be put in the optimization of small
modules. At the same time, good architectural design allows
for easy porting of the software over evolving platforms. A
clear example of successful software architecture both in
terms of porting and optimization capabilities is the open-
source CORBA middleware “TAO” developed by the
University of Washington [6], [19], [20]. We intend to use
this middleware in our own framework because 1) TAO’s
open-source model together with an abundant documentation
allow us to avoid re-developing important amounts of
software without being dependent on the goodwill of a
vendor, and 2) TAO implements a successful industry
standard (i.e. CORBA) that does not depend on any
proprietary choice. Moreover, the design of TAO has been
strongly constrained to support real-time distributed systems,
as opposed to most COTS ORBs, which are known to behave
poorly in real-time environments [6], [14].

As for the framework implementation of the design rules
and constraints that constitute the core of our process (such as
systematic transformations), we need a pattern language based
on the UML. As stated in section IV, real productivity gains
can be obtained if the framework is implemented on a CASE
tool with automatic code-generation capabilities.
“Objecteering”, by Softeam, is the tool we have chosen for
this implementation and is the only vendor-dependant product
that we intend to use. The main feature that has caught our
attention is a “java-like” pattern language (the J language)
that allows the users to freely implement their own design
patterns by working directly at the metamodel level, i.e.
before the code generation level (of course code-generation
is, a fortiori, also modifiable). In other terms, the tool
supports the UML extension mechanisms, and the automatic
model transformations that translate TDAQ design patterns
can be readily programmed at the metamodel level. In
addition, the adaptability of this tool to the modeling of real-
time systems has been thoroughly validated by the
development of the ACCORD framework for real time system
prototyping in another laboratory of our institution (CEA-
LETI, Laboratory for Software for Process Safety) [16], [17].
As witnessed by the fact that “Rational Rose” [12] (the most
popular tool in the industry) does not support metamodel
programming, CASE tools with metamodel programming
capabilities are quite rare. Apart from Objecteering, a
research project called UMLAUT [18], developed by

 6

INRIA/IRISA at Rennes in France features analogous
capabilities although not at the same industrial maturity yet.
Since it is an open source research project, switching to
UMLAUT is certainly an option that is worth studying. Since
both tools support “XMI” the XML extension devoted to the
exchange of UML models, the switch should not be too
painful.

Eventually, we intend to map the core concepts of our
TDAQ design process to an official UML profile, that is, a
domain-specific extension of the UML adapted to the design
and development of HEP-like TDAQ systems.

VI. CONCLUSION AND FUTURE RESEARCH

A. Simultaneous Implementations

A TDAQ design process that follows the ideas presented in
this paper would above all constitute a conceptual
environment enforcing an iterative design and development
philosophy. Apart from guiding the designer along a
progressive path from simple seminal setups to the fully
integrated real TDAQ system, it allows the simultaneous
maintenance of different implementations of the system. The
best example of such a feature stems from the need for
physics analysis to maintain a functional simulation of the
TDAQ system. Indeed HEP experiments almost always need
to determine the precise effect of the TDAQ system on data
quality (especially for triggers, but this remark holds for any
computation that filters or modifies physics data) by cross-
examining the functional behavior of the system with Monte
Carlo simulations of the detector. By itself, such a need calls
for the coexistence of at least two deployments of the same
system: the real system and a purely functional deployment on
a single machine. It may also be necessary to maintain
intermediary deployments corresponding to a subset of the
TDAQ system for post-production debugging and
maintenance.

B. More Automated Model Transformations

Model transformations other than class diagram
modifications will also be necessary, especially the
modification and/or creation of state diagrams included in
special objects such as skeletons or farm managers. Indeed
such recurrent problems are solved by patterns that are not
always restricted to the static class structure of the system and
often involve dynamic specifications too, and we intend to go
further in this direction. Also, the notion of a distributed
object (like the PairProcessor object) over a farm of
processing nodes deserves to be extended to other useful
concepts such as the distributed state-machine over all the
nodes of the system.

C. Performance Analysis

It is worth pointing out that the Object Management Group
(OMG) –the official institution in charge of the UML
standard– is presently conducting work on the possibility of
performance analysis on UML models. This work has been

initiated under the “Scheduling, Performance and Time”
UML profile proposal [21], [22]. The idea is to give the
possibility to designers to include all the information that is
required for a performance analysis inside the UML
application model (in the form of implementation hints). This
approach is fully compatible with the modeling process that
we propose in the paper and should therefore leave the door
open for our framework to include performance analysis
modules based on future standard UML profiles.

VII. REFERENCES
[1] M. Jacob, "From basic research, its primordial goal, to technological

transfers and industrial spin-offs," in Proc. IEEE 10th Real Time
Conference (RT97), 1997, pp. xii-xvii.

[2] J. Knobloch, "ATLAS computing," in Proc. CHEP97, 1997.
[3] The ATLAS Collaboration.. (1996, Dec.). ATLAS computing technical

proposal, (CERN/LHCC 96-43) [Online]. Available:
http://atlasinfo.cern.ch/Atlas/GROUPS/SOFTWARE/TDR/html/

[4] J.-P. Briot, R. Guerraoui, "Objets pour la programmation parallèle et
répartie: intérêt, évolutions et tendances," in Technique et science
informatique, vol. 15 – n°6, 1996, pp.765-800.

[5] M. D. Lubars, N. Iscoe, "Frameworks versus libraries: a dichotomy of
reuse strategies," in Proc. WISR'93, 6th Annual Workshop on Software
Reuse, 1993.

[6] D. C. Schmidt, D. L. Levine, C. Cleeland, "Architectures and patterns
for developing high-performance, real-time ORB endsystems," in
Advances in Computers, Academic Press, 1999.

[7] H. A. Schmid, "Systematic framework design," in Communications of
the ACM, Vol. 40 n° 10, October 1997.

[8] J. Bosch, "Specifying frameworks and design patterns as architectural
fragments," in Proc. TOOLS ASIA '98, 1998.

[9] D. Roberts, R. Johnson, "Evolving frameworks – a pattern language for
developing OO frameworks," in Pattern Languages of Program
Design 3, R. Martin, Ed. Addison-Wesley, 1998.

[10] S. Anvar, H. Le Provost, F. Louis, "The ANTARES offshore data
acquisition: a highly distributed, embedded and COTS-based system,"
presented at the 2000 NSS/MIC Symposium, Lyon, France, 2000.

[11] The Object Management Group. (2000, Mar.). OMG Unified Modeling
Language Specification. (version 1.3) [Online]. Available:
http://www.omg.org/technology/documents/formal/unified_modeling_l
anguage.htm.

[12] T. Quatrani, "Visual modeling with Rational Rose 2000 and UML,"
Addison-Wesley, 1999.

[13] Philippe Desfray. UML profiles and the J language,
total control over application development using UML. (white paper)
[Online], Available: http://www.softeam.fr/us/smot_uml_white.htm.

[14] F. Kuhns, D. C. Schmidt, D. L. Levine, "The performance of a real-
time I/O subsystem for QoS-enabled ORB middleware," in Proc.
Distributed Objects and Applications (DOA'99), 1999.

[15] The Object Management Group. (1999, Sept.). Action Semantics for
the UML – Request for Proposal. [Online]. Available:
http://www.projtech.com/pubs/xuml/rfp.pdf

[16] A. Lanusse, S. Gérard, F. Terrier, "Real-time modeling with UML: the
ACCORD approach," Lecture Notes in Computer Science, vol. 1618
pp. 319-335, Springer, 1999.

[17] S. Gérard, "Modélisation UML exécutable pour les systèmes
embarqués de l’automobile," University of Evry, Evry, France, PhD
Report, Oct. 2000.

[18] M. Ho, J-M. Jézéquel, A. Le Guennec, F. Pennaneac'h , "UMLAUT: an
extensible UML transformation framework," in Proc. 14th IEEE
International Conference on Automated Software Engineering, 1999.

[19] D. C. Schmidt. The Adaptative Communication Environment (ACE).
[Online]. Available: http://www.cs.wustl.edu/~schmidt/ACE.html

[20] D. C. Schmidt. The ACE ORB. [Online]. Available:
http://www.cs.wustl.edu/~schmidt/TAO.html

 7

[21] The Object Management Group. UML profile for scheduling,
performance and time, request for proposal. (1999, Mar. 13). [Online].
Available: ftp://ftp.omg.org/pub/docs/ad/99-03-13.pdf

[22] B. Selic, B. Douglass, A. Moore, M. Bjorkander, M. Gerhardt, B.
Watson. Response to the OMG RFP for schedulability, performance,
and time. (2000, Aug. 14). [Online]. Available:
ftp://ftp.omg.org/pub/docs/ad/00-08-04.pdf

VIII. FIGURES

Fig. 1. Sequence Diagram of SAMSA System.

Fig. 2. Class Diagram of SAMSA System.

Fig. 3. First Deployment of SAMSA System.

Fig. 4. Second Deployment of SAMSA System.

Fig. 5. SAMSA Model Transformation on PowerPC-RTOS Side.

Fig. 6. SAMSA Model Transformation on PC-Linux Side.

Fig. 7. SAMSA Model Transformation on PowerPC-RTOS Side With Farm
Management.

