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ABSTRACT

The global dynamics of a rotating star like the Sun involves the coupling of a highly turbulent
convective envelope overlying a seemingly benign radiative interior. We use the ASH code to develop
a new class of 3-D models that nonlinearly couple the convective envelope to a deep stable radiative
interior. The numerical simulation assumes a realistic solar stratification from r = 0.07 up to 0.97R
(with R the solar radius), thus encompassing part of the nuclear core up through most of the con-
vection zone. We find that a tachocline naturally establishes itself between the differentially rotating
convective envelope and the solid body rotation of the interior, with a slow spreading that is here
diffusively controlled. The rapid angular momentum redistribution in the convective envelope leads to
a fast equator and slow poles, with a conical differential rotation achieved at mid latitudes, much as
has been deduced by helioseismology. The convective motions are able to overshoot downward about
0.04R into the radiative interior. However the convective meridional circulation there is confined to
a smaller penetration depth and is directed mostly equatorward at the base of the convection zone.
Thermal wind balance is established in the lower convection zone and tachocline but departures are ev-
ident in the upper convection zone. Internal gravity waves are excited by the convective overshooting,
yielding a complex wave field throughout the radiative interior.

Subject headings: convection, turbulence, waves, Sun: structure, rotation, angular momentum

1. DYNAMICS OF THE SOLAR INTERIOR

As a low mass star, the Sun possesses a deep convective
envelope overlying a relatively quiescent interior where
heat transport is achieved by means of radiative diffu-
sion. According to the Schwarzschild criterion (Cox &
Guili 1968), the transition from convective stablility to
instability occurs near r = 0.71R (with R the solar ra-
dius), and is attributed primarily to a large increase in
the opacity associated with C, N and O with increas-
ing radius. The convective envelope, covering the outer
29% by radius, is highly turbulent, involving changes on
timescales of minutes to weeks, and it rotates differen-
tially. It also exhibits a variety of magnetic phenomena,
most notably the emergence of sunspots and the equa-
torward migration of activity bands with a character-
istic magnetic cycle period of approximately 22 yr. In
contrast, the radiative interior evolves on a much longer
timescale (of order the Kelvin-Helmholtz time ∼ 107 yr),
rotates as a solid body down to at least 0.2− 0.3 R (Eff-
Darwich et al. 2008) and may possess a stable magnetic
fossil field. Helioseismology has revealed that the rota-
tion profile throughout the convection zone is similar to
that indicated by surface Doppler observations, with lit-
tle radial variation (Schou et al. 1998, Thompson et al.
2003). The transition to nearly uniform rotation in the
radiative interior occurs near the base of the convection
zone, across a thin boundary layer known as the solar
tachocline (Spiegel & Zahn 1992).

While the dynamics of the convection and radiative

zones differ strikingly, they are nevertheless intimately
coupled and a comprehensive understanding of solar in-
ternal dynamics must take into account their mutual
nonlinear interactions. This is a challenging task for nu-
merical models, given the large diversity of physical phe-
nomena that need to be captured at the base of the con-
vection zone, including convective overshoot, anisotropic
turbulence, internal wave excitation and propagation,
magnetic field generation and storage, tachocline dynam-
ics and confinement, and hydrodynamic and magnetic
instabilities.

1.1. Penetration and Wave Excitation

Turbulent convection in a continuous medium does not
simply stop where the stratification shifts from supera-
diabatic to subadiabatic. At the base of the convection
zone, the inertia of downflow plumes carries them into
the convectively stable interior where they are buoyantly
decelerated over a finite distance. The extent of convec-
tive penetration or of overshooting is a function of both
the stiffness of the stable zone and the Peclet number
Pe = vL/κ (with v and L characteristic velocity and
length and κ the thermal diffusivity) associated with the
plumes (Zahn 1991; Brummell et al. 2002; Rempel 2004).
For large Peclet numbers, the turbulence associated with
the braking plumes leads to efficient mixing of the zone,
such that its stratification is changed to nearly adiabatic.
For low Peclet numbers mixing is inefficient and the strat-
ification remains largely unchanged. Further, the stable
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radial stratification deflects descending motions horizon-
tally, exciting anisotropic turbulence (Michaud & Zahn
1998). Assessing the degree of such anisotropy and its
consequences for the dynamics of the base of the convec-
tion zone is a subject of active study (e.g., Miesch 2003;
Kim & Leprovost 2007).

Directly connected to convective penetration is the ex-
citation of internal waves by the continuous pummeling
of turbulent convective plumes at the top of the radiative
zone (Hurlburt et al. 1986; Goldreich & Kumar 1990;
Garcia Lopez & Spruit 1991, Zahn et al. 1997; Kiraga et
al. 2003; Rogers & Glatzmaier 2005). These waves are
internal gravity waves if the rotational influence is negli-
gible, or mixed inertial-gravity waves otherwise (Mathis
et al. 2008). Just what wave spectrum is excited by the
penetration of convective plumes, how it is modified by
the influence of rotation, and how these waves propagate
and transport angular momentum are important issues
to assess, for they may contribute to the solid body ro-
tation of the solar radiative interior and the spin down
of the radiative core over secular timescales (Charbonnel
& Talon 2005; Rogers & Glatzmaier 2006).

1.2. Rotational History and Transport

Also of general interest is to understand the rotation
history of the Sun from its formation through its main se-
quence evolution until its final evolutionary phase (Char-
bonneau & MacGregor 1993; Palacios et al. 2006; Bou-
vier 2008). How angular momentum is redistributed in
the radiative and convection zones as well as how external
torques, through interaction with a disk in the T-Tauri
phase (Matt & Pudritz 2005; Bessolaz et al. 2008) or a
stellar wind (Schatzman 1962; Weber & Davis 1967; Sku-
manich 1972), influence the Sun’s evolution and internal
rotation profile is a central issue to resolve (Denissenkov
et al. 2010; Spada et al. 2010). We know by study-
ing open clusters at various ages that the distribution of
stellar rotation rates shows a larger spread during their
early evolutionary phase than later on when they reach
the age of the Hyades (Bouvier 2008). The timescale for
core-envelope coupling has a direct influence on stellar
rotational evolution, with the profile of rotation in the
radiative interior (solid body or radial differential rota-
tion) influencing the evolutionary track (Keppens et al.
1995; Irwin et al. 2008; Denissenkov et al. 2010). This
coupling timescale is a function of rotation rate and cur-
rently its theoretical estimate varies between 1 Myr for
fast rotators up to hundreds of Myr for slowly rotating
solar-like stars (Pinsonneault 1997; Denissenkov et al.
2010). We thus need to develop models that can improve
our knowledge of this coupling and how it occurs.

Just as stellar rotational evolution provides a diag-
nostic for angular momentum transport between the
convection and radiation zones, compositional evolution
provides a diagnostic for mass transport. In particu-
lar, the surface abundances of light elements such as
lithium and berylium are observed to decrease over
the main-sequence lifetime of solar-like stars (Michaud
& Charbonneau 1991; Cayrel 1998; Bouvier 2008).
This decrease is attributed to transport of chemical
species below the convective envelope into the stable
radiative interior where light elements are dissociated.
Thus, stellar compositional evolution can be used to
put constraints on the presence and extent of internal

mixing below the convection zone (Brun et al. 1999).
Such mixing may be triggered by hydrodynamical
(rotational) or MHD instabilities that are associated
with the presence of large scale flows such as differential
rotation (Zahn 1992).

1.3. Solar Magnetism

The Sun is a magnetic star, and this greatly compli-
cates its dynamics, particularly with regard to the cou-
pling between the convection and radiation zones. For
instance, cold intense downward plumes transport mag-
netic field via magnetic pumping into the radiative inte-
rior (Tobias et al. 2001). This is one of the key ingre-
dients for the current solar interface dynamo paradigm
(Parker 1993; Brun, Miesch & Toomre 2004; Charbon-
neau 2005). Effectively, the base of the convection zone
is considered as the place to store magnetic field gen-
erated in the turbulent convective envelope and to con-
vert it into strong toroidal magnetic field via the radial
and latitudinal shear present in the tachocline (Brown-
ing et al. 2006; Ghizaru et al. 2010). Internal waves are
also modified by the presence of magnetic fields, becom-
ing alveno-gravito-inertial waves (Soward 2007; Campos
2010; Mathis & De Brye 2011). The possible presence of
a modest fossil field in the radiative interior may explain
the solid body rotation and the thinness of the tachocline
(Rudiger & Kitchatinov 1997, 2007; Gough & McIntyre
1998; Garaud 2002; Brun & Zahn 2006) or be at the
origin of magnetic instabilities that might trigger mixing
of angular momentum or chemical abundances (Tayler
1973; Spruit 1999). These questions are still debated in
the community. The presence of a deep seated magnetic
field is also an efficient way of linking angular momen-
tum lost at the solar surface to the inner radiative inte-
rior. Here also the observation of other magnetic solar-
like stars with various levels of activity, rotation rates
and cycle periods indicates that there is a clear relation
between magnetism and rotation: rapidly-rotating solar-
like stars often exhibit relatively strong magnetic activity
(Baliunas et al. 1995; Saar & Brandenburg 1999; Pizzo-
lato et al. 2003). Thus being able to reconstruct the
rotational history and the internal rotation profile of the
Sun can improve significantly our understanding of the
evolution of solar-like stars and vice versa.

1.4. Incorporating the Many Elements

Until recently most theoretical developments consid-
ered each physical process independently from one an-
other and numerical models of the convection and radi-
ation zones and the tachocline were computed in 1-D or
2-D (see for instance Pinsonneault 1997, Denissenkov et
al. 2010, Rudiger & Kitchatinov 1997, Spada et al. 2010
and reference therein). Thanks to recent advances in su-
percomputer architectures it is now possible to tackle the
coupled problem in 3-D with an augmented level of real-
ism. Previous attempts to model the coupling between
the convective and radiative zones using the 3-D anelas-
tic spherical harmonic (ASH) code (Clune et al. 1999)
have considered a shallow radiative zone (rbot ∼ 0.6R)
below the convective envelope with various degrees of
turbulence and magnetism (Glatzmaier 1985, 1987; Mi-
esch et al. 2000; Browning et al. 2006). A simpler
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approach was also used where a latitudinal entropy gra-
dient was imposed at the base of a convective envelope to
mimic the presence of a tachocline (Miesch et al. 2006,
hereinafter MBT06). In this paper we are setting the
stage for a subsequent new series of 3-D MHD models
of the Sun with the ASH code that seek to address as
extensively as possible the questions raised above. We
here start with the hydrodynamical reference model as-
suming a realistic solar-like stratification and describe
in detail its properties. We have made the deliberate
choice of trading high horizontal resolution (as in Miesch
et al. 2008) for an extended vertical domain to explore
the radiative-convective zone coupling on dynamical time
scales. Over the longer term, we intend to apply this new
simulation approach to investigate dynamo action in the
convection zone and tachocline as well as its interaction
with a primordial field embedded in the radiative inte-
rior. Some recent efforts with the ASH code have started
to address aspects of these complex problems (Strugarek
et al. 2011), and more results are forthcoming.

In section 2 we explain the formulation of the model
and the equations solved by ASH. In section 3 we de-
scribe the nonlinear convective motions that develop in
the outer 30% of the model and how they penetrate into
the radiative interior. In section 4 we discuss the profile
and amplitude of large-scale flows and thermodynamic
variables associated with the convection and their exten-
sion into the radiative interior, as well as the meridional
and zonal force balances achieved in the model. We then
study the coupling between the convective and radiative
zones in more detail in section 5 and reflect on the sig-
nificance of our findings in section 6.

2. MODELING APPROACH

2.1. Anelastic Equations

In this paper we report 3–D numerical experiments de-
signed to investigate the complex hydrodynamics (HD)
of the solar convection zone in spherical geometries.
We have extended our already well-tested hydrodynamic
ASH code (see Clune et al. 1999; Miesch et al. 2000;
Brun & Toomre 2002, hereinafter BT02) to include a
deep radiative zone. Thus ASH is now able to solve the
full set of 3–D HD anelastic equations of motion in a
rotating, convective and radiative spherical shell with
high resolution on massively-parallel computing archi-
tectures. These equations are fully nonlinear in veloc-
ity variables, but under the anelastic approximation the
thermodynamic variables are linearized with respect to
a spherically symmetric and evolving mean state hav-
ing a density ρ̄, pressure P̄ , temperature T̄ and specific
entropy S̄. Fluctuations about this reference state are
denoted by ρ, P , T , and S. The resulting equations are
(Glatzmaier 1984; Clune et al. 1999):

∇ · (ρ̄v)=0, (1)

ρ̄

(
∂v

∂t
+ (v · ∇)v

)
=−∇P + ρg (2)

−2ρ̄Ωo × v − ∇ · D− [∇P̄ − ρ̄g],

ρ̄T̄
∂S

∂t
+ ρ̄T̄v · ∇(S̄ + S) = ρ̄ǫ

+∇ · [κrρ̄cp∇(T̄ + T )+κρ̄T̄∇S + κ0ρ̄T̄∇S̄] (3)

+2ρ̄ν
[
eijeij − 1/3(∇ · v)2

]
,

where v = (vr, vθ, vφ) is the local velocity in spherical
coordinates in the frame rotating at constant angular
velocity Ωo, g is the gravitational acceleration, cp is the
specific heat per unit mass at constant pressure, κr is the
radiative diffusivity, and D is the viscous stress tensor.
The components of D are given by

Dij = −2ρ̄ν[eij − 1/3(∇ · v)δij ] , (4)

where eij is the strain rate tensor, and ν, κ and κ0 are
effective eddy diffusivities. A volume heating term ρ̄ǫ
is also included in these equations, representing energy
generation by nuclear burning. In the deep radiative in-
terior the nuclear reactions are at the origin of the energy
released at the surface by the Sun. We have assumed a
simple representation of the nuclear reaction rate by set-
ting ǫ = ǫ0T

n, with ǫ0 a constant determined such that
the radially integrated heating term equals the solar lu-
minosity at the base of the convection zone and n = 9.
The exponent n is larger that what is usually used for
p − p chains (i.e. n = 4) but much smaller than for the
CNO cycle n ∼ 20 (Clayton 1968). When integrated
over the radius, our choice of heating source term yields
a good agreement with that of 1-D standard solar model
(Brun et al. 2002) in which p− p chains represent about
98% of the energy release and CNO cycles 2%.

Fig. 1.— Radial profile of the turbulent kinematic viscosity (solid
line) and thermal diffusivity (dashed line) used in the 3-D model.

To complete the set of equations, we use the linearized
equation of state

ρ

ρ̄
=

P

P̄
−

T

T̄
=

P

γP̄
−

S

cp

, (5)

where γ is the adiabatic exponent, and assume the ideal
gas law

P̄ = Rρ̄T̄ , (6)

where R is the gas constant. The reference state is
derived from a 1–D solar structure model (Brun et al.
2002) and is continuously updated with the spherically-
symmetric components of the thermodynamic fluctua-
tions as the simulation proceeds. It begins in hydrostatic
balance so the bracketed term on the right-hand-side of
equation (3) initially vanishes. However, as the simula-
tion evolves, turbulent pressure drives the reference state
slightly away from hydrostatic balance.
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Fig. 2.— Radial profiles of (a) the density, (b) temperature and (c) pressure as a function of normalized radius for the 1–D standard
solar structure model of Brun et al. (2002) (dashed lines) and for the reference state T̄ , ρ̄, P̄ used in the 3–D ASH convection simulation
(solid lines). The reference state for the 3–D model is thus chosen to be very close to 1-D seismically calibrated solar model.

a

b
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Fig. 3.— (a) Profile of the mean radial entropy gradient dS̄/dr
used as reference state for the 3–D simulations (solid lines) com-
pared to the 1-D reference solar model of Brun et al. (2002) (dashed
lines). (b) Zoom in the convective and overshooting region. We
clearly see how convective motions modify the entropy gradient in
the 3-D simulation at the base of the convective domain. The sharp
decrease seen in the 1-D model beyond 0.95 R has been deliberately
attenuated for numerical reasons.

Due to limitations in computing resources, no simula-
tion achievable now or in the near future can hope to
directly capture all scales of solar convection from global
to molecular dissipation scales. The simulation reported
here resolves nonlinear interactions among a large range
of scales both in the convective and radiative zones. The
nonlinear coupling of the two zones plus the use of a re-
alistic stratification in the radiative interior is what sets
this simulation apart. Motions and waves must exist in
the Sun on scales smaller than our grid resolution. In
this sense, our models should be regarded as large-eddy

simulations (LES) with parameterizations to account for
subgrid-scale (SGS) motions. Thus the effective eddy
diffusivities ν, κ and κ0 represent momentum and heat
transport by motions which are not resolved by the simu-
lation. They are allowed to vary with radius but are inde-
pendent of latitude and longitude, and vary only slighly
with time for a given simulation as the reference density
evolves. Their amplitudes and radial profiles are varied
depending on the resolution and objectives of each simu-
lation. In the simulation reported here, the radial profiles
of ν and κ are given by

ν(r) = νtop(a + f(r)(1 − a)) ,

with f(r) = 0.5(tanh(10−10(r − rt)/σt) + 1), νtop = 8 ×
1012 cm2 s−1, rt = 4.7× 1010 cm, σt = 0.1 and a = 0.01.
For κ a similar formula is used with κtop = 3.2×1013 cm2

s−1 and all the other parameters kept the same. These
tapered profiles are chosen in order to take into account
the much smaller sub-grid scale transport expected in
the convectively stable radiative interior. Their profile
is shown in Figure 1. The diffusivity κ0 is set such as
to have the unresolved eddy flux carrying the solar flux
outward at the top of the domain (see Figure 4). It drops
off exponentially with depth in order to avoid a large
inward heat flux in the stable zone (see Miesch et al.
2000). Of course there is some arbitrariness in choosing
the exact shape and amplitude of our diffusivity profiles
and we do our best to limit their influence on the results
reported here.

The velocity and thermodynamic variables are ex-
panded in spherical harmonics Yℓm(θ, φ) for their hor-
izontal structure and in Chebyshev polynomials Tn(r)
for their radial structure (see Glatzmaier 1984; Clune et
al. 1999 for more details on the numerical method and
anelastic approximation). Two Chebyshev expansion do-
mains are used, meeting below the overshoot region at
r = 4 × 1010 cm or r/R ∼ 0.57.

Given that the convective and radiative zones are non-
linearly and dynamically coupled, internal waves can eas-
ily be excited by the pummeling of convective plumes
on top of the radiative interior (as was done in 2–D
by Rogers & Glatzmaier 2006). The Brunt-Väisälä fre-
quency N of the model is very close to that deduced
from a 1–D seismically constrained model (see Figure 8
below). We are thus expecting the propagation of the
internal waves to be realistic, aside from the enhanced
thermal and viscous diffusion present in the model that
translates into an enhanced damping (Zahn et al. 1997).
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Fig. 4.— Radial energy flux balance realized in the model (converted into luminosity and normalized to the solar luminosity), (a) before
and (b) after adjusting the radiative diffusivity as described in the text. Each figure has been averaged over latitude, longitude, and time,
spanning 5 rotation periods. The good flux balance achieved in panel (b) occurs after having evolved the model for many convective
overturning times. Shown from r = 0.07 to 0.97 R, are the contributions to the energy flux from radiative diffusion (long dashes), enthalpy
(dash three-dots), kinetic energy (dash-dot), modeled SGS processes (dots), and viscous diffusion (dashes). The solid line is the sum of
all these components. The overshooting region is evident near 0.7 R, characterized by a negative enthalpy flux. In the convection zone
the inward kinetic energy flux due to the asymmetry between upflows and downflows is balanced by an outward enthalpy transport that
exceeds the solar luminosity.

In order to ensure that the mass flux remains divergence-
less, we use a toroidal–poloidal decomposition as:

ρ̄v = ∇ × ∇ × (W êr) + ∇ × (Zêr) . (7)

This system of hydrodynamic equations requires 8
boundary conditions in order to be well-posed. Since
assessing the angular momentum redistribution in our
simulations is one of the main goals of this work, we
have opted for torque-free velocity conditions:

a. impenetrable top and bottom: vr = 0|r=rbot,rtop

b. stress free top and bottom:
∂
∂r

(
vθ

r

)
= ∂

∂r

( vφ

r

)
= 0|r=rbot,rtop

c. constant entropy gradient at top and bottom:
∂S̄
∂r

= 2.2 × 10−3|r=rbot
and − 10−7|r=rtop

2.2. Numerical Experiments

Our numerical model is a simplified portrayal of the so-
lar convection and radiative zones: solar values are taken
for the heat flux, rotation rate, mass and radius, and a
perfect gas is assumed. The anelastic reference state is
based on a 1–D standard solar structure model (Brun et
al. 2002) as demonstrated in Figures 2 and 3. We initial-
ize the reference state of the 3–D model by specifying the
entropy gradient dS̄/dr and gravitational acceleration g
based on the 1–D model. The steep negative entropy
gradient near the solar surface is artificially suppressed
to avoid the driving of small-scale convective motions
that cannot be resolved in this model. We then solve the
equation of hydrostatic balance for the reference density
ρ̄ with an Newton-Raphson method, assuming an ideal
gas equation of state and using the density profile of the
1–D structure model as an initial guess to initiate the
iterative solve. The resulting reference state is close to
the solar structure model, with slight departures due to
the modified entropy profile in the convection zone and
the ideal gas equation of state. Similarly, the radial pro-
file of the radiative diffusivity κr is based on the 1–D
solar structure model, slightly adjusted to accommodate

the small changes between the reference state and the
structure model.

Thus the departure of the reference entropy gradient
from the solar structure model near the top of the con-
vection zone evident in Figure 3b is largely imposed.
However, the departure near the base of the convection
zone is established by the convection itself, as downflow
plumes deposit low entropy material just before entering
the stable radiative zone. The initial reference state in
this region follows more closely the 1–D structure model.

The computational domain extends from 0.07 to 0.97
R, thereby encompassing 90% of the solar interior by
radius. The numerical resolution is Nr × Nθ × Nφ =
770 × 256 × 512, with the Chebyshev collocation points
providing relatively high radial resolution in the over-
shooting/tachocline region at the base of the convection
zone. Specifically, we have two Chebyshev expansion do-
mains that meet at r = 0.57R. This transition point is
below the overshoot region but close enough to provide
enhanced resolution in this key region of our computa-
tional domain. The Gauss-Lobatto collocation scheme
provides about 220 mesh points between r = 0.57R and
r = 0.72R. The average radial spacing grid spacing in
this region is approximately 460 km, about 0.7% of the
local pressure scale height. The depth of the convection
zone rbcz , as defined by the change of sign of the initial
mean entropy gradient dS̄/dr, is located at 0.71R and is
slightly modified by the convective motions as the sim-
ulation evolves and matures (reaching 0.715R). At the
base of the convection zone proper the resolution is 800
km. The reference density varies across the convective
envelope (e.g. r/R = [0.71, 0.97]) by about a factor of 30
and by about a factor of 38,000 over the entire compu-
tational domain (r/R = [0.07, 0.97]).

The energy transport by resolved convective motions
will not in general be equivalent to the mixing-length
prescriptions assumed in the 1–D solar structure model
so the simulation must adjust accordingly. In particu-
lar, overshooting convection produces a flux deficit near
the base of the convection zone as illustrated in Figure
4a. Ideally, the system would adjust to a new equilib-
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rium by modifying the background thermal stratification.
However, this occurs over a thermal relaxation timescale
Ei/L ∼ 105 yr, where Ei is the internal energy of the
plasma and L is the luminosity. Since achieving this
timescale is impractical, we accelerate the thermal re-
laxation process by artificially increasing the radiative
diffusivity κr near the base of the convection zone as
described by Miesch et al. (2000). This increase in κr

is chosen to balance the temporally-averaged inward en-
thalpy flux in the overshoot region (see also section 3.2
and Figure 6 below). The model subsequently achieves
satisfactory flux balance throughout the domain within
about 1000 days (∼ 30-40 convective turnover times), as
demonstrated in Figure 4b. We now proceed to discuss
the principal simulation results.

Vr T
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Fig. 5.— Scaled Mollweide views of the radial velocity (left)
and temperature fluctuations (from which we subtracted the m =
0 axisymmetric component) (right): snapshots, at various radii
within the model as indicated. The dotted ellipse corresponds to
the solar surface, the dashed line to the equator. Dark tones denote
negative (inward) velocities and temperature fluctuations.

3. DYNAMICS IN THE CONVECTIVE AND RADIATIVE
ZONES

Once the convective instability has reached a statistical
equilibrium, we evolve the model long enough (several
thousand days) to get a mature, well relaxed dynamical
state in order to compute accurate statistics and averages
of the main quantities of interest. In this section we give
an overview of the coupled dynamics and flows realized
in the convection and radiative zones. We then turn to
a more detailed description of the mean flows and the
interface region in sections 4 and 5.

3.1. Convection Patterns

In Figure 5 we show the radial velocity and the tem-
perature fluctuations realized in the model, including lay-
ers in the upper and lower convection zone, in the over-
shoot region, and in the radiative interior. Convective
motions are apparent near the top of the domain as a
network of narrow downflow lanes surrounding broader
upflows. These convective flows are highly time depen-
dent, with convective cells continuously emerging, merg-
ing with one another or splitting into two or more dis-
tinct structures. Associated with the downflow lanes (up-
flows) are cool (warm) structures that, given our choice
of Prandtl number (1/4), are smoother and broader that
the velocity structures. Deeper down, the network of
downflow lanes becomes less apparent, with individual
convective plumes becoming more isolated as only the
strongest downflows pierce through the whole convective
envelope. The amplitude of the convective velocity drops
significantly (from 200 m s−1 down to a 0.1 m s−1) within
the overshoot region at r/R = 0.69 where plumes are
buoyantly decelerated. Deeper in the radiative zone, the
radial velocity amplitude decreases sharply, reaching a
few mm s−1 by r = 0.65R and continuing to decrease
thereafter. By contrast, the amplitude of the temper-
ature variations is only weakly decreasing with depth,
remaining of order few K for the five depths shown.

We note that the strongest downflow plumes in the
bulk of the convection zone are also cool (Figures 5c,d),
but typically are surrounded by a sheath of upflow that is
warm. As the descending plumes slow down just prior to
entering the stable stratification, their fluctuating tem-
perature can reverse sign to become positive as evident
at a number of sites, likely due to diffusive heating by
their surrounding sheath (Figures 5e,f). With increas-
ing depth the downflow sites can become sites of feeble
upflow near the top of the radiative interior (Figure 5i),
largely because the downflows are deflected sideways and
viscous diffusion induces an upflow into such divergence
sites. These plumes also excite relaxation oscillations in
the form of internal gravity waves, some of which con-
tribute to the more rapidly evolving patterns seen at the
lowest depths in a single snapshot.

3.2. Penetration of Convective Motions

In the overshoot region the correlation between ra-
dial velocity and temperature fluctuations reverses due
to the sharp transition from superadiabatic to subadia-
batic stratification. As downflow plumes pass through
this transition, they are buoyantly decelerated, forming
an overshoot region as discussed in section 1.1. Since
the amount of overshooting depends on the stratification
(i.e stiffness or subadiabaticty) of the radiative interior,
our use of a realistic solar stratification is a significant
achievement, unprecedented in previous global 3–D sim-
ulations of penetrative convection.

The Peclet number (Pe) of the individual plumes is
of essential importance in determining the properties of
overshooting convection (see Zahn 1991; Brummell et al
2002; Browning et al. 2004; Rempel 2004; Rogers, Glatz-
maier & Jones 2006; Chan 2010). Small values of Pe give
rise to convective overshoot, in the sense that the strati-
fication remains significantly subadiabatic. By contrast,
high values of Pe promote efficient mixing such that the
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a b

Fig. 6.— Azimuthal and temporal averages of the radial enthalpy
flux in the model (normalized by a factor of 1011). Shown are (a)
color contours in the full domain and (b) radial cuts at specified
latitudes zooming in to the overshoot region. In both panels the
base of the convection zone rbcz is indicated by a dashed line (cir-
cular in panel a, vertical in frame b), as defined by the change
of sign of the mean entropy gradient, dS̄/dr. Clearly evident is
the negative peak near the base of the convection zone, signifying
buoyant braking of convective plumes.

stratification immediately below the convection zone is
nearly adiabatic (dS̄/dr ∼ 0) and the base of the con-
vection zone can potentially spread downward with time.
Following Zahn (1991), we refer to this as convective pen-
etration (see also §1.1). It is clear that the Peclet number
in this mildly turbulent simulation is much less than that
of the Sun. Therefore, we may expect to see overshoot
as opposed to penetration. This is indeed the case; as
demonstrated in Figure 3b, the stratification below the
convection zone is substantially subadiabatic and does
not spread with time. Yet the width of the overshoot re-
gion may well be overestimated, for it scales as the square
root of the filling factor of downflow plumes, which is
likely larger in this relatively laminar model than it is in
the Sun (Zahn 1991; Rempel 2004).

In Figure 6 we display a temporal and azimuthal av-
erage of the radial enthalpy flux along with radial cuts
near the base of the convection zone for indicated lati-
tudes. The enthalpy flux peaks in the convective enve-
lope, being predominantly positive at all latitudes. Its
maximum is reached at low latitudes, and its profile be-
comes more skewed toward the top of the domain at high
latitudes. Near the base of the convection zone the en-
thalpy flux becomes negative, as discussed in section 2.2,
again peaking in amplitude and extent at low latitudes.
The prominent low-latitude enthalpy flux in the convec-
tion zone and overshoot region is a consequence of the
relatively laminar convective motions; equatorial modes
are linearly preferred in rotating spherical shells near the
critical Rayleigh number for the onset of convection. At
higher Rayleigh numbers, we expect the radial heat flux
to become more homogeneous, filling in higher latitudes
(e.g. Miesch et al. 2000). Also, the warm poles and the
low Prandtl number further inhibit the enthalpy flux in
downward high-latitude plumes.

The negative enthalpy flux at the base of the convec-
tion zone is one measure of the extent of the overshoot
region. Thus, the latitudinal variation evident in Fig-

Fig. 7.— Latitudinal variation of rc (the radius at which the
enthalpy flux becomes negative; top solid line) and ro (the radius
at which the radial enthalpy flux becomes negligible; bottom solid
line). The hashed zone is one measure of the extent of the over-
shoot region, or in other words, the region of mixing. The mean
value of rc is 0.733R, somewhat higher than the value of 0.715R
deduced from the change of sign of the mean entropy gradient, so
we distinguish these two zones (e.g. below and above rbcz) by using
a different angle for the dotted lines. We further note the deeper
extent of the low latitude regions, signifying a prolate shape of the
bottom of the convective zone and the nearly spherical profile of
the bottom of the mixing region, ro.

ure 6b reflects a latitudinal variation in the amount of
convective overshoot. Following Browning et al. (2004),
we quantify this by defining rc as the radius where the
enthalpy flux Fe first changes sign (the node closest to
the convection zone) and ro as the radius below which
the amplitude of Fe drops to 0.1% of its most negative
value. There is some arbitrariness in the definition of ro

but we find that the results are insensitive to this. The
latitudinal variation of rc and ro is shown in Figure 7.

Figure 7 indicates that the base of the convection zone
as defined by rc is deeper near the equator than the poles,
with a difference of roughly 0.02R. The mean value of rc

is 0.733R, which is somewhat higher than the base of the
convection zone as defined by the change in sign of the
mean entropy gradient, which gives rbcz = 0.715R (see
Figure 3). The bottom of the overshoot region ro is also
deeper at the equator but the variation is less, approxi-
mately 0.005R. This implies that the depth of the over-
shoot region is also larger at the equator. It is certainly of
some interest that rc is greater than rbcz where the mean
entropy gradient changes sign. This property arises from
some of the downflow plumes having a change in the sign
of their fluctuating temperature (from relatively cool to
warm) that precedes their arrival at rbcz. We attribute
this to diffusive heating from their surrounding warm
sheaths of upflow serving to warm them and initiating
buoyancy braking, accompanied also by a change in the
sign of the enthalpy flux (Figure 6b) at a depth that
varies with latitude.

This result differs from what was found with convec-
tive cores in more massive A-type stars by Browning et
al. (2004). They find that convection is more extended
near the poles and they attribute this to the influence
of the Coriolis force, which inhibits the radial motion of
overshooting plumes and lanes at low latitudes. Here the
more intense convection near the equator and the com-
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paratively slower rotation rate (higher Rossby number)
both act to enhance the low-latitude overshoot relative to
higher latitudes. Furthermore, the “flywheel” action of
persistent, rotationally-aligned convective columns (ba-
nana cells) can enhance downward overshoot more effi-
ciently than upward overshoot, as from a convective core
(Brummell et al. 2002). This occurs because the pre-
ferred columnar (banana) modes tend to hug the tangent
cylinder, a cylindrical surface aligned with the rotation
axis and tangent to the base of the convection zone. In
short, convective overshoot (and, by extension, convec-
tive penetration at higher Pe) tends to shift the tangent
cylinder closer to the rotation axis.

The overshoot region defined by rc and ro may also be
regarded as the region below the convection zone proper
where turbulent mixing is still appreciable. Thus, ro

marks the location above which the convective envelope
can be considered as well mixed. The latitudinal varia-
tions shown in Figure 7 then imply that the base of the
convection zone as defined by rc is prolate, whereas the
base of the mixing region as defined by ro is nearly spher-
ical, the latter located near r = 0.675R. If we instead
define the base of the convection zone in terms of where
the radial entropy gradient changes sign, rbcz , then this
too is nearly spherical, showing no significant latitudinal
variation. For reference the diffusivity profiles (cf. Fig-
ure 1) possess a transition radius at 0.675 R, which lies
near the bottom of the overshoot region.

It is interesting to compare these results with infer-
ences made from helioseismology. Helioseismic struc-
ture inversions are sensitive to where the stratification
changes from nearly adiabatic to substantially subadia-
batic (e.g. Christensen-Dalsgaard et al. 2011). In our
case, since we see no significant penetration as opposed
to overshooting, this would correspond to rbcz . The
lack of any significant latitudinal variation in the base
of the convection zone inferred from helioseismic struc-
ture inversions is thus consistent with the nearly spher-
ical structure of rbcz and also ro (e.g., Basu & Antia
2001). However, if angular momentum transport is dy-
namically linked to convective enthalpy transport, then
there may be some connection between the prolate struc-
ture of rc and the prolate structure of the tachocline in-
ferred from helioseismic rotational inversions (Charbon-
neau et al. 1999, Basu & Antia 2001).

The difference between rc and ro is one of many ways
to define the extent of the overshoot region, yielding an
average value of 0.058R. Here we use an alternative,
more robust measure by defining the overshoot region as
the region between the base of the convection zone as
traced by a change in sign of the mean radial entropy
gradient, rbcz , and the bottom of the mixed layer, ro.
This yields dov = rbcz − ro ∼ 0.04R = 28 Mm, or about
0.43 local pressure scale height (Hp ∼ 65 Mm at these
depths). This value is rather large when compared to
theoretical estimates (Zahn 1991) but in agreement with
the value quoted by Rogers & Glatzmaier (2006) in their
2-D simulations of penetrative solar convection in the
equatorial plane. The disrepancy with theoretical esti-
mates may be due to the relatively large filling factor of
our convective downflow plumes, which tends to increase
the exent of overshooting, as noted above. The filling
factor for turbulent, 3–D plumes is likely to be smaller
than that in 2–D simulations or mildly turbulent 3–D

simulations such as that reported here. More turbulent
convective simulations have indeed yielded smaller over-
shooting depths (Brummell et al. 2002, Browning et al.
2004).

3.3. Gravity Waves

The pummeling of convective plumes on the top of the
radiative zone generates a rich field of internal gravity
waves (e.g., Hurlburt et al. 1986, 1994; Zahn et al. 1997;
Kiraga et al. 2003, Rogers & Glatzmaier 2005). Turn-
ing to a snapshot of normalized radial velocities in both
an equatorial slice and a cut-away of our full domain, as
in Figures 8a,b, the gravity waves appear as the curved,
largely horizontal striations evident below the base of
the convection zone. In studying a temporal sequence of
such equatorial slices, as provided in the accompanying
auxiliary movie, they clearly show phase fronts moving
consistently radially outward over the upper reaches of
the radiative interior, which is a signature of gravity wave
packets whose group velocity is inward and phase veloc-
ity is outward. In our display here, we have normalized
the velocities of the waves by their rms value at each
radial level to make them visible, for the actual wave
amplitudes decrease by many orders of magnitude in the
deep interior, being likely damped by our enhanced ther-
mal diffusion. That rapid decrease in wave amplitudes in
proceeding inward in the radiative zone is shown in Fig-
ure 8c, where we display the rms velocity components
over the full computational domain. Once the radial ve-
locity amplitudes get below the precision of our numer-
ical scheme, suggesting spurious signals, we proceed to
gray out the innermost portion of the domain in Figure
8a. The prominence of the horizontal velocity compo-
nents in Figure 8c in the radiative interior is consistent
with gravity waves possessing much smaller radial wave-
lengths than horizontal ones. Close scrutiny shows that
high radial wavenumber waves permeate the radiative
interior, from the base of the convection zone down to
at least 0.4 R beyond which the velocity amplitudes be-
come extremely small. Thus any packet of gravity waves
traveling downward in our model dissipates long before
it reaches the inner boundary. It is also interesting that
Figure 8a shows the presence of a large-scale spiral wave
structure (with azimuthal order m = 1) in the radia-
tive interior that both waxes and wanes in strength and
whose phase propagates gradually outward. This sug-
gests that low-degree global gravity wave resonances can
potentially be excited in such a system, but are likely
dependent on the diffusivity profiles used in our mod-
eling. The conditions for existence of such low-degree
resonant modes in our model need to be more accurately
determined and we expect to do so in the near future.

Since the overshooting of the convection extends to
about ro ≃ 0.672R near the equator (Figure 7), whereas
the stable mean stratification in terms of dS̄/dr is al-
ready established at 0.715R (Figure 3b), the downward-
directed plumes can be quite effective in exciting inter-
nal gravity waves in this intermediate region. Figures
8a,b show that there are many sites of downflow plumes,
with these shifting their positions and strengths grad-
ually over periods of hours and days, serving as fairly
random and localized gravity wave generators. With the
Brunt-Väisälä frequency (being the high-frequency cut-
off for locally propagating gravity waves) becoming of
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b
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Fig. 8.— (a) Equatorial slice (θ = π/2, all φ) and (b) 3-D
rendering at same instant, showing the normalized radial velocity
vr/vrms where vrms is the root mean square radial velocity at
each radius, with dark tones denoting downflows. In panel (b)
a quadrant has been removed in order to vizualize the structure
within the meridional and equatorial planes. The presence in the
radiative interior of internal waves of various amplitudes and scales
is apparent in both panels. In panel (a) the deepest portion of the
interior is greyed out because the amplitude drops so low that the
signal there may be spurious. c) Radial profile of three components
of the rms velocity. We note the fast drop in amplitude of vr

rms,
and the zone below r < 0.3R where the signal becomes extremely
weak and reaches numerical precision.

b

a

Fig. 9.— (a) Power spectra of the radial velocity in the radiative
interior at r = 0.58R. The ordinate is the temporal frequency in
µHz and the abcissa is the spherical harmonic degree ℓ, with power
summed over azimuthal order m. The ridge structure is indicative
of gravity waves. (b) Radial profile of the Brunt-Väisälä frequency
in the 3–D model.

order 200 µHz (or a period of 1.39 hr) already at say
at 0.68R as shown in Figure 9b, one can expect to see
a wide range of internal gravity waves excited with fre-
quencies lower than that. Indeed, the power spectrum in
Figure 9a of frequency vs harmonic degree ℓ of the radial
velocities measured on the spherical surface r = 0.58R
shows a ridge structure that may be expected for gravity
waves, with such features likely to become more evident
in longer analysis intervals (here examining 115 days of
evolution). The fineness of time sampling used to gen-
erate Figure 9a is not adequate to capture the full wave
spectrum; the abcissa extends to about 140 µ Hz whereas
the peak Brunt-Väisälä frequency is 550 µ Hz (Figure
9b). We reserve detailed analyses of the wave spectra
and transport to a forthcoming paper.

The role of internal waves is important to assess since
they transport angular momentum and can thereby af-
fect the internal rotation profile on both short and long
timescales (e.g., Zahn et al. 1997; Miesch 2003; Char-
bonnel & Talon 2005; Rogers & Glatzmaier 2006; Mathis
et al. 2008). The work reported here is a notable step
forward in modeling the coupled dynamics of penetra-
tive convection and internal waves in the Sun, being the
first 3–D, global, solar convection simulation that spans
90% of the solar interior by radius with a fairly sensible
solar stratification and rotation rate. In particular, we
use a realistic entropy profile in the radiative zone (Fig.
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3), which allows a wide spectrum of waves to be excited
with frequencies comparable to the g modes that are be-
lieved to exist in the Sun (Garcia et al. 2007). However,
we readily acknowlege that this simulation has a number
of shortcomings. We have chosen to focus on global 3–
D dynamics and the self-consistent, nonlinear coupling
between a convective and radiative zone within the con-
text of the Sun. Thus, we must necessarily sacrifice fine
spatial resolution which in turn implies enhanced dissi-
pation. Although we have achieved relatively low dif-
fusion in the stable zone through the use of a tapering
function as described in section 2.1, the simulation is still
much more diffusive than the solar interior and this likely
has adverse implications for wave propagation and trans-
port. Thus, relative to the solar interior, the waves travel
shorter distances and are likely less efficient at exciting
global resonant g-modes. This is seen in the extremely
low amplitude of the wave signal near the bottom of the
simulation domain (e.g. Fig 8c). Even so, the waves in
our simulation are well resolved and we believe that their
propagation near the top of the radiative zone is reliably
captured. Furthermore, since the waves are dissipated
well before they reach the inner boundary, we believe
that the wave spectrum is likely not sensitive to the in-
ner boundary conditions. We should emphasize that few
efforts have been made to minimize thermal damping of
the waves or to impose special conditions for their re-
flection at the inner boundary. We expect to do so in
the near future and to compare the wave properties and
excitation to theoretical predictions (e.g., Goldreich &
Kumar 1990; Garcia Lopez & Spruit 1991; Mathis et al.
2008; Belkacem et al. 2009).

4. GLOBAL MEAN FLOWS AND THERMAL PROPERTIES

Our simulation has been initialized by assuming a uni-
form state of rotation at all depths and latitudes. The
development of the convection instability above r ∼ 0.7R
and its maturation over several rotation periods leads to
the establishment of both large-scale axisymmetric differ-
ential rotation and of meridional circulation (Thompson
et al. 2003, Miesch 2005, Brun & Rempel 2008, Miesch &
Toomre 2009). We here discuss their properties, focusing
in particular on the base of the convection zone.

4.1. Rotation Profile and the Tachocline

In Figure 10 we display the internal rotation profile ob-
tained in our model after about 2000 days of evolution,
using both color contours and radial cuts at indicated
latitudes. The temporal average spans 10 solar rotation
periods. We clearly see that a large-scale differential ro-
tation has been established in the convective envelope.
The differential rotation has a fast equator, slow poles
and possesses a conical shape at mid latitude, much as
deduced by helioseismology (Thompson et al. 2003). The
latitudinal contrast from equator to about 60◦ at the sur-
face of the model is about 45 nHz, somewhat less than
the solar value of about 90 Hz. As the simulation evolves,
a sharp transition from the differentially rotating convec-
tive envelope to the uniform rotation of the radiative in-
terior develops. This tachocline naturally appears in our
simulation and at the time shown in Figure 10 is about
0.10R in thickness. This is somewhat larger than indi-
cated by helioseismic rotational inversions, which sug-
gest that the width of the tachocline is no more than

a b

Fig. 10.— Differential rotation profiles (a) angular velocity Ω
contours averaged over longitude and time. (b) Radial cuts at se-
lected latitudes (after averaging the north and south hemisphere)
serve to highlight the substantial shear layer at the base of the con-
vection zone, effectively the tachocline, which is naturally realized
in the model.

0.05R (Corbard et al. 1999, Thompson et al. 2003).
Even so, our global model of the Sun thus establishes
and maintains a very realistic internal rotation profile in
good agreement with helioseismic inversions both in the
convection zone and at its base. This is a very promising
result and a first step toward a full nonlinear dynamical
model of the Sun.

4.2. Meridional Flows

In Figure 11a we display the meridional circulation re-
alized in the model as contours of the meridional stream-
function Ψ, defined as in Miesch et al. (2000):

r sin θ〈ρ̄vr〉 = −
1

r

∂Ψ

∂θ
and r sin θ〈ρ̄vθ〉 =

∂Ψ

∂r
.

This flow is mostly poleward in the upper convec-
tion zone and equatorward in the lower convection zone
with one primary cell per hemisphere extending from the
equator to more than 60◦ in latitude. We also note the
existence of small countercells at mid latitudes and of
a somewhat more complex multi-cell structure near the
poles. The flow amplitude is about 20 m s−1 near the
top of our domain. In Figure 11b we display a zoomed-
in view of Ψ near the tachocline, spanning the north-
ern hemisphere. This allow us to assess the penetration
depth of the meridional circulation, which has been a
subject of debate in the community (Gilman & Miesch
2004, Garaud & Brummell 2008). We note that it is
mostly confined above r ∼ 0.68R. This corresponds to
a penetration of 0.03 R if we consider the base of the
convection as being defined by the change of sign of the
entropy gradient (rbcz). The direction of the flow is equa-
torward at the base of the convection zone (as in Miesch
et al. 2000), with multiple counter-cells deeper in the
radiative interior. These deeper meridional cells are less
intense by several orders of magnitude and are linked to
the spread of the tachocline, as discussed in section 5.1.

4.3. Maintenence of Mean Flows



11

a b

Fig. 11.— Meridional circulation averaged over longitude and
time (over 10 rotation periods), shown by means of the mass
flux streamfunction Ψ. (a) Meridional cut over the whole domain
and (b) Zoom in on the northern hemisphere near the tachocline.
Clockwise and counterclockwise circulations are indicated by blue
and red tones respectively (and solid/dotted contours).

The differential rotation and meridional circulation
profiles in our simulation are established and maintained
through the transport of momentum and energy by con-
vective motions that are influenced by the rotation, strat-
ification, and spherical shell geometry. In particular, av-
eraging the zonal (φ) component of the momentum equa-
tion over longitude and time yields an evolution equation
for the specific angular momentum L, which we express
here as

ρ̄
∂L

∂t
+ 〈ρ̄vm〉 ·∇L = −∇· (Frêr + Fθêθ) ≡ T , (8)

where
L = λ2Ω = λ (〈vφ〉 + λΩ0) , (9)

and λ = r sin θ is the moment arm. The radial and lat-
itudinal angular momentum fluxes Fr and Fθ include
contributions from the convective Reynolds stress and
viscous diffusion (Elliott et al. 2000; Brun & Toomre
2002):

Fr = ρ̂r sin θ


−νr

∂

∂r

(
v̂φ

r

)

︸ ︷︷ ︸
Fr,V

+ v̂′

rv
′

φ︸︷︷︸
Fr,R


 (10)

Fθ = ρ̂r sin θ


−ν

sin θ

r

∂

∂θ

(
v̂φ

sin θ

)

︸ ︷︷ ︸
Fθ,V

+ v̂
′

θv
′

φ︸︷︷︸
Fθ,R


 .

Our stress-free boundary conditions imply that the
volume-integrated transport terms vanish so the total
angular momentum

∫
ρ̄LdV , is conserved. We find that

this is indeed satisfied in our simulation to within 10−7.
The transport of angular momentum by the mean

meridional circulation ρ̄vm may also be incorporated into
the flux terms Fr and Fθ but here we write it separately
on the left hand side of equation (8) in order to illustrate
more clearly how mean flows are established. Thus, we
can regard the Reynolds stress and the viscous diffusion
as a net torque T , which, in a statistically steady state
(∂L/∂t = 0), must balance the advection of angular mo-
mentum by the meridional circulation [eq. (8)]. Although

the angular velocity profile Ω is approximately conical at
mid-latitudes (Fig. 10a), the specific angular momentum
L is more cylindrical, increasing with distance from the
rotation axis. Thus, equation (8) implies that a net pro-
grade torque T > 0 will induce a steady meridional flow
away from the rotation axis while a retrograde torque
T < 0 will induce a flow toward the rotation axis. This
balance is achieved in part through Coriolis-induced ac-
celeration of the meridional circulation by the differen-
tial rotation but it is a distinct phenomenon, since it
reflects the zonal force balance and the conservation of
angular as well as linear momentum. Following McIntyre
(1998, 2007), we refer to it as gyroscopic pumping (see
also Haynes et al. 1991).

Figure 12 illustrates the dynamical balance expressed
in equation (8) as manifested in our simulation, aver-
aged over approximately ten rotation periods. The close
correspondence between Figures 12a,b demonstrates that
the mean flows in the convection zone have reached an
equilibrated state that is approximately stationary in a
statistical sense. Thus, there is an approximate bal-
ance between the advection of angular momentum by the
meridional circulation (Fig. 12a) and the net torque (Fig.
12b), which includes contributions from the convective
Reynolds stress (Figs. 12c-d) and the viscous diffusion
(Figs. 12e).

The differential rotation (Fig. 10a) is maintained pri-
marily by the convective Reynolds stress which trans-
ports angular momentum toward the equator, producing
a flux convergence in the upper convection zone that ac-
celerates lower latitudes relative to higher latitudes (Fig.
12d). This equatorward transport is partially offset by a
radially inward transport of angular momentum by the
Reynolds stress (Fig. 12c) and viscous diffusion (Fig. 12e)
but it is strong enough to extert a positive net torque
(Fig. 12b). This net torque in turn induces a radially out-
ward flow by means of gyroscopic pumping that crosses L
contours and then turns poleward near the surface (Figs.
11a and 12a).

Above the equator but at latitudes still low enough
to be outside the tangent cylinder, the radial Reynolds
stress is negative at mid depth decelerating the mid con-
vection zone and positive at both boundaries, thus ac-
celerating the upper convection zone and the overshoot
region (Fig. 11c). The outward transport arises through
the shear-induced tilting of columnar convection cells
(banana cells; see e.g. Busse 2002) while the inward
transport arises from the buoyant deceleration of heli-
cal downflow plumes (Miesch et al. 2000). Inside the
tangent cylinder, banana cells are suppressed and the
rotation vector is nearly vertical, promoting transport
by helical plumes. The resulting inward angular mo-
mentum transport accelerates the rotation rate in the
lower convection zone and overshoot region (Figs. 12b,c),
promoting an equatorward meridional flow by means of
gyroscopic pumping (Figs. 11a and 12a).

4.4. Entropy and Temperature Fluctuations

The thermal structure of the convection zone and its
coupling to the tachocline plays a key role in establishing
the non-cylindrical rotation profile in the solar convec-
tion zone (Kitchatinov & Rudiger 1995; von Rekowski
& Rudiger 1998; Durney 1999; BT02; Rempel 2005;
MBT06; Balbus et al. 2009; Brun, Antia & Chitre 2010,



12

Fig. 12.— Angular momentum balance, emphasizing gyroscopic pumping of the meridional circulation. Shown are (a) the left-hand-side
(excluding the term with the time derivative) and (b) the right-hand-side of equation (8). These represent in turn the angular momentum
transport by the meridional circulation 〈ρ̄vm〉 ·∇L and the net torque T . The net torque includes contributions from ((c)) the radial and
((d)) the latitudinal angular momentum transport by the convective Reynolds stress as well as ((e)) the viscous diffusion. All quantities
are averaged over a period of 100 days and share a common color table with a saturation range of ±9.10 × 106 erg cm−3. Red and blue
indicate positive and negative values respectively. Thus, in frames (b-c) red indicates an acceleration of the local rotation rate while blue
indicates a deceleration. These are approximately balanced by the advection term in (a), implying statistically steady mean flows.

hereinafter BAC10). This is directly linked to the so-
called Taylor-Proudman constraint on rotating flows, e.g.
fast rotation tends to make flows invariant along the rota-
tion axis (cylindrical), and this constraint may be broken
in the Sun. We have just seen that our model exhibits
a conical differential rotation, with a fast equator and
slow poles in good agreement with the helioseismic in-
versions. This is an important result since this feature
has emerged naturally from our simulation. No forcing
was imposed at the base of the convection zone to real-
ize such a realistic profile contrary to Rempel (2005) or
MBT06. We expect baroclinic effects via the so-called
thermal wind equation (Pedlosky 1987; Zahn 1992; Dur-
ney 1999; BT02; Balbus et al. 2009; BAC10; see next
section) to play a major role. Thus, we now consider the
thermal gradients realized in our model and their impli-
cations with regard to maintenance of the mean flows.

Figure 13 shows the fluctuations of entropy and tem-
perature with respect to the mean (spherically averaged)
temperature T̄ of the model. The poleward entropy
and temperature gradient in the deep convection zone
is in good agreement with previous results, and con-
firms the role of latitudinal entropy variations in main-
taining solar-like (conical) rotation profiles. The mean
temperature variation in the upper convection zone is
approximately 5-7K, with a minimum at mid-latitudes.
Stronger thermal gradients occur near the base of the
convection zone where the latitudinal temperature vari-
ation is monotonic, increasing by 9-10K from equator to
pole. These temperature and entropy gradients are com-
parable to those found in MBT06 but here they are estab-
lished self-consistently by the internal dynamics, rather
than promoted by means of a lower boundary condition.
In MBT06, imposed variations at the base of the con-
vection zone exceeding about 13 K yield nearly disk-like
rotation profiles. Thus, it is remarkable that the natural
dynamics of the coupled convection zone and radiative
zone system in this simulation naturally establishes ther-
mal gradients conducive to a solar-like rotation profile,
with a strong radial gradient in the tachocline and con-
ical isosurfaces in the convection zone. We now address

how these thermal gradients influence mean flows.

4.5. Meridional Force Balance and Baroclinicity

As published in BAC10, a general meridional balance
equation can be derived that reveals the subtle role of all
processes in maintaining a non-cylindrical rotation pro-
file that differs from the “classical” thermal wind balance
(Durney 1999; BT02; Balbus et al. 2009). It is straight-
forward to use our numerical simulation to evaluate what
are the dominant terms and how this meridional force
balance comes about. Let us first recall how such an
equation is derived from the vorticity equation:

∂ω

∂t
=(ωa · ∇)v − (v · ∇)ωa − ωa(∇ · v) (11)

+
1

ρ̄2
∇ρ̄ × ∇P − ∇×

(
ρg

ρ̄
êr

)
− ∇×(

1

ρ̄
∇ · D),

with ωa = ∇×v + 2Ω0 the absolute vorticity and
ω = ∇×v the vorticity in the rotating frame. Averaging
the zonal component of this vorticity equation over lon-
gitude and time and assuming a statistically stationary
state yields the general equation for force balance in the
meridional plane:

2Ω0
∂〈vφ〉

∂z
=−〈(ω · ∇)vφ −

ωφvr

r
−

ωφvθ cot θ

r
〉

︸ ︷︷ ︸
Stretching

+ 〈(v · ∇)ωφ +
vφωr

r
+

vφωθ cot θ

r
〉

︸ ︷︷ ︸
Advection

− 〈ωφvr〉
d ln ρ̄

dr︸ ︷︷ ︸
Compressibility

+
1

r

[
∂

∂r
(r〈Aθ〉) −

∂

∂θ
〈Ar〉

]

︸ ︷︷ ︸
Viscous stresses

(12)

+
g

rcp

∂〈S〉

∂θ
+

1

rρ̄cp

dS̄

dr

∂〈P 〉

∂θ︸ ︷︷ ︸
Baroclinicity
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a b

c d

Fig. 13.— Temporal and azimuthal average of the (a & b)
entropy (S) and (c & d) temperature (T) fluctuations realized in
the simulations. Shown in the left panels (a & c), are color contours
in the full domain and in the right panels (b & d) latitudinal cuts
at various depths (solid, dotted, dashed, dash-dotted, dash-three
dotted lines respectively at r=0.96, 0.85, 0.7, 0.5, 0.3 R). In the
left panels the base of the convection zone, rbcz, is indicated by a
semi-circular dashed line. Clearly evident are the relatively large
fluctuations near the base of the convection zone and tachocline, a
signature of thermal wind balance (see section 4.6).

where
∂

∂z
= cos θ

∂

∂r
−

sin θ

r

∂

∂θ
and

〈Ar〉=
1

ρ̄
〈

[
1

r2

∂(r2Drr)

∂r
+

1

r sin θ

∂(sin θDθr)

∂θ
−

Dθθ + Dφφ

r

]
〉,

〈Aθ〉=
1

ρ̄
〈

[
1

r2

∂(r2Drθ)

∂r
+

1

r sin θ

∂(sin θDθθ)

∂θ

]
(13)

+
1

ρ̄

[
Dθr − cotθDφφ

r

]
〉.

In the above equation we have identified several terms:

• Stretching describes the stretching and tilting of
the vorticity due to velocity gradients;

• Advection describes the advection of vorticity by
the flow;

• Compressibility describes the change of vorticity
due to compression;

• g
rcp

∂〈S〉
∂θ

is the dominant component of the baro-

clinic term when the stratification is nearly adia-
batic;

• 1
rρ̄cp

dS̄
dr

∂〈P 〉
∂θ

represents baroclinic forcing arising

from a finite radial entropy gradient;

• Viscous accounts for the viscous diffusion of vortic-
ity.

Under the assumption that the convection zone is
nearly adiabatic and hydrostatic, that the Rossby num-
ber Ro = ω/2Ω0 is small, and that viscous stresses can
be neglected, equation (12) simplifies to give:

∂〈vφ〉

∂z
=

g

2Ω0rcp

∂〈S〉

∂θ
. (14)

This is the “classical” thermal wind equation. It states
that baroclinicity can break the Taylor-Proudman con-
straint of ∂vφ/∂z = 0, implying a cylindrical rotation
profile (Zahn 1992). This is due to the fact that baro-
clinic torques suppress the Coriolis-induced meridional
circulation that would otherwise tend to establish a cylin-
drical state of rotation. We now turn to our numerical
simulation to evaluate the role played by all the terms
of the zonal vorticity equation identified above and to
discuss the nature of the meridional force balance.

Fig. 14.— The terms discussed in equation (12) are shown here,
averaged over azimuth and 10 solar rotation periods. Shown are
in turn: ∂〈vφ〉/∂z, the stretching and advection of vorticity, the
baroclinic effects, the viscous stresses and the sum of the rhs terms
(we have divided all therhs terms by 1/2Ω0). The color scale in
all panels saturates at ±4 × 10−7 s−1, with red denoting positive
values.

Figure 14 displays the left and right hand sides (lhs,
rhs) of equation (12), for our 3-D solar model simula-
tion, as well as the dominant components of the rhs.
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We clearly see that the sum of the rhs term is in very
close agreement with the lhs, signifying an approximately
steady state over the time period sampled (about 10 ro-
tation periods). Shorter averages are generally less bal-
anced while longer averages change neither the quality of
the balance nor the structure or amplitude of the various
terms.

Our more detailed decomposition of the vorticity equa-
tion allows us to identify which terms are contributing
and where. First the baroclinic term is found to be im-
portant in most of the bulk of the convection zone as was
found by BT02 and MBT06. We also find that it is the
dominant term below the base of the convection zone, in
the region of strong shear (i.e., in the tachocline). This
is consistent with the presence of strong thermal gradi-
ents as discussed in section 4.4. Advection and stretching
terms are found to contribute to the overall balance in
multiple places, throughout the bulk of the convection
zone as well as near top and bottom. In contrast to the
baroclinic term they do not generally exhibit large-scale
structure with one dominant sign in each hemisphere.
Without these terms, the agreement between the lhs and
the rhs would not be as good. Since the Rossby number
realized in the simulation is less than one, we expect the
advection and stretching term to be small on average in
the simulations and indeed, their maximum amplitude
is not as large as the baroclinic term. However, this is
not the case at all scales nor at all locations and they do
contribute in key places such as near the surface and at
mid-latitude in the bulk of the convection zone. Finally,
in our model a viscous shear layer dominates the balance
at the surface where the isocontours of Ω possess the
strongest latitudinal shear and also near the base of the
convection zone, where the angular velocity profile be-
comes nearly uniform. Durney (1989) and Kitchatinov
& Ruediger (1999) have also stressed that a strict ther-
mal wind balance cannot be realized everywhere in the
convection zone and that turbulent viscous stresses may
play a role near the boundaries as observed in Figure 14.

From our analysis of the full meridional balance, we
can conclude that equation (14) is only partly satisfied
in the convection zone of our 3-D simulations. Clearly
baroclinic effects play a central role but these are far from
being dominant everywhere, and considering only equa-
tion (14) instead of the full balance expressed in equation
(12) would be misleading in the convective envelope. Let
us now evaluate how well the traditional thermal wind
balance at the base of the convection is realized, since
the baroclinic term seem to be the main player there.

In Figure 15 we show again the main contributions
to the meridional balance equation but zoomed between
0.58 and 0.75 R and only in the northern hemisphere.
Here the subtle balance realized in that complex tran-
sition layer becomes clear. We note that below about
0.65 R the baroclinic term is totally dominant, helped
only slightly by the advection and stretching terms. At
such depth we are actually below the base of the over-
shoot region (ro), and motions here are only driven by the
downward spread of the tachocline in our model as dis-
cussed in Brun & Zahn (2006). Above that radius a more
complex balance is operating involving all terms. In the
polar region, many structures with alternating signs are
present in most terms, with the baroclinic and viscous
terms having mostly opposite signs. At the pole we thus

Fig. 15.— Expanded view near the tachocline of the terms
discussed in equation (12) averaged over azimuth and 10 rotation
periods. Shown are in turn: ∂〈vφ〉/∂z, the stretching and advection
of vorticity, the baroclinic effects, the viscous stresses and the sum
of the RHS terms (we have divided all the RHS terms by 1/2Ω0).
The color table saturates in each panel at ±10−6 s−1, with red
denoting positive values.

do not get an exact baroclinic balance in our model. This
is more true at low latitudes where the contributions of
the viscous, advection and stretching terms compensate
more or less one another, leaving the baroclinic term as
the only main contributor.

5. COUPLING BETWEEN CONVECTIVE AND RADIATIVE
ZONES

Understanding and quantifying how angular momen-
tum is transported between the convection zone and the
radiative zone is of essential importance in interpreting
and modeling the rotational evolution of late-type stars
as discussed in section 1.2 (Gilman et al. 1989; Denis-
senkov et al. 2010; Spada et al. 2010). Our simulation
provides an unprecedented opportunity to explore this
within the context of a 3–D dynamical convection model.

5.1. Tachocline Spreading

In §4.3 we emphasized the role of gyroscopic pump-
ing in maintaining the meridional circulation in the con-
vection zone. Here we note that although the Reynolds
stresses responsible for maintaining the differential rota-
tion and meridional circulation are confined principally
to the convection zone, the flows themselves need not be.
The nature of gyroscopic pumping is such that a localized
torque T can induce a global meridional flow (Haynes et
al. 1991). Within the context of solar-type stars, this
implies that the maintenance of differential rotation by
Reynolds stresses in the convective envelope can induce a
meridional flow that spreads downward into the radiative
interior (Spiegel & Zahn 1992; Gough & McIntyre 1998;
Brun & Zahn 2006; McIntyre 2007; Garaud & Acevedo
Arreguin 2009). If turbulent and diffusive stresses are
negligible in the radiative interior, then T ≈ 0 and the
induced circulation follows isosurfaces of L.

The downward burrowing of the gyroscopically-
pumped meridional circulation and the associated
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spreading of the tachocline is mediated by the radiative
diffusion and operates on an Eddington-Sweet timescale

τES =

(
N

2Ω0

)2
r2
bcz

κ
. (15)

In the Sun τES ∼ 2×1011 yr, although significant spread-
ing (down to 0.3R) is expected to occur over the Sun’s
current lifetime of 4.6 billion yr (Spiegel & Zahn 1992).

The Eddington-Sweet timescale in our simulation is
much shorter due to the relatively large value of the
thermal diffusivity κ, yielding τES ∼ 8 × 105 yr (for
N ∼ 4 × 10−4s−1). Viscous diffusion also contributes to
the spreading of the tachocline, operating on a timescale
of τd = r2

bcz/ν ∼ 940 yr. Thus we expect viscous spread-
ing to dominate over radiative spreading in our simula-
tion. Furthermore, since both spreading timescales are
longer than the duration of the simulation, we expect
that the tachocline has not reached a steady state and
is instead slowly diffusing downward. This is consistent
with the analysis by Brun & Zahn (2006) who show that
viscous spreading of the tachocline dominates over ther-
mal spreading when the Prandtl number is greater than
10−3.

This is indeed the case, as demonstrated in Figure 16.
Here we see that the Reynolds stress is negligible below
about r = 0.6R (Fig. 16d) where the net torque (Fig.
16c) is dominated by the viscous term (Fig. 16e). In
contrast to the convection zone, the advection of angular
momentum by the meridional circulation (Fig. 16b) does
not balance the net torque (Fig. 16c) so the dynamical
balance expressed in equation (8) is not satisfied. Rather,
viscous torques are speeding up the equator relative to
the poles as the differential rotation in the convection
zone spreads downward.

The meridional circulation in the stable zone exhibits
a complex layered structure with multiple cells in radius
(Fig. 16a). The latitudinal structure is dominated by
one cell per hemisphere of opposite senses but there is
significant flow across the equator, indicating that the
spreading of the tachocline is not symmetric. Near the
leading edge of the spreading front at r ∼ 0.5R, there is
a very weak poleward circulation with an amplitude less
than 10−7 m s−1. Here viscous torques slow the rota-
tion rate and induce a flow toward the rotation axis by
means of the Coriolis force. Buoyancy tends to restrict
the flow to horizonal surfaces but mass conservation re-
quires downflow near the equator and upflow near the
poles. At r = 0.6R and at the base of the convection
zone (r = 0.71R) the flow is predominantly equatorward.
However, there is a region of poleward flow in between
at r ∼ 0.64R so there are four layered circulation cells.

5.2. Implications for Tachocline Confinement

The narrow extent of the present-day tachocline in-
ferred from helioseismology implies that some physical
mechanism is inhibiting the radiative spreading and thus
confining the tachocline. Possible mechanisms include
anisotropic turbulence (Spiegel & Zahn 1992; Elliott
1997), magnetic torques (Rudiger & Kitchatinov 1997;
Gough & McIntyre 1998), and internal waves (Charbon-
nel & Talon 2005; Rogers & Glatzmaier 2006). The
magnetic confinement models of Rudiger & Kitchati-
nov (1997) and Gough & McIntyre (1998) attributes

tachocline confinement to a fossil magnetic field embed-
ded in the radiative interior of the Sun since its forma-
tion. Alfvenic torques can maintain uniform rotation in
the radiative interior but only if they form closed poloidal
configurations that avoid the differential rotation of the
convective envelope (MacGregor & Charbonneau 1999;
Brun & Zahn 2006, Strugarek et al. 2011).

The simulation reported here exhibits anisotropic flows
in the tachocline and internal gravity waves but these are
insufficient to halt the spread of the tachocline. How-
ever, we cannot conclusively rule these out as plausi-
ble tachocline confinement mechanisms. Although the
viscous torques that dominate the tachocline spreading
in our simulation are much smaller than in the convec-
tion zone, they are still many orders of magnitude larger
than the viscous torques in the Sun. Furthermore, the
resolution of our simulation may be insufficient to re-
aliably capture angular momentum transport by stably-
stratified turbulence and waves. As our simulation is
non-magnetic, we cannot directly address magnetic con-
finement mechanisms. MHD analogues of this simulation
are currently underway and have been reported in Stru-
garek et al. (2011). Still, the nature of the meridional
circulation in the simulation reported here does have im-
plications for magnetic tachocline confinement models.

Gyroscopically-pumped meridional flows have been
proposed as a mechanism for keeping fossil fields localized
within the radiative interior, making magnetic confine-
ment feasible (Gough & McIntyre 1998; Garaud 2002;
McIntyre 2007; Wood & McIntyre 2011). Models that
rely on this mechanism are particularly sensitive to the
structure of the flow at high latitudes. Any axisymmet-
ric meridional flow must be strictly vertical at the poles,
so the latitudinal flow required for confinement of the
fossil field to the radiative zone must be established very
close to the rotation axis to avoid a “polar pit” where
the circulation and in turn the rotational shear spreads
deep below the convection zone (McIntyre 2007). In the
recent confinement model by Wood & McIntyre (2011),
a retrograde torque T < 0 in the convection zone induces
a meridional flow via gyroscopic pumping that converges
on the rotation axis and then turns downward. As this
downward meridional flow encounters the fossil field in
the radiative interior, it is diverted equatorward by the
Lorentz force, forming a steady, axisymmetric, magne-
tostrophic boundary layer that pins down the fossil field.
However, Strugarek et al. (2011) found that in the pa-
rameter regime they studied the meridional circulation
cannot prevent the spread of the tachocline. They find
that the field is advected into the convection zone, es-
tablishing Ferraro’s law of iso-rotation in the radiative
interior. Recent 2–D studies by Rogers (2011) also re-
ports that the field is not confine by the meridional flow.
However in their case the angular momentum transport
by magnetic stresses is much less efficient and the ra-
diative interior maintains a solid body rotation. In any
case, the temporally varying meridional flows driven by
the convection zone seems to play an important role in
determining whether or not this flow can or cannot con-
fined the field such that this fossil field can prevent the
inward spread of the tachocline.

In our simulation, the low-latitude convergence of an-
gular momentum due to the convective Reynolds stress
is sustained by means of a mid-latitude divergence (Fig-
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Fig. 16.— Similar to Figure 12 but emphasizing the radiative zone, with all plots limited to r ≤ 0.72R and with the mass flux
streamfunction plotted in frame (a) with red and blue denoting clockwise and counter-clockwise circulations respectively. Here the radial
and latitudinal angular momentum transport by the Reynolds stresses (RS) have been combined into a single frame ((d)) (e.g. with
RS = RSr + RSθ). Frames (b) and (c) represent the left and right hand sides of equation (8), as in frames a and b of Figure 12. Frame
(e) in both Figures is the contribution to the right-hand-side from viscous diffusion. As in Figure 12, red and blue in frames (b-d) denote
positive and negative values but the saturation level of the color table is lower: ±9.10× 104 erg cm−3. Typical flow amplitudes in a range
from 2-3 m s−1 at the base of the convection zone to 2.5×10−8 m s−1 at a radius of r = 0.5R. The dashed line indicates the base of the
convection zone at r = 0.71R and dotted lines indicate radii of 0.5R and 0.6R for reference.

ure 12d). In other words, it is the transport of angular
momentum from mid to low latitudes that maintains the
differential rotation in the convection zone. This is in
part a consequence of geometry: the polar regions ac-
count for only a small fraction of the integrated angular
momentum in the system so their role in sustaining a
fast prograde rotation at low latitudes is severely lim-
ited. Furthermore, the relatively small volume and the
small moment arm in the polar regions gives rise to large
temporal fluctuations in the rotation rate Ω and the net
torque T . Over the 10 solar periods averaging intervals
shown in Figures 10 and 12, the values of both Ω and
T (relative to the rotating coordinate system) near the
base of the convection zone have opposite signs at the
north and south poles. Yet, apart from these transient
fluctuations, the mean angular velocity largely decrease
monotonically from equator to pole.

The high-latitude fluctuations in T and Ω within the
convection zone induce similar fluctuations in the merid-
ional flow. Despite the large time variations, the gyro-
scopic pumping equation (8) is still approximately sat-
isfied near the poles (12a,b). However, the absence of
a systematic retrograde torque gives rise to a meridional
flow structure with multiple high-latitude cells of varying
orientations. The time period covered in Figures 11 and
12, for example, exhibits an asymmetric series of two to
three counter-cells in each hemisphere which culminate
in a downward flow at the north pole and an upward flow
at the south pole.

The weak circulations below the convection zone are
less variable but exhibit a layered structure of four cells
as noted above (Fig. 16a). Proceeding downward from
the base of the convection zone at the poles, one encoun-
ters regions of downflow, upflow, downflow, and upflow.
The detailed flow structure is likely sensitive to the strat-
ification, the viscosity and diffusivity profiles, and other
factors such as Reynolds and Prandtl numbers. Magnetic
fields may also alter the nature of the circulation and the
coupling between the radiative zone and the convection
zone.

To summarize the implications for tachocline confine-

ment, there is little indication of a prominent, peristent
divergence in the convective angular momentum trans-
port at high latitudes which would give rise to a retro-
grade torque and a steady polar downwelling as in the
model of Wood & McIntyre (2011). A persistent retro-
grade high-latitude torque may emerge from longer time
averages but it is still likely to be weak relative to lower-
latitude torques. This is a consequence not only of the
geometry but also of the nature of rotating turbulent
convection. At high latitudes where the rotation vector
is nearly vertical, the convection structure is dominated
by helical downflow plumes with a small horizontal ex-
tent (Julien et al. 1996; Brummell et al 1996; Miesch et
al 2000, 2008). Although the plumes exhibit systematic
tilts toward the rotation axis due to turbulent alignment,
the associated latitudinal angular momentum transport

by the Reynolds stress, namely λρ̄
〈
v′θv

′
φ

〉
is minimal rel-

ative to Coriolis-induced Reynolds stresses at lower lat-
itudes. Whether such a weak, time-varying torque in
the polar regions can support a boundary layer of the
type envisioned by Wood & McIntyre requires further re-
search. Furthermore, the robustness of the layered circu-
lation cells exhibited in Fig. 16a warrants further investi-
gation, particularly for parameter regimes where thermal
(radiative) spreading prevails over viscous spreading.

5.3. Rotational Coupling

In order to assess the net coupling between the convec-
tion zone and the radiative zone, we define the integrated
angular momentum flux across a horizontal surface as
follows:

I(r, t) = 2πr2

∫ π

0

Fr(r, θ, t) sin θdθ (16)

where Fr has Reynolds stress and viscous components
as expressed in equation (10). Note that here we define
Fr through a longitudinal average alone whereas in §4.3
we also averaged over time. In a similar manner, we
also define the integrated flux across a horizontial surface
arising from the advection of angular momentum by the
meridional circulation. Results are shown in Figure 17.
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Fig. 17.— Integrated angular momentum flux I(r, t) across hor-
izontal surfaces located (a) at the base of the convection zone,
r = 0.71R, and (b) at r = 0.6R as a function of time. Shown
are contributions from the Reynolds stress (dot-dashed lines), the
viscous diffusion (dotted lines), and the meridional circulation
(dashed lines). The sum of all three contributions is also shown
(solid line). The time interval corresponds to the averages shown
in Figs. 12 and 16. Panel c shows the change in angular momen-
tum versus radius [eq. (17)] at t = 1528 days. Vertical dotted line
indicates the base of the convection zone and the horizontal dotted
line indicates the initial condition of uniform rotation.

The angular momentum transport by the meridional
circulation across the base of the convection zone is out-
ward, tending to slow down the rotation of the radiative
zone, while the weaker Reynolds stresses transports an-
gular momentum inward (Fig. 17a). The net viscous
transport is both larger on average and more variable,
reversing sign several times over the 275 day time inter-
val shown. Deeper down, viscous transport dominates
the spreading of the tacholine and is predominantly out-
ward, extracting angular momentum from the quiescent
interior (Fig. 17b).

Recall that the boundary conditions are stress-free so
the total angular momentum in the simulation is con-
served (§4.3). Angular momentum that is extracted from
the radiative zone, primarily by viscous stresses, is trans-
ported to the upper convection zone, as demonstrated in
Figure 17c. This shows the change in angular momentum
relative to the initial condition, integrated over horizon-
tal surfaces:

Ld(r, t) = 2πr2

∫ π

0

ρ̄ (L− L0) sin θdθ (17)

where L is defined in equation (9) and L0 = λ2Ω0.
In an actual star, the angular momentum in the convec-

tion zone will decrease with time due to external torques
from a magnetized wind and this will be transmitted to
the radiative zone by circulations, waves, instabilities, or

Lorentz forces. It is notable that the convection zone
in our simulation is extracting angular momentum from
the radiative zone despite the absence of a stellar wind.
The timescale for this extraction is short relative to spin-
down timescales. The initial angular momentum in the
radiative zone of our simulation is obtained by integrat-
ing ρ̄L0 over the volume between the bottom boundary
and the base of the convection zone, yielding a value of
LRZ = 1.9 × 1048 g cm2 s−1. If we divide this by a typ-
ical flux amplitude in Figure 17b of 1036 g cm2 s−2, we
obtain a coupling timescale of approximately 6× 104 yr.
Since the flux across a given surface varies with time, a
better estimate of the coupling timescale can be obtained
by calculating τc ∼ LRZ∆t/∆L, where ∆t is the simu-
lation time of 1528 days and ∆L is the integral of Ld

shown in Figure 17c over the radiative zone. This yields
τc ∼ 1.6 × 104 yr. Including the volume below our inner
boundary increases these values by only about a tenth of
a percent.

These estimates for the rotational coupling timescale
likely underestimate true solar and stellar values, given
the relatively large viscous diffusion in our simulation.
Indeed, 1-D models and stellar observations suggest
longer coupling timescales, ranging from 106 to 108 yr
(Irwin et al. 2008, Denissenkov et al. 2010) and spin-
down timescales of order few 108 yr. Both estimates are
consistent with the solar internal rotation profile inferred
from helioseismology, according to which the uniform ro-
tation rate of the radiative interior is intermediate be-
tween the equatorial and polar rotation rates of the con-
vection zone (Thompson et al. 2003). The sensitivity of
helioseismic inversions is consistent with almost no net
viscous torque across the tachocline, implying rapid dy-
namical equilibration relative to the spin down timescale
of the convective envelope (Gilman et al. 1989).

Note that we do not attribute the coupling between
the convection and radiative zones in the Sun to molecu-
lar viscosity. Extrapolating the coupling timescale found
here to the molecular viscosity of the solar plasma would
imply timescales far longer than those suggested by so-
lar and stellar observations. However, some subgrid-scale
transport mechanisms may act effectively as a turbulent
diffusion. Examples include intermittent shear instabil-
ities that can occur even in a nominally stable strati-
fication (e.g. Fritts et al. 2003) or small-scale Maxwell
stresses that resist rotational shear by means of magnetic
tension. Thus, our transport may be regarded as an effec-
tive turbulent diffusion which, although still larger than
the stellar value, may yet be consistent with observations
of stellar spin down. If, on the other hand, the coupling
between the solar convection zone and the radiative in-
terior is achieved by essentially non-diffusive processes
such as wave transport or large-scale magnetic torques,
then the coupling mechanism we see in our simulation
is likely not applicable to the Sun. More importantly,
we note that the tachocline in our simulation is spread-
ing downward (cf. §5.1), which does not appear to be
the case in the Sun. Whatever mechanism confines the
tachocline likely also regulates the rotational coupling
between the convection and radiative zones. Until more
is known about this mechanism, coupling estimates such
as those presented in this section should be regarded as
illustrative but tentative.
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6. DISCUSSION AND PERSPECTIVES

In this paper we have presented the first 3-D model of
the Sun from r=0.07 up to 0.97 R that uses a realistic
stratification in the radiative interior and couples nonlin-
early the convection and radiation zones. This simulation
is extremely rich and instructive with regard to the inner
dynamics of the Sun. It exhibits a wide range of complex
physical processes including turbulent convection, pene-
tration, internal wave generation, large scale flows and
tachocline dynamics.

Compared to our previous results that considered only
the convective envelope (e.g., Elliott et al. 2000; Brun &
Toomre 2002; Miesch et al. 2008), the presence of a sta-
ble radiative interior at the base of the convective zone
promotes a differential rotation profile that it is in good
agreement with helioseismic rotational inversions, even if
a bit weaker (Thompson et al. 2003). We find that as an-
ticipated in Rempel (2005) and MBT06, the existence of
a subadiabatic layer below the convective envelope influ-
ences greatly the differential rotation established in the
convection zone. Anisotropic heat transport and merid-
ional circulations near the base of the convection zone
establish larger temperature and entropy gradients than
otherwise found in purely convective models and the re-
sulting baroclinic torques break the Taylor-Proudman
constraint of a cylindrical (quasi-2-D) differential rota-
tion profile. A detailed study of the meridional force bal-
ance indicates that the classical thermal wind balance is
fully realized in the stable layer below, whereas some de-
parture mostly due to Reynolds stresses are found in the
convective envelope. Strong differential rotation leads
naturally to the establishment of a tachocline of shear
near the base of the convective envelope. We began the
simulation with uniform rotation in the radiative interior
and the tachocline develops as a transition layer linking
the convective and radiative zones. This is the first time
that a tachocline has been established self-consistently
in a 3-D simulation of solar convection without imposing
any ad hoc forcing, and as such, constitutes a notable
breakthrough.

The realistic solar stratification establishes a thin over-
shoot region at the base of the convection zone where
downflow plumes are buoyantly decelerated. The base
of the convection zone (rbcz = 0.715R) as defined by
a sign reversal of the longitudinally-averaged radial en-
tropy gradient, ∂(〈S〉 + S)/∂r, exhibits no significant
latitudinal variation. However, the top (rc) and bot-
tom (ro) of the overshoot region as quantified by the
enthalpy flux are both slightly prolate, indicating more
efficient overshoot at low latitudes (Fig. 7). The lati-
tudinal variation of rc (0.725R–0.742R) is greater than
that of ro (0.672R–0.678R) so the thickness of the mix-
ing region varies with latitude. Enchanced overshoot at
low latitudes may be attributed to the “flywheel” action
of rotationally-aligned convective columns (banana cells)
which efficiently burrow inward near the tangent cylinder
(Brummell et al. 2002). The distance from the base of
the convection zone (rbcz = 0.715R) to the bottom of the
overshoot region (ro = 0.672R–0.678R) is about 0.04R,
or about half of the pressure scale height HP = 0.08R, in
agreement with the value quoted by Rogers & Glatzmaier
(2006) in their 2–D equatorial study. This is smaller than
in previous global 3–D convection simulations but more

than theoretical estimates of the penetration depth which
are less than 0.01R (Zahn 1991; Rempel 2004). The dis-
crepancy is likely due to the laminar nature of our convec-
tive motions; turbulent convective plumes are expected
to occupy a smaller filling factor, inhibiting overshoot.
Recent estimates of the extent of convective overshoot
in the Sun based on helioseismic inversions and semi-
analytic modeling of turbulent plumes suggest a pene-
tration depth of ∼ 0.03R, only slightly less than in our
model (Christensen-Dalsgaard et al. 2011).

Another interesting aspect of this simulation, warrant-
ing further analysis that we defer to a subsequent pa-
per, is the generation of internal waves by the penetra-
tive convective motions. Here again for the first time a
full 3-D view of internal wave excitation and propaga-
tion in a global simulation of the Sun is achieved. We
find that these waves propagate mostly horizontally, as
expected given the strong vertical stratification. A large
spectrum of waves is continuously excited by the pum-
meling of convective motions. Clearly near the base of
the convection envelope large perturbations are found,
upon which smaller-amplitude wave motions spanning
the entire radiative interior are superimposed. Anima-
tions reveal wave patterns that spiral outward, implying
an outward phase velocity.

We have also presented a novel analysis of the mainte-
nance of the meridional circulation based on the concept
of gyroscopic pumping. The main objective of this anal-
ysis is to elucidate the coupling betweeen the convection
and radiative zones but it also provides insight into the
maintenance of the circulation in the convection zone it-
self. The meridional circulation profile is dominated by
a single cell in each hemisphere, with equatorward flow
near the base of the convection zone and poleward flow
in the upper convection zone. This is attributed mainly
to zonal torques associated with equatorward and inward
angular momentum transport at mid-latitudes (Fig. 12).
As in previous simulations of global solar convection,
transient, multi-celled meridional circulations with large
fluctuation with respect to the mean are present, requir-
ing long temporal averages, of at least several months, to
reveal persistent flows (e.g. Miesch & Toomre 2009). The
amplitude of the meridional circulation drops off rapidly
below the convection zone, from a few m s−1 at r = 0.71R
to a few mm s−1 by 0.67R.

In idealized axisymmetric models of the solar
tachocline, the combined influence of gyroscopic pump-
ing, thermal wind balance, and radiative diffusion gives
rise to a spreading of the tachocline on a timescale of
order 109 yr (Spiegel & Zahn 1992; Gough & McIn-
tyre 1998). The tachocline is indeed spreading inward
in our simulation but not in the manner advocated by
these models. Instead, the spread of the tachocline is
governed mainly by viscous diffusion and occurs on a
shorter timescale, of order 103 yr (§5.1). Since the vis-
cous diffusion in our simulation is artificial, the detailed
structure of the spreading front should be interpreted
with caution. Even so, some results may be robust to
alternate transport mechanisms that operate locally and
that are not captured in our model, such as Reynolds
and Maxwell stresses assocated with small-scale turbu-
lence. For example, the viscous spread of the tachocline
extracts angular momentum from the radiative interior
and deposits it in the upper convection zone (Fig 17).
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This can be attributed to the prograde differential ro-
tation in the convection zone coupled with the conserva-
tion of angular momentum in the simulation, resulting in
an inward gradient Ω at high latitudes that exceeds the
outward gradient at low latitudes. Thus, a similar ex-
traction of angular momentum from the core is expected
from any local transport mechanism that, like turbulent
diffusion, scales with ∇Ω. The coupling timescale be-
tween the convection and radiative zones is of order 104

yr, several orders of magnitude less than suggested by
stellar observations but about five orders of magnitude
larger than convective timescales.

In the magnetic tachocline confinement model of
Gough & McIntyre (1998), a fossil magnetic field in the
radiative interior offsets the spreading, establishing a
steady boundary layer in which the downward advection
of angular momentum by the gyroscopically-pumped cir-
culation is balanced by the Lorentz force. The viability of
this scenario is very sensitive to the structure of the circu-
lation at high latitudes, as recently emphasized by Wood
& McIntyre (2011). In particular, Wood & McIntyre
propose that a polar downwelling maintained by a high-
latitude divergence of the convective angular momentum
flux prevents the fossil field from threading the convec-
tion zone and therby disrupting the boundary layer. Our
simulation does not support this scenario. Instead, we
find multiple layered circulation cells below the convec-
tion zone with polar upwellings near the leading edge of
the spreading tachocline front (Fig. 16). This too can be
understood as arising from gyroscopic pumping, respond-
ing to retrograde viscous torques at mid-latitudes. Fur-
thermore, it is subject to the caveat noted above, namely
that artificial viscous diffusion dominates the structure
of the spreading tachocline front. Still, despite the solar-
like differential rotation profile, the simulation does not
exhibit the strong, persistent, retrograde torques at high
latitudes required to sustain a prominent polar down-
welling through gyroscopic pumping.

This model is a first step toward a more complete
unified picture of solar interior dynamics. It exhibits
interesting and novel aspects of the nonlinear coupling
between the convection zone and the radiative interior
but, like all global models, it involves simplifications and
trade-offs. First, this model does not have sufficient spa-

tial resolution to capture small-scale, anisotropic turbu-
lence in the tachocline and its potential role in tachocline
confinement as modeled by Spiegel & Zahn (1992), El-
liott (1997), and Miesch (2003). Second, we have ne-
glected magnetism in order to establish a baseline for
future study. Magnetism is expected to be an essen-
tial ingredient of tachocline dynamics, in terms of both
the solar dynamo and tachocline confinement. We ex-
pect that the addition of magnetic fields will promote
the generation of strong toroidal flux structures near the
base of the convection zone as in Browning et al. (2006)
and Ghizaru et al. (2010) and we intend to investigate
the dynamics of such structures within the context of
the solar activity cycle and flux emergence. Similarly we
have started to take into account the influence of an in-
ner fossil magnetic field on the solar interior dynamics
(Strugarek et al. 2011) and find that the confinement of
the tachocline by a large scale fossil magnetic is not easy
to realize in the parameters regime explored. Of course
our results are likely sensitive to the amplitudes and pro-
files chosen for our diffusivities, and thus we have sought
to be cautious in our deductions about mixing and wave
generation. Our numerical simulations should be viewed
as simplified experimental settings in which we can now
test a number of nonlinear processes that we believe are
occurring in concert deep within a star, thus providing
a means to help unravel some of the complex dynamics
proceeding within the real Sun.
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