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ABSTRACT

Context. The understanding of fossil fields’ origin, topology, and stability is one of the corner stones of the stellar magnetism theory.
On one hand, since they survive on secular time scales, they may modify the structure and the evolution of their host stars. On the
other hand, they must have a complex stable structure since it has been demonstrated that the simplest purely poloidal or toroidal fields
are unstable on dynamical time scales. In this context, the only stable configuration found today is the one resulting from a numerical
simulation by Braithwaite and collaborators who studied the evolution of an initial stochastic magnetic field, which is found to relax
on a mixed stable configuration (poloidal and toroidal) that seems to be in equilibrium and then diffuses.
Aims. We investigate an equilibrium field in a semi-analytical way. In this first article, we study the barotropic magnetohydrostatic
equilibrium states.
Methods. The problem reduces to a Grad-Shafranov-like equation with arbitrary functions. These functions are constrained by deriv-
ing the lowest-energy equilibrium states for given invariants of the considered axisymmetric problem, in particular for a given helicity
known to be one of the causes of such problems. These theoretical results were applied to realistic stellar cases, the solar radiative
core and the envelope of an Ap star, and discussed. In both cases we assumed that the field is initially confined in the stellar radiation
zone.
Results. The generalization of the force-free Taylor’s relaxation states studied in laboratory experiments (in spheromaks) that become
non force-free in the self-gravitating stellar case are obtained. The case of general baroclinic equilibrium states will be studied in
Paper II.
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1. Introduction

Spectropolarimetry is currently exploring the stellar magnetism
across the whole Hertzsprung-Russel diagram (Donati et al.
1997, 2006; Neiner 2007; Landstreet et al. 2008; Petit et al.
2008). Furthermore, helioseismology and asteroseismology are
providing new constraints on internal transport processes occur-
ing in stellar interiors (Turck-Chièze & Talon 2008; Aerts et al.
2008). In this context, even if standard stellar models explain
the main features of stellar evolution, it is now crucial to go be-
yond this modelling to introduce dynamical processes such as
magnetic field and rotation to investigate their effects on stellar
structure and secular evolution (Maeder & Meynet 2000; Talon
2008). To achieve this aim, secular MHD transport equations
have been derived to be introduced in stellar evolution codes.
They coherently consider the interaction between differential
rotation, turbulence, meridional circulation, and magnetic field
(Spruit 2002; Maeder & Meynet 2004; Mathis & Zahn 2005),
while nonlinear numerical simulations provide new insight into
these mechanisms (Charbonneau & MacGregor 1993; Rudiger
& Kitchatinov 1997; Garaud 2002; Brun & Zahn 2006). If we
want to go further, the simplest modifications of static struc-
tural properties such as density, gravity, pressure, temperature,
and luminosity induced by the magnetic field also have to be
systematically quantified as a function of the field geometry and
strength (Moss 1973; Mestel & Moss 1977; Lydon & Sofia 1995;
Couvidat et al. 2003; Li et al. 2006; Duez et al. 2008; Li et al.
2009).

However, an infinity of possible magnetic configurations
can be investigated because the different observation techniques
only lead to indirect indications on the internal field topologies
through the surface field properties they provide. Furthermore,
since the simplest geometrical configurations, such as purely
poloidal and purely toroidal fields are known to be unstable
(Acheson 1978; Tayler 1973; Markey & Tayler 1973, 1974;
Goossens & Veugelen 1978; Goossens & Tayler 1980; Goossens
et al. 1981; Van Assche et al. 1982; Spruit 1999; Braithwaite
2006, 2007), the best candidates for stable geometries are mixed
poloidal-toroidal fields (Wright 1973; Markey & Tayler 1974;
Tayler 1980; Braithwaite 2009).

Therefore, it is necessary to track down possible stable mag-
netic configurations in stellar interiors so as to evaluate their ef-
fects on stellar structure and to use them as potential initial con-
ditions for studying secular internal transport processes.

In this work, we thus revisit the pioneer works by Ferraro
(1954), Mestel (1956), Prendergast (1956), and Woltjer (1960).
Ferraro (1954) studied the equilibrium configurations of an
incompressible star with a purely poloidal field. Prendergast
(1956) (see also Chandrasekhar 1956a,b; Chandrasekhar &
Prendergast 1956) then extended the model to take the toroidal
field into account, by solving the magneto-hydrostatic equi-
librium of incompressible spheres. The obtained configura-
tions seem to be relevant to both the most recent numer-
ical simulations that may explain fossil fields in early-type
stars, white dwarfs, or neutron stars (Braithwaite & Spruit
2004; Braithwaite & Nordlund 2006; Braithwaite 2006) and
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to theoretical studies of their helicity relaxation (Broderick &
Narayan 2008; Mastrano & Melatos 2008). The main general-
ization of Prendergast’s work that we achieve here consists in
relaxing the incompressible hypothesis in order to take the star’s
structure into account (see also Woltjer 1960), which differs as
a function of its stellar type and of its evolution stage, and in
order to derive the minimum energy equilibrium configuration
for a given mass and helicity, which are then applied to realistic
models of stellar interiors.

Assuming that the Lorentz volumetric force is a pertur-
bation compared with the gravity, we derived the non force-
free magnetohydrostatic equilibrium. In this first article, we fo-
cus on the barotropic equilibrium states family1, for which the
possible field configurations and the stellar structure are explic-
itly coupled. These may correspond to the numerical experi-
ments by Braithwaite and collaborators. In this case, the prob-
lem reduces to a Grad-Shafranov-like equation (Grad & Rubin
1958; Shafranov 1966; Kutvitskii & Solov’ev 1994), similar to
the one intensively used in fusion plasma physics. We then fo-
cus on its minimum energy eigenmodes for a given mass and
helicity, which are derived and applied to modeling relaxed stel-
lar fossil magnetic fields, which are found to be non force-
free. Arguments in favor of the stability of the obtained con-
figurations are finally discussed (Wright 1973; Tayler 1980;
Braithwaite 2009; Reisenegger 2009), and we compare their
properties with those of relaxed fields obtained in numerical sim-
ulations (Braithwaite 2008). The case of general baroclinic equi-
librium states will be studied in Paper II (Wright 1969; Moss
1975).

2. The non force-free magneto-hydrostatic
equilibrium

In this work, we focus on the magnetic equilibrium of a self-
gravitating spherical shell to model fossil fields in stellar interi-
ors. To achieve this goal, we started from

0 = −∇P − ρ∇V + FL, where FL = j × B, (1)

which must be satisfied in the interior of an infinitely conducting
mass of fluid in the presence of a large-scale field, the Poisson
equation, ∇2V = 4 πG ρ, and the Maxwell equations, ∇ · B = 0
(Maxwell flux) and ∇ × B = μ0 j (Maxwell-Ampère), where
P, ρ, and V are the pressure, the density, and the gravitational
potential of the considered plasma, B is the magnetic field, and
j the associated current, which is given in the classical MHD
approximation by the Maxwell-Ampère’s equation. Also, μ0 is
the magnetic permeability of the plasma and FL is the Lorentz
force.

2.1. Magnetic-field configuration
and the magnetohydrostatic equilibrium

If we only consider the axisymmetric case, where all physical
variables are independent of the azimuthal angle (ϕ), B (r, θ) can
be written in the form

B =
1

r sin θ
∇Ψ (r, θ)× êϕ +

1
r sin θ

F (r, θ) êϕ, (2)

which does not diverge and Ψ and F are the poloidal flux func-
tion and the toroidal potential, (r, θ, ϕ) the usual spherical coordi-
nates, and {êk}k=r,θ,ϕ their unit-vector basis. Finally, the poloidal

1 Barotropic states are such that their density and pressure gradients
are aligned. They can be convectively stable or not, depending on their
entropy stratification. We introduce their precise definition in Sect. 2.2.

component of the magnetic field (BP) is such that BP · ∇Ψ = 0,
so it belongs to iso-Ψ surfaces. The magnetohydrostatic equilib-
rium (Eq. (1)) implies that the poloidal part (in the meridional
plane in the axisymmetric case) of the Lorentz force (FLP) bal-
ances the pressure gradient and the gravitational force, which
are also purely poloidal vectors, while its toroidal component
(FLT = FLϕ êϕ) vanishes in the absence of any other force. We
thus have

FL = FLP + FLϕ êϕ = FLP . (3)

Using Eq. (2), we obtain

FLP = −
1

μ0r2 sin2 θ

⎧⎪⎪⎨⎪⎪⎩ (F∂rF + ∂rΨΔ
∗Ψ) êr

+
1
r

(F∂θF + ∂θΨΔ
∗Ψ) êθ

⎫⎪⎪⎬⎪⎪⎭, (4)

with ∂x = ∂/∂x, and

Δ∗Ψ ≡ ∂rrΨ +
sin θ
r2
∂θ

(
1

sin θ
∂θΨ

)
(5)

is the usual Grad-Shafranov operator in spherical coordinates.
On the other hand, since FLϕ = 0, we get ∂rΨ∂θF − ∂θΨ∂rF = 0;
therefore the non-trivial values for F are obtained by setting

F(r, θ) = F(Ψ). (6)

Then, we obtain F∂rF = F∂ΨF∂rΨ and F∂θF = F∂ΨF∂θΨ,
leading to the final expansion of the Lorentz force

FL = A (r, θ)∇Ψ, (7)

where

A(r, θ) = − 1

μ0r2 sin2 θ
(F∂ΨF + Δ∗Ψ) . (8)

Therefore, the poloidal component of FL is nonzero a priori, the
field being thus non force-free in this case.

This point has to be discussed here. First, Reisenegger
(2009) demonstrates that the magnetic field cannot be force-
free everywhere in stellar interiors (see the demonstration in
appendix A of his paper). In this context, the “force-free” con-
figurations obtained by Broderick & Narayan (2008) verify
this theorem because they have current sheets with a non-zero
Lorentz force on the stellar surface. Moreover, Shulyak et al.
(2007, 2010) show how the atmosphere of a CP star can be the
host of a non-zero Lorentz force. Therefore, from now on, we
consider the non force-free equilibrium.

If we take the curl of Eq. (1), we get the static vorticity equa-
tion

− ∇ ρ × ∇ P
ρ2

= ∇ ×
(

FL
ρ

)
, (9)

which governs the balance between the baroclinic torque (left-
hand side; see Rieutord (2006) for a detailed description) and the
magnetic source term. Then, as emphasized by Mestel (1956),
the different structural quantities such as the density, the gravita-
tional potential, and the pressure relax in order to verify Eq. (1)
for a given field configuration (see Sweet 1950; Moss 1975;
Mathis & Zahn 2005, Sect. 5.). Thus, the choice for Ψ is left
free.
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2.2. The barotropic equilibrium state family

Magnetic initial configurations are one of the crucial unanswered
questions for modeling MHD transport processes in stellar in-
teriors. To examine this question, Braithwaite and collabora-
tors (Braithwaite & Spruit 2004; Braithwaite & Nordlund 2006)
studied the relaxation of an initially stochastic field in mod-
els of convectively stable stellar radiation zones. The field is
found to relax, after several Alfvén times, to a mixed poloidal-
toroidal equilibrium configuration, which then diffuses towards
the exterior.

We choose here to use an analytical approach to find such
field geometries, which are governed at the beginning by the
magnetohydrostatic equilibrium. To achieve this aim, we fo-
cused in this first article on the particular barotropic equilibrium
states (in the hydrodynamic meaning of the term) for which the
field configuration is explicitely coupled with the stellar struc-
ture, since in this case we have

− ∇ ρ × ∇ P
ρ2

= ∇ ×
(

FL
ρ

)
= 0. (10)

Those are the generalizations of the Prendergast’s equilibria that
take the compressibility into account and that have been studied
in polytropic cases by Woltjer (1960), Wentzel (1961), Roxburgh
(1966), and Monaghan (1976).

Let us first recall the definition of the barotropic states. In
fluid mechanics, a fluid is said to be in a barotropic state if the
following condition is satisfied (see Pedlosky (1998) in a geo-
physical context and Zahn (1992) in a stellar one):

∇ρ × ∇P = 0; (11)

in other words, the baroclinic torque in the vorticity equation
(Eq. (9)) vanishes. Then, the surfaces of equal density coincide
with the isobars since the density and the pressure gradients
are aligned. This does not imply any question of equation of
state, which in stellar interiors can take the most general form
P = f (ρ, T, ··· ) (T being the temperature). Moreover, this does
not presume anything about the stratification of the fluid, which
can be stably stratified or not. For example, a star in solid body
rotation is in a barotropic state (as opposed to baroclinic) (see
once again Zahn 1992). Let us illustrate this point with the
simplest case of a non-rotating and non-magnetic stellar radi-
ation zone. In this case, the hydrostatic balance is given by
∇P/ρ = −∇V = g. If we take the curl of this equation, we obtain
the stationary version of the thermal-wind equation,

−
∇ρ × ∇P
ρ2

= −∇ × [∇V] = 0, (12)

and the star is thus in a barotropic state in the hydrodynamic
meaning of the term.

This has to be distinguished from the point of view of ther-
modynamics where a barotropic equation of state is such that
P = f (ρ) while a non-barotropic equation of state is such that
P = f (ρ, T, ··· ).

Then, it is clear that a fluid with a barotropic equation of state
is automatically in a hydrodynamical barotropic state; however,
in the case of a fluid with a non-barotropic equation of state, the
situation is more subtle. In the case where the curl of the volu-
metric perturbing force vanishes (i.e.∇×(FL/ρ) = 0), the fluid is
in a hydrodynamical barotropic state, while in the general case,
it is in a baroclinic situation. Then, a fluid with a non-barotropic
equation of state can be in a barotropic state even if it is only
for a specific form of the perturbing force. In this first work,

we chose to examine the first equilibrium family in which the
Lorentz force verify the barotropic balance described by Eq. (11)
in a stably stratified radiation zone. The second general case (cf.
Mestel 1956) will be studied in Paper II.

Except just under the surface, stellar interiors are in a regime
where β = P/PMag >> 1, PMag = B2/(2 μ0) being the plasma’s
magnetic pressure. On the other hand, in the domain of fields
amplitudes relevant for classical stars (i.e. the non-compact ob-
jects), the ratio of the volumetric Lorentz force by the gravity
is very weak. Therefore, the stellar structure modifications in-
duced by the field can be considered as perturbations only from
a spherically symmetric background (Haskell et al. 2008). Then,
we can write ρ ≈ ρ+ ρ̃, where ρ and ρ̃ are, respectively, the mean
density on an isobar, which is given at the first order by the stan-
dard non-magnetic radial density profile of the considered star,
and its magnetic-induced perturbation on the isobar (with ρ̃<<ρ).
Thus to the first order, Eq. (10) on an isobar becomes

− ∇ρ̃ × geff

ρ
= ∇ ×

(
FL
ρ

)
= 0, (13)

where the effective gravity (geff), such that ∇P = ρ geff, has been
introduced. Using Eq. (7), this gives

∇
(
A
ρ

)
× ∇Ψ = 0, (14)

which projects only along êϕ as

∂r

(
A
ρ

)
∂θΨ − ∂θ

(
A
ρ

)
∂rΨ = 0, (15)

so that there exists a function G of Ψ such that

A
ρ
= G (Ψ) . (16)

Then, Eq. (8) leads to the following one ruling Ψ

Δ∗Ψ + F (Ψ) ∂Ψ [F (Ψ)] = −μ0r2 sin2 θ ρG (Ψ) . (17)

This equation is similar to the well-known Grad-Shafranov
equation2, which is used to find equilibria in magnetically con-
fined plasmas such as those in tokamaks or in spheromaks (Grad
& Rubin 1958; Shafranov 1966). However, here the source term
is different and is directly related to the internal structure of the
star through its density profile (ρ). The general form of the Grad-
Shafranov equation in an astrophysical context is discussed for
example in Heinemann & Olbert (1978) and Ogilvie (1997).
Moreover, since the field has to be non force-free in stellar in-
teriors G � 0 (see the previous discussion in Sect. 2.1. and
Eqs. (16), (7), and (8)).

It is only applicable to the case of the barotropic state family.
The equations for the general case will be studied in Paper II.

2.3. F and G expansion

Let us now focus on the respective expansion of F and G as a
function ofΨ. First, since F is a regular function, we can expand
it in power series in Ψ:

F(Ψ) =
∞∑

i=0

λi

R
Ψi, (18)

2 The usual Grad-Shafranov equation is given by Δ∗Ψ +
F (Ψ) ∂Ψ [F (Ψ)] = −μ0r2 sin2 θ∂Ψ [P (Ψ)], where the pressure P
is prescribed in function of Ψ. This only describes the equilibrium
between the magnetic force and the pressure gradient.
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with λi the expansion coefficients that have to be determined,
and R a characteristic radius identified below. On the other hand,
Bϕ must be regular at the center of the sphere. The first term
(i = 0) of the previous expansion is then excluded (cf. Eq. (2)),
the above expansion thus reducing to F(Ψ) =

∑
i>0 (λi/R)Ψi.

In the same way, G can be expanded as

G (Ψ) =
∞∑
j=0

β jΨ
j. (19)

Then, Eq. (17) becomes

Δ∗Ψ +
∑
k>0

Λk

R2
Ψk = −μ0r2 sin2 θ ρ

∞∑
j=0

β jΨ
j, (20)

where Λk =
∑

i1>0
∑

i2>0
{
i2λi1λi2δi1+i2−1,k

}
, with δ the usual

Kronecker symbol. This is the generalization of the Grad-
Shafranov-type equation obtained by Prendergast (1956) for the
barotropic compressible states.

Thus, having assumed the non force-free barotropic
magneto-hydrostatic equilibrium state leads to undetermined ar-
bitrary functions (F and G) that must be constrained. To achieve
this aim, we follow the method given in the axisymmetric case
by Chandrasekhar & Prendergast (1958) and Woltjer (1959b),
which allows finding the equilibrium state of lowest energy com-
patible with the constancy of given invariants for the studied ax-
isymmetric system.

3. Self-gravitating relaxation states

3.1. Definitions and axisymmetric invariants

We first introduce the cylindrical coordinates (s, ϕ, z) where s =
r sin θ and z = r cos θ. Then, B given in Eq. (2) becomes

B (s, z) =
1
s
∇Ψ (s, z) × êϕ +

1
s

F (s, z) êϕ. (21)

Then, we define the potential vector A (s, z) = Aϕ (s, z) êϕ, such
that BP = ∇ × A and we get

B = ∇ × A +
F
s

êϕ where Aϕ (s, z) =
Ψ

s
· (22)

Next, we insert the expansion for the magnetic field B used by
Chandrasekhar & Prendergast (1958) and Woltjer (1959a,b):

B = −s ∂zΦ (s, z) ês +
1
s
∂s

[
s2Φ (s, z)

]
êz + s T (s, z) êϕ (23)

where
{̂
ek

}
k=s,ϕ,z is the cylindrical unit-vector basis and where we

identify using Eq. (21)

Ψ = s2Φ and F = s2T . (24)

The Grad-Shafranov operator applied toΨ can then be expressed
as

Δ∗Ψ = s2 ∇ ·
(∇Ψ

s2

)
=

[
∂ss−

1
s
∂s+∂zz

]
Ψ = s2Δ5Φ, (25)

where Δ5 = ∂ss +
3
s∂s + ∂zz.

We now introduce the two general families of invariants
of the barotropic axisymmetric magneto-hydrostatic equilibrium
states, which were introduced by Woltjer (1959b) for the com-
pressible case (see also Wentzel 1960):

II;n =

∫
V

Mn

(
s2Φ

)
ρ dV =

∫
V

(
s2Φ

)n
ρ dV, (26)

Fig. 1. Schematic representation of the two coordinate systems used and
of a constant Ψ surface. The invariants of the axisymmetric system are
the total mass of the considered stellar radiative region (MRZ), the mass
enclosed in a constant Ψ surface, the toroidal flux (Fϕ) associated with
the toroidal magnetic field (Bϕ), and the global helicity (H).

III;q =

∫
V

Nq

(
s2Φ

)
T dV =

∫
V

(
s2Φ

)q
T dV, (27)

where Mn and Nq are arbitrary functions that have to be speci-
fied. They are conserved as long as

B · êr = 0 (i.e. Φ = T = 0) (28)

on the boundaries.

3.2. Fossil fields barotropic relaxation states

Let us first concentrate on III;q and Nq, which are relevant to
fossil fields relaxation. First, if we set N0

(
s2Φ

)
= 1, we obtain

III;0 =

∫
V
T dV = 2 π

∫
S

Bϕdsdz

= 2 π
∫
S

Bϕ dSϕ = 2 π Fϕ, (29)

which corresponds to the conservation of the flux of the az-
imuthal field across the meridional plane of the star (Fϕ) in per-
fect axisymmetric MHD equilibria. Then, if we set N1

(
s2Φ

)
=

s2 Φ, we get

III;1 =

∫
V

(
s2 Φ

)
T dV =

∫
V

AϕBϕdV = H/2, (30)

where we thus identify the magnetic helicity (H ; see Sect. 5.1.)
of the field configuration, which is a global quantity integrated
over the volume of the studied radiation zone.

Let us briefly discuss the peculiar role of this quantity in the
search for stable equilibria. As emphasized by Spruit (2008), the
magnetic helicity is a conserved quantity in a perfectly conduct-
ing fluid with fixed boundary conditions. However, in realistic
conditions, rapid reconnection can take place even at very high
conductivity, especially when the field is dynamically evolving,
for example, during its initial relaxation phase. Nevertheless, in
laboratory experiments, such as in spheromaks, the helicity is
often observed to be approximately conserved, which leads to
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stable equilibrium configurations. In fact, if the helicity is con-
served, a dynamical or unstable field with a finite initial helic-
ity (H0) cannot decay completely, the helicity of vanishing field
being zero. This is precisely what has been observed in the nu-
merical experiment performed by Braithwaite & Spruit (2004)
and Braithwaite & Nordlund (2006), where an initial stochastic
field with a finite helicity decays initially but relaxes into a stable
equilibrium.

In the context of laboratory low-β plasmas, this process has
been identified by Taylor (1974) and is thus called the Taylor’s
relaxation.

For this reason, we now follow Chandrasekhar &
Prendergast (1958) to search for the final state of equilibrium,
which is the state of lowest energy that the compressible star,
preserving its axisymmetry, can attain while conserving the in-
variants II;n, III;0 = Fϕ, and III;1 = H/2 in barotropic states. To
achieve this, we thus introduce the total energy of the system

E =
1
2

∫
V

{
B2

μ0
+ ρ [V + 2U]

}
dV

=
1
2

∫
V

{
1
μ0

[
−s2ΦΔ5Φ + s2T 2

]
+ ρ [V + 2U]

}
dV,

(31)

where U is the specific internal energy per unit mass (Woltjer
1958, 1959b; Broderick & Narayan 2008). To obtain the minimal
energy equilibrium state for the given invariants II;n and a given
helicity and azimuthal flux, we thus minimize E with respect to
II;n, III;0, and III;1. After introducing the associated Lagrangian
multipliers

(
aI;n, aII;0, aII;1

)
, this leads to the following condition

for a stationary energy:

δE +
∑

n

aI;n δII;n +

1∑
q=0

aII;q δIII;q = 0. (32)

Following the method described in Chandrasekhar &
Prendergast (1958) and Woltjer (1959b), we express δE
and δIJ;r as functions of δΦ, δT , and δρ. Since these variations
are independent and arbitrary, their coefficients in the integrand
of Eq. (32) must separately vanish, which gives

1
μ0
Δ5Φ = ρ

∑
n

aI;n

dMn

(
s2Φ

)
d
(
s2Φ

) + 1∑
q=0

aII;q T
dNq

(
s2Φ

)
d
(
s2Φ

)
= ρ

∑
n

aI;n

dMn

(
s2Φ

)
d
(
s2Φ

) + aII;1 T , (33)

1
μ0

s2 T = −
1∑

q=0

aII;q Nq

(
s2Φ

)
= −aII;0 − aII;1s2Φ. (34)

These equations thus describe the minimal non force-free energy
equilibrium states for a given helicity and azimuthal flux. From
Eq. (17), we identify that F (Ψ) is now constrained, while G (Ψ),
which is required to ensure the non force-free character of the
field, is still arbitrary.

Let us now consider the first invariants family (II) given in
Eq. (26), which are thus needed to constrain G (Ψ). First, the
non-magnetic global quantity, which is an invariant of the con-
sidered equilibrium, is the total mass of the stellar radiation zone
MRZ. We thus set M0

(
s2Φ

)
= 1, leading naturally to consider the

mass

II;0 =

∫
V
ρ dV = MRZ. (35)

However, since dM0

(
s2Φ

)
/d

(
s2Φ

)
= 0, we thus have to con-

sider the highest order invariant

II;1 =

∫
V

(
s2Φ

)
ρ dV (36)

because of the non force-free behavior of the field. This last in-
variant has been introduced by Prendergast (1956) in the axisym-
metric non force-free magneto-hydrostatic incompressible equi-
librium, and it corresponds to the mass conservation in each flux
tube described by the closed magnetic surface s2Φ = cste.

Furthermore, the considered radiation zone is stably strati-
fied. Since in stellar interiors the magnetic pressure is much less
than the thermal one, the Lorentz force only has a negligible ef-
fect on the gas pressure (β >> 1). Moreover, energy is required
to move fluid elements in the radial direction because work has
to be done against the buoyant restoring force that is thus very
strong compared to the magnetic one. Therefore, the radial com-
ponent of the displacement (ξ), which takes place during the ad-
justment to equilibrium is inhibited ξ · êr ≈ 0, and ∇ · (ρξ) ≈ 0
due to the anelastic approximation justified in stellar radiation
regions. Therefore, as emphasized by Braithwaite (2008), the
mass transport in the radial direction is frozen (no matter can
leave or enter in the flux tube), and II;1 can be used as a supple-
mentary constrain in our variational method.

From Eqs. (34)−(34), we thus get the following equations
describing the barotropic axisymmetric equilibrium state of low-
est energy that the compressible star can reach while conserving
its radiation zone mass (II;0 = MRZ), the mass in each flux tube
(II;1), the flux of the toroidal field (III;0 = Fϕ), and a given he-
licity (III;1 = H/2):

1
μ0
Δ5Φ = aI;1 ρ + aII;1 T , (37)

1
μ0
T = −aII;1Φ −

aII;0

s2
· (38)

Since the azimuthal field is regular at the origin, we get aII;0 = 0
from Eq. (23). By eliminating T between Eqs. (37)−(38), we
obtain

Δ5Φ +
[
μ0aII;1

]2
Φ = μ0 aI;1 ρ, (39)

which becomes, when multiplying it by s2 and using Eqs. (24)
and (25)

Δ∗Ψ +
[
μ0aII;1

]2
Ψ = μ0 aI;1 ρ r2 sin2 θ. (40)

We thus identify in Eq. (20){
k=1
j=0 and

{
aI;1= −β0

aII;1=− 1
μ0
λ1/R,

(41)

where we have constrained the initial arbitrary functions of the
magnetohydrostatic equilibrium

F (Ψ) = −μ0aII;1Ψ and G (Ψ) = −aI;1. (42)

It then reduces to

Δ∗Ψ +
λ2

1

R2
Ψ = −μ0 ρ r2 sin2 θ β0, (43)

with the values of the real coefficients λ1 and β0 thus controled
by the helicity (H) and the mass conservation in each axisym-
metric flux tube defined byΨ = cste because of the non force-free
stably stratified behavior of the reached equilibrium.
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As already emphasized, this corresponds to the lowest
energy equilibrium state for a given helicity (Bellan 2000;
Broderick & Narayan 2008). The equilibrium state ruled by
Eq. (43) is thus the generalization of the Taylor relaxation states
in a self-gravitating star where the field is not force-free (i.e.
∇×B � αB). Some non force-free relaxed states have been iden-
tified in plasma physics (Montgomery & Phillips 1988, 1989;
Dasgupta et al. 2002; Shaikh et al. 2008) and should be studied
in a stellar context in a near future.

In the case where II;1 is not considered (aI;1 = β0 = 0),
we recover the Chandrasekhar (1956a) force-free limit (see also
Marsh 1992, for a generalization of the solutions) and the usual
Taylor’s states for low-β plasmas. The Prendergast model is re-
covered by assuming a constant density profile (incompressible).

3.3. Green’s function solution

We are now ready to solve Eq. (43). If we introduce x = cos θ
and if we set S (r, θ) = −μ0 β0 ρ r2 sin2 θ, it is recast as

Lλ1Ψ = S, (44)

where

Lλ1 ≡
⎡⎢⎢⎢⎢⎣∂rr +

1 − x2

r2
∂xx +

λ2
1

R2

⎤⎥⎥⎥⎥⎦ · (45)

Using Green’s function method (Morse & Feshbach 1953), we
then obtain the particular solution associated with S:

Ψp (r, x) = −μ0 β0

∑
l

λl
1

Rsup

[
2l + 3

2 (l + 1) (l + 2)

]

×
{

r jl+1

(
λl

1
r

Rsup

) ∫ Rsup

r

[
ξ yl+1

(
λl

1
ξ

Rsup

)
Jl (ξ)

]
dξ

+r yl+1

(
λl

1
r

Rsup

) ∫ r

Rinf

[
ξ jl+1

(
λl

1
ξ

Rsup

)
Jl (ξ)

]
dξ

}
×

(
1 − x2

)
C3/2

l (x) , (46)

where

Jl (ξ) =
∫ 1

−1
S

(
ξ, x′

)
C3/2

l

(
x′

)
dx′, (47)

and jl and yl are respectively the spherical Bessel functions
of the first and the second kinds (also called Neumann func-
tions), while C3/2

l are the Gegenbauer polynomials (Abramowitz
& Stegun 1972). The variables Rinf and Rsup, which are respec-
tively the bottom and the top radii of the considered radiation
zone, are introduced, and we identify R = Rsup.

These functions ( jl, yl, and C3/2
l ) are respectively the radial

and the latitudinal eigenfunctions of the homogeneous equation
associated with Eq. (44):

Lλ1Ψh = 0. (48)

Then, if we express the solutions of this equation as Ψh =∑
l fl (r) gl (θ), we get

(
1 − x2

) d2gl

dx2
+ (l + 1) (l + 2) gl = 0 (49)

and

d2 fl
dr2
+

⎡⎢⎢⎢⎢⎢⎢⎣
⎛⎜⎜⎜⎜⎝ λl

1

Rsup

⎞⎟⎟⎟⎟⎠2

−
(l + 1) (l + 2)

r2

⎤⎥⎥⎥⎥⎥⎥⎦ fl = 0 (50)

respectively, giving

gl =
(
1 − x2

)
C3/2

l (x) (51)

and

fl = Kl
1 λ

l
1

r
Rsup

jl+1

(
λl

1
r

Rsup

)

+Kl
2 λ

l
1

r
Rsup
yl+1

(
λl

1
r

Rsup

)
, (52)

where Kl
1 and Kl

2 are real constants, and λl
1 are the eigenvalues

that allow verification of boundary conditions discussed here-
after. One has to notice that Kl

2 has to vanish in order to pre-
serve the regularity of the solution at the center. Applying this to
Eq. (43), we finally obtain the general solution

Ψ (r, θ) = Ψh + Ψp

= sin2 θ ×
⎧⎪⎪⎨⎪⎪⎩
∞∑

l=0

Kl
1

λl,i
1

Rsup
r jl+1

(
λl,i

1

r
Rsup

)
C3/2

l (cos θ)

−μ0β0
λ0,i

1

Rsup
r j1

(
λ0,i

1

r
Rsup

) ∫ Rsup

r

[
y1

(
λ0,i

1

ξ

Rsup

)
ρξ3

]
dξ

−μ0β0
λ0,i

1

Rsup
ry1

(
λ0,i

1

r
Rsup

)∫ r

Rinf

[
j1

(
λ0,i

1

ξ

Rsup

)
ρξ3

]
dξ

⎫⎪⎪⎬⎪⎪⎭.
(53)

This particular solution for the poloidal flux function
(
Ψp

)
presents a dipolar geometry, owing to its angular dependence
that follows the one from the source term S = −μ0 β0 ρ r2 sin2 θ.
After neglecting the density, we end up with the linear homo-
geneous equation, whose solutions are Chandrasekhar-Kendall
functions (Chandrasekhar & Kendall 1957). Moreover, because
the source term is only constituted of a dipolar component, all
the non-dipolar contributions are force-free according to this
model.
The magnetic field is then given for r ≤ Rsup by

B =
1

r2 sin θ
∂θΨ êr −

1
r sin θ

∂rΨ êθ +
λ0,i

1

Rsup

Ψ

r sin θ
êϕ. (54)

After a few manipulations, we can then express the current den-
sity as

jP = 1
μ0
∇ × BT =

λ0,i
1

μ0 R
BP︸���︷︷���︸

force−free

, (55)

jT =
1
μ0
∇ × BP =

λ0,i
1

μ0 R
BT︸����︷︷����︸

force−free

+ β0 ρ r sin θ êϕ︸����������︷︷����������︸
non force−free

, (56)

where we recognize in the first term of the righthand side the
force-free contributions and in the second the non force-free one,
fully contained in the toroidal component.

The Lorentz force can, as a matter of fact, be written in the
very simple form

FL = FLP = β0 ρ∇Ψ. (57)
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3.4. Configurations

The boundary conditions for Ψ that determine possible values
for Kl

1 and λ0,i
1 must now be discussed. Two major types of ge-

ometry are relevant for large-scale fossil magnetic fields in stel-
lar interiors: initially confined and open configurations.

3.4.1. Initially confined configurations

Let us first concentrate on the simplest mathematical solution
in the case of a central radiation zone that initially cancels Ψ
both at the center (Rinf = 0) and at a given confinement ra-
dius (Rsup = Rc). Then, if we choose to cancel the Kl

1 coeffi-
cients for every l, the condition Ψ(0, θ) = 0 is verified, since

limr→0 r j1
(
λ0,i

1
r

Rsup

)
= 0. However, if we look at the magnetic

field radial component behavior at the center, it is easily shown,

with Eq. (54) that if K0
1 = 0 it is given by limr→0 r−1 j1

(
λ0,i

1
r

Rsup

)
,

which does not cancel so that Br (0, θ) � 0 = C cos θ (where
C ∈ R∗). Therefore, this solution is multivaluated, thus physi-
cally inadmissible, and K0

1 � 0.
Then, we consider the general case of a field initially con-

fined between two radii Rinf = Rc1 and Rsup = Rc2 , owing to the
presence of both a convective core and a convective envelope (as
it is the case e.g. in A-type stars). We impose Ψ

(
Rc1 , θ

)
= 0 and

Ψ
(
R = Rc2 , θ

)
= 0, which gives the two independent equations

for l = 0

K0
1 = μ0 β0

∫ Rc2

Rc1

[
y1

(
λ0,i

1

ξ

Rc2

)
ρ ξ3

]
dξ (58)

and

K0
1 j1

(
λ0,i

1

)
=μ0 β0y1

(
λ0,i

1

)∫ Rc2

Rc1

[
j1

(
λ0,i

1

ξ

Rc2

)
ρξ3

]
dξ. (59)

We here focus on the dipolar mode that is known to be the lowest
energy per helicity ratio state (cf. Broderick & Narayan 2008).
These can be formulated so that one first determines the value of
λ0,i

1 according to

j1
(
λ0,i

1

) ∫ Rc2

Rc1

[
y1

(
λ0,i

1

ξ

Rc2

)
ρ ξ3

]
dξ

−y1

(
λ0,i

1

) ∫ Rc2

Rc1

[
j1

(
λ0,i

1

ξ

Rc2

)
ρ ξ3

]
dξ = 0, (60)

and next computes K0
1 following (59).

In the case where there is no convective core, as for exam-
ple in central radiation zones of late-type stars such as the Sun,
Eqs. (59) and (60) must be applied setting Rc1 = 0.

3.4.2. Open configurations

This corresponds to the fields that match at the stellar surface
(at r = R∗, R∗ being the star’s radius) with a potential field as
observed now in some cases of early-type stars such as Ap stars.
Then, we have Bext = ∇ΦM, with ΦM the associated potential.

In the case studied here, we focus on the first configuration
(initially confined) since the search of relaxed solutions for given
II;0, II;1, III;0, and III;1 assumes that B · êr = 0 on the stellar
radiation zones boundaries. This initial confined configuration
will then become open one through Ohmic diffusion as in the
Braithwaite and collaborators’ scenario.

Table 1. Eigenvalues of the first five equilibria for the two configura-
tions illustrated.

Eigenvalue Solar case Ap star case
λ0,1

1 5.276 4.826
λ0,2

1 9.157 8.657
λ0,3

1 12.951 12.444
λ0,4

1 16.290 16.174
λ0,5

1 19.839 19.849

4. Application to realistic stellar interiors

To illustrate our purpose, we applied our analytical results (i) to
model an initial fossil field buried below the convective envelope
of the young Sun on the ZAMS and then (ii) to model an initial
field present in the radiation zone of a ZAMS 2.40 M� magnetic
Ap-star, whose lower and upper radiation-convection interfaces
are located at Rc1 = 0.111 R∗ and at Rc2 = 0.992 R∗ respectively.
In the first case, the parameter β0 is determined such that the
maximum field strength reaches the amplitude of B0 = 2.1 MG,
which is one of the upper limits given by Friedland & Gruzinov
(2004) for the present Sun’s radiative core. In the second case, it
is obtained such that it reaches the arbitrary value of B0 = 10 kG.
This value has approximatively the same order of magnitude
as the mean surface amplitude observed using spectropolarime-
try for magnetic Ap-star, which exhibits strong external dipolar
magnetic behavior (such as HD12288, Wade et al. 2000). We
thus assume that such an initial confined internal field is a po-
tential prelude to the multipolar one now observed at the sur-
face, the latter state being acheived after a diffusive process to
be studied in a forthcoming paper.

4.1. Fossil fields buried in late-type stars radiative cores

The young Sun model used as a reference is a Cesam non-
rotating standard one (Morel 1997), following input from the
work of Couvidat et al. (2003) and Turck-Chièze et al. (2004).

In Fig. 2, three possible configurations for Ψ are given. We
chose those corresponding to the first, the third, and the fifth
eigenvalues (given in Table 1). Those are the generalization of
the well-known Grad-Shafranov equation linear eigenmodes ob-
tained in the force-free case (cf. Marsh 1992). The field is then
of mixed-type (Bϕ is given for λ0,1

1 ), both poloidal and toroidal,
and non force-free, properties already obtained by Prendergast
(1956) in the incompressible case. The respective amplitudes ra-
tio between the poloidal and the toroidal components are de-
scribed in Sect. 5., where the possible stability of such configu-
rations are discussed.

4.2. Fossil fields in early-type stars

Respective corresponding possible configurations in the case of
an Ap star are given in Fig. 3. The model is typical of an A2p-
type star, with an initial mass MA = 2.40 M�. The solar metal-
licity is chosen as the initial one, and the model is taken on the
ZAMS, its luminosity being L∗ = 38.0 L�.

Obtained configurations are then mixed poloidal-toroidal
(twisted) fields, which may be stable in stellar radiation zones
(cf. Braithwaite & Spruit 2004; Braithwaite & Nordlund 2006).
Their configurations are thus given in both cases by concen-
tric torus, the neutral points (where ∂rΨ = ∂θΨ = 0 so that
Br = Bθ = 0) being position functions of the internal density
profile of the star.
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Fig. 2. Upper panel: (left) toroidal magnetic field strength in colorscale and normalized isocontours of the poloidal flux function Ψ in meridional
cut in the solar case where the field is buried in the radiative core (below 0.726R∗) for the first equilibrium configuration (λ0,1

1 ); (right) anisotropy
factor γ (Eq. (88)). Lower panel: normalized isocontours of the flux function Ψ in meridional cut (left) for the third possible eigenvalue (λ0,3

1 ) in
the same case, (right) for the fifth possible eigenvalue (λ0,5

1 ). The dashed circles indicate the radiation-convection limits.

Let us emphasize here that the original approach of this
work first consists in deriving the Grad-Shafranov-like equation
adapted to treating the barotropic magnetohydrostatic equilib-
rium states for realistic models of stellar interiors. Such an ap-
proach has already been applied to investigate the internal mag-
netic configurations in polytropes and in compact objects such as
white dwarfs or neutron stars (see e.g. Monaghan 1976; Payne
& Melatos 2004; Tomimura & Eriguchi 2005; Yoshida et al.
2006; Haskell et al. 2008; Akgün & Wasserman 2008; Kiuchi
& Kotake 2008).

Then, the obtained arbitrary functions are constrained with
deriving minimal-energy equilibrium configurations for a given
conserved mass, azimuthal flux, and helicity that generalizes the
relaxation Taylor’s states to the self-gravitating case where the
field is non-force free.

5. Links between the field’s helicity, topology,
and energy

5.1. Helicity vs. mixity

Let us express the magnetic field (B) in terms of magnetic stream
functions ξP (for the poloidal component of the field) and ξT (for
its toroidal part):

B = ∇ × [∇ × [
ξP (r, θ) êr

]
+ ξT (r, θ) êr

]
. (61)

Next, the vector potential A is given by the relation B = ∇ × A.
Knowing that the gauge choice is inconsequential in the confined
case, we can identify without further ado

A = ∇ × [
ξP (r, θ) êr

]
+ ξT (r, θ) êr. (62)

The magnetic stream functions are then projected on the spheri-
cal harmonics

ξP (r, θ) =
∑

>0

ξ
0 (r) Y0

 (θ) , (63)

ξT (r, θ) =
∑

>0

χ
0 (r) Y0

 (θ) . (64)

From now on, we use Einstein summation convention where
A
 B
 =

∑

 A
 B
 and the vectorial spherical harmonics basis(

R0

 (θ) , S0


 (θ) ,T0

 (θ)

)
such that any axisymmetric vector field

u(r, θ) can be expanded as

u(r, θ) = u
0(r) R0

 (θ) + vl0(r) S0


 (θ) + w
0(r) T0

 (θ) , (65)

where the vectorial spherical harmonics R0

 (θ), S0


 (θ), and T0

 (θ)

are defined by

R0

 (θ) = Y0


 (θ) êr, S0

 (θ) = ∇SY0


 (θ) , T0

 (θ) = ∇S × R0


 (θ), (66)

the horizontal gradient being defined as ∇S = êθ ∂θ (cf. Rieutord
1987). Since

∇ × (
ξP êr

)
= ∇ ×

(
ξ
0 Y0


 êr

)
= ∇ ×

(
ξ
0 R0




)
=
ξ
0
r

T0

 , (67)

we get from Eq. (62)

A = χ
0 R0

 +
ξ
0
r

T0

 . (68)

On the other hand, we have

B =

 (
 + 1)

r2
ξ
0 R0


 +
1
r
∂rξ


0 S0

 +
χ
0
r

T0

 , (69)
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Fig. 3. Upper panel: (left) toroidal magnetic field strength in colorscale and normalized isocontours of the poloidal flux function Ψ in meridional
cut in the Ap star’s case where the field is confined between Rc1 = 0.111 R∗ and Rc2 = 0.992 R∗ for the first equilibrium configuration (λ0,1

1 ); (right)
anisotropy factor γ (Eq. (88)). Lower panel: normalized isocontours of the flux function Ψ in meridional cut (left) for the third possible eigenvalue
(λ0,3

1 ) in the same case, (right) for the fifth possible eigenvalue (λ0,5
1 ). The dashed circles indicate the radiation-convection limits.

from which we finally obtain the expression for the helicity

H =
∫ R∗

0

∫
Ω

⎧⎪⎪⎨⎪⎪⎩
⎡⎢⎢⎢⎢⎣χ
0 R0


 +
ξ
0
r

T0



⎤⎥⎥⎥⎥⎦ ·
⎡⎢⎢⎢⎢⎣ 
′ (
′ + 1)

r2
ξ

′

0 R0

′ +

1
r
∂rξ

′

0 S0

′ +
χ

′

0

r
T0

′

⎤⎥⎥⎥⎥⎦
⎫⎪⎪⎬⎪⎪⎭dΩ r2dr. (70)

At this point, we define a “poloidal helicity” defined by

HP =

∫
V

AP · BP dV (71)

and a “toroidal helicity” by

HT =

∫
V

AφBφ dV. (72)

Since
(
R0

 , S

0

 ,T

0



)
constitutes an orthogonal basis,∫

Ω

R0

 · S

0

dΩ =

∫
Ω

R0

 · T

0

dΩ =

∫
Ω

S0

 · T

0

dΩ = 0, (73)

we get from the previous expression:

H =
∫ R∗

0

⎡⎢⎢⎢⎢⎢⎣

′ (


′
+ 1

)
r2

χ
0 ξ


′

0

∫
Ω

R0

 · R

0

′ dΩ

+
1
r2
ξ
0 χ


′

0

∫
Ω

T0

 · T

0

′ dΩ

⎤⎥⎥⎥⎥⎥⎦ r2dr, (74)

and we verify that

H = HP +HT. (75)

From this expression (74) we can draw two conclusions:

1. A magnetic field has to be mixed (both poloidal and toroidal)
to be helical;

2. The poloidal and the toroidal helicities are equal. This can
be verified by exploiting the orthogonality relations∫
Ω

R0

 · R

0

′ dΩ = δ
,
′ (76)

and∫
Ω

T0

 · T

0

′ dΩ = 
 (
 + 1) δ
,
′ , (77)

where δ
,
′ is the usual Kronecker symbol. Then, we get

HP = HT = 
 (
 + 1)
∫ R∗

0
ξ
0 χ



0 dr = H/2. (78)

5.2. Helicity vs. energy

Now, we focus again on the helicity expression in terms of the
poloidal flux function Ψ. Equations (55) and (56) are rewritten
as

BP =
R

λ0,i
1

∇ × BT, (79)

BT =
R

λ0,i
1

∇ × BP −
R

λ0,i
1

μ0 β0 ρ r2 sin θ êϕ

=
R

λ0,i
1

∇ ×
[
BP − μ0 β0 ρ r2 cos θ êr

]
. (80)

We thus obtain the two vector potentials

AP =
R

λ0,i
1

(
BP − μ0 β0 ρ r2 cos θ êr

)
+ ∇ΛP, (81)
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AT =
R

λ0,i
1

BT + ∇ΛT, (82)

whereΛP andΛT are scalar gauge fields left free. When deriving
the poloidal and toroidal helicities with the boundary condition
B · êr = 0 at the surface, these disappear after integration so we
find

HP =
2 μ0 R

λ0,i
1

∫
V

B2
P

2 μ0
dV− μ0 R

λ0,i
1

β0

∫
V
ρΨ dV, (83)

HT =
2 μ0 R

λ0,i
1

∫
V

B2
T

2 μ0
dV. (84)

After, introducing the poloidal and toroidal magnetic energies

Umag;P =
∫
V

B2
P

2 μ0
dV and Umag;T =

∫
V

B2
T

2 μ0
dV (respectively), we

obtain

HP =
2 μ0 R

λ0,i
1

(
Umag,P −

1
2
β0MΨ

)
, (85)

where we identify MΨ = II;1 =
∫
V ρ Ψ dV, and

HT =
2 μ0 R

λ0,i
1

Umag,T. (86)

Finally, by adding these two last equations, we get the global
relation between the helicity and the magnetic energy in the non
force-free case

H = 2 μ0 R

λ0,i
1

(
Umag −

1
2
β0MΨ

)
, (87)

where we recognize the non force-free contribution in the second
term, which is the first invariant: the mass enclosed in magnetic
flux surface.

5.3. Helicity vs. topology

The l > 1 latitudinal mode contributions
As shown by Broderick & Narayan (2008) for a set of modes

l ranging from 1 to 8 in the case of force-free solutions applied in
an incompressible media, the first dipolar eigenvalue λ0,1

1 corre-
sponds to the minimum energy configuration. Furthermore, from
the Eq. (87), it arises directly that adding contributions from the
higher multipolar components of the field (force-free) will result
in adding a positive amount of magnetic energy to the total en-
ergy, and this one will not be the minimal state.

Lowest energy radial mode
We plotted in Figs. 4a and 4b the poloidal, toroidal, and total

helicity for the Sun and of the Ap star. It clearly follows from
this figure that the poloidal and the toroidal helicities are equal
(cf. Eq. (78)) for the eigenvalues given in Table 1. Moreover, the
energy of the poloidal component of the field (Umag,P) can be
compared to the one correponding to the toroidal part (Umag,T),
and we see that they have the same order of magnitude.

Figures 5a and 5b represent the ratios Emag/H for the
poloidal, toroidal, and global contributions, with and without the
non force-free term, as a function of the parameter λ0,i

1 in the case
of the Sun and of the Ap type star. The first dipolar eigenvalue
λ0,1

1 presents the minimum energy compared with highest radial
modes. It is thus the most probable configuration achieved after
relaxation, so from now on we focus on it.

Fig. 4. Normalized total, poloidal, and toroidal helicities as a function
of the eigenvalue (λ0

1) in the case of the young Sun (a, top) and of the
studied Ap star (b, bottom). The red diamonds represent the eigenvalues
(λ0,i

1 ) given in Table 1 for which Eq. (78) is verified. Using Eq. (86), we
directly deduce Umag;T while Umag;P is given in purple.

6. Discussion

6.1. Stability criteria

First, it is interesting to examine the ratio of the field’s poloidal
component amplitude with its toroidal one. Then, we define the
anisotropy factor (γ) of the configuration3 by

γ (r, θ) =
B2

P − B2
T

B2
P + B2

T

, where BP =

√
B2

r + B2
θ. (88)

It runs between −1 when the field is completely toroidal to 1
when it is completely poloidal. In Figs. 2 and 3, it is shown for
the first configurations obtained in the solar and in the Ap star
cases. In both ones, the field is strongly toroidal (γ ≈ −1) in
the center of the torus, which corresponds to the neutral point
of the poloidal field (where we recall that ∂rΨ = ∂θΨ = 0),
while it is strongly poloidal (γ ≈ 1) around the magnetic
axis of the star where the toroidal field is weak. Between
those two regimes, both components have comparable strengths
where γ ≈ 0. Then, proposed configurations may be stable since

3 This can be inverted as BT
BP
=

√
1−γ
1+γ and

umag,T

umag,P
=

1−γ
1+γ , where the

magnetic energy densities associated with the poloidal field (umag,P =
B2

P/2μ0) and with the toroidal one (umag,T = B2
T/2μ0) have been intro-

duced.
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Fig. 5. Magnetic energy/helicity ratios for the total, poloidal, and
toroidal contributions as a function of the eigenvalue (λ0

1) with (first
five curves) and without (last three curves) the non-force-free term in
the case of the young Sun (a, top) and of the studied Ap star (b, bot-
tom). For the eigenvalues (λ0,i

1 ) represented by the red diamonds (cf.
Table 1), Eqs. (78), (87), (85), (86) are simultaneously verified.

poloidal and toroidal fields can stabilize each other (Wright
1973; Tayler 1980; Braithwaite 2009). The complete stability
analysis following the analytical method given in Bernstein et al.
(1958) and using 3D numerical simulations will be achieved in
the near future.

6.2. Comparison to numerical simulations

Next, let us compare our analytical configuration in more details
to those obtained using numerical simulations (see Braithwaite
& Spruit 2004; Braithwaite & Nordlund 2006; Braithwaite
2008). Braithwaite and collaborators performed numerical mag-
netohydrodynamical simulations of the relaxation of an initially
random magnetic field in a stably stratified star. Then, this initial
magnetic field is always found to relax on the Alfvén time scale
into a stable magneto-hydrostatic equilibrium mixed configura-
tion consisting of twisted flux tube(s). Two families are then
identified: in the first, the equilibria configurations are roughly
axisymmetric with one flux tube forming a circle around the
equator, such as in our configuration; in the second family, the
relaxed fields are non-axisymmetric consisting of one or more
flux tubes forming a complex structure with their axis lying at
roughly constant depth under the surface of the star. Whether an
axisymmetric or non-axisymmetric equilibrium forms depends

on the initial condition chosen for the radial profile of the initial
stochastic field strength |B|| ∝ ρp: a centrally concentrated one
evolves into an axisymmetric equilibrium as in our configuration
while a more spread-out field with a stronger connection to the
atmosphere relaxes into a non-axisymmetric one. Braithwaite
(2008) indicates that, if using an ideal-gas star modeled initially
with a polytrope of index n = 3, the threshold is p ≈ 1/2.

Moreover, as shown in Fig. 7 in Braithwaite (2008), a se-
lective decay of the total helicity (H) and of the magnetic en-
ergy (UMag) occurs during the initial relaxation with a stronger
decrease in UMag than that of H . This hierarchy, which is
well known in plasma physics (see for example Biskamp 1997;
Shaikh et al. 2008) justifies the variational method used to de-
rive our configuration (Montgomery & Phillips 1988) while the
introduction of II;1 is justified by the non force-free character
of the field in stellar interiors (Reisenegger 2009) and by the
stratification, which inhibits the transport of flux and mass in the
radial direction (see Sect. 3.2 and Braithwaite 2008).

Finally, note that our analytical configuration for which
Umag;P/Umag ≈ 0.45 verifies the stability criterion derived by
Braithwaite (2009) for axisymmetric configurations:

A
Umag

Ugrav
<

Umag,P

Umag
≤ 0.8, (89)

where Ugrav is the gravitational energy in the star, and A a di-
mensionless factor whose value is ∼10 in a main-sequence star
and ∼103 in a neutron star, while we expect Umag/Ugrav < 10−6

in a realistic star (see for example Duez et al. 2010). Our analyti-
cal solution is thus similar to the axisymmetric non force-free re-
laxed solutions family obtained by Braithwaite & Spruit (2004)
and Braithwaite & Nordlund (2006).

These types of configurations can thus be relevant to model
initial equilibrium conditions for evolutionary calculations in-
volving large-scale fossil fields in stellar radiation zones. First,
they can be used to initiate MHD rotational transport in dynami-
cal stellar evolution codes where it is implemented (cf. Mathis &
Zahn 2005). There, axisymmetric transport equations have been
derived to study the secular dynamics of the mean axisymmetric
component of the magnetic field, with the magnetic instabilities
treated by using phenomenological prescriptions (Spruit 1999,
2002; Maeder & Meynet 2004) that have to be verified and im-
proved by numerical experiments (Braithwaite 2006; Zahn et al.
2007; Gellert et al. 2008). On the other hand, those can also be
used as initial conditions for large-scale numerical simulations
of stellar radiation zones (Garaud 2002; Brun & Zahn 2006).

6.3. Relaxed configurations and boundary conditions

Let us now discuss the boundary conditions we chose. Since
equilibrium states are known to minimize the energy/helicity
ratio, we followed the procedure established by Chandrasekhar
& Prendergast (1958) and Woltjer (1959b) for constraining the
arbitrary functions of the magnetohydrostatic equilibrium. This
procedure, which minimizes the energy with respect to given in-
variants of the system (and in particular the helicity), assumes
the following boundary condition B · êr = 0 that leads to an az-
imuthal current sheet owing the non-zero latitudinal field at the
upper boundary (Bθ

(
Rsup, θ

)
� 0). This is a potential source of

instability, and in the case of our configuration, we have to eval-
uate its effect on the stability (cf. Bellan 2000).

Next, in a stellar context, we have to allow open configura-
tions as observed and thus match the internal solution with an
external multipolar one. It then remains to be seen whether the
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invariants are conserved, as they are in the confined case (Dixon
et al. 1989).

Finally, independent of the chosen type of configuration
(confined or matched with a multipolar external field), we have
to search for solutions that allow the continuity of the magnetic
field and of the associated currents at the boundaries to cancel
the possible induced instabilities. This leads to an ill-posed
problem which must be solved in a subtle way (see Monaghan
1976; Lyutikov 2010). In the present state of art, no solution has
been derived that both minimizes the energy/helicity ratio and
satisfies this type of surface boundary condition. This will be
the next step, but it is beyond the scope of the present paper.

7. Conclusion

In the context of improving stellar models by considering dy-
namical processes such as rotation and magnetic field, we ex-
amined possible magnetic equilibrium configurations to model
initial fossil fields.

We generalized the pioneer work by Prendergast (1956) in
deriving the barotropic magnetohydrostatic equilibrium states
of realistic stellar interiors which are a first equilibrium family.
These will then evolve due to other dynamical processes such
as Ohmic diffusion, differential rotation, meridional circulation,
and turbulence. Relaxed minimum energy equilibrium configu-
rations we then obtained for a given conserved mass and helicity
correspond to the Taylor’s relaxation states in the self-gravitating
non force-free case. These are then applied to the internal radi-
ation zone of the young Sun and to the radiative interior of an
Ap star on the ZAMS. Mixed poloidal and toroidal magnetic
configurations are obtained, which are potentially stable in stel-
lar radiation zones.

Now, we thus need to study the stability of these magnetic
topologies; moreover, the case of general baroclinic equilibrium
states has to be studied (Paper II). These equilibrium configura-
tions then have to be used as possible initial conditions for ro-
tational transport processes in those stellar radiative regions that
will allow to study internal stellar MHD on secular time scales.
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