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Because of their inherently high flux allowing the 
detection of clear signals, black hole x-ray binaries are 
interesting candidates for polarization studies, even if no 
polarization signals have been observed from them before. 
Such measurements would provide further detailed 
insight into these sources’ emission mechanisms. We 
measured the polarization of the gamma-ray emission 
from the black hole binary system Cygnus X-1 with the 
INTEGRAL/IBIS telescope. Spectral modeling of the data 
reveals two emission mechanisms: The 250-400 keV data 
are consistent with emission dominated by Compton 
scattering on thermal electrons and are weakly polarized. 
The second spectral component seen in the 400keV-2MeV 
band is by contrast strongly polarized, revealing that the 
MeV emission is probably related to the jet first detected 
in the radio band. 

Cygnus X-1 is probably the best known black hole (BH) x-
ray binary in our Galaxy. It has been widely observed with 
many telescopes over the whole electromagnetic band (1-10). 
The BH is located around 2.1 kpc away from Earth (11), and 
forms a binary system with a high mass blue O star (12). It 
radiates mainly in the x-ray and soft gamma-ray domains; the 
x-ray luminosity is thought to be produced by accretion of the 
companion’s matter onto the BH (1, 2). The well-studied x-
ray spectrum is a combination of a thermal spectrum with 
temperature around 130 eV (13) and a cutoff power law 
spectrum, due to the Compton-scattering of the disk photons 
off high temperature thermal electrons located in a corona 
close to the BH (2). Recently, an additional spectral 
component of unknown origin was observed (10) by the 
spectrometer on INTEGRAL (SPI) telescope (14). Finally, a 
compact radio jet is ejected from the vicinity of the BH, with 
a kinetic power similar to the source's bolometric x-ray 
luminosity (3, 4). 

The IBIS telescope (15) onboard the INTEGRAL satellite 
(16), can be used as a Compton polarimeter (17–21). Spectral 
measurements of Cygnus X-1 (Fig. 1) reveal two high energy 
components: a cutoff power law component between 20 and 
400 keV, reminiscent of a Compton-scattering induced 
spectrum, already observed by many satellites (2, 6, 7, 9, 10), 
and a power law spectrum at higher energies of up to 2 MeV, 
already observed (10) by the SPI telescope on board 
INTEGRAL. These two components are signatures of two 
different high energy emission processes from the source, 
whose locations have not been previously constrained. 

We measured the polarization signal between 250 and 400 
keV (Fig. 2). As expected from a zone where Compton 
scattering on thermal electrons dominates (22), the emission 
in this band is weakly polarized with an upper limit of 20% 
for the polarization fraction Pf. 
In contrast, the signal from the 400-2000keV band, in which 
the hard tail dominates, is highly polarized (Pf = 67 ± 30%; 
see Fig. 2). This result is no longer consistent with Compton 
scattering on thermal electrons (22), and such a high 
polarization fraction is probably the signature of synchrotron 
or inverse Compton emission from the jet already observed in 
the radio band (23). Unfortunately, current knowledge of the 
jet at radio wavelengths does not allow discriminating 
between the two processes. 

In order to have such a clear polarimetric signal, the 
magnetic field has to be coherent over a large fraction of the 
emission site (5). Such a coherent magnetic field structure 
may indicate a jet origin for the gamma-rays above 400 keV 
(24). In addition, because the gamma-rays emitted in BH x-
ray binaries are generally thought to be emitted close to the 
BH horizon (7, 25), and because the synchrotron photons we 
observed in the hard tail are too energetic to be effectively 
self-Comptonized, these observations might be evidence that 
the jet structure is formed in the BH vicinity, possibly in the 
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Compton corona itself. Another possibility is that the gamma-
rays are produced in the initial acceleration region in the jet, 
as observed at higher energies by Fermi/LAT from the 
microquasar Cygnus X-3 (26). 

The spectrum observed above 400 keV is consistent with a 
power law of photon index 1.6 ± 0.2. This means that this 
spectrum, if due to synchrotron or inverse Compton emission, 
is caused by electrons whose energy distribution is also a 
power law with an index p of 2.2 ± 0.4 (27), consistent with 
the canonical value for shock-accelerated particles p = 2. 
Synchrotron radiation at MeV energies implies also that the 
electron energy, for a magnetic field of 10 mG, which is 
reasonable for this kind of system (28), would be around a 
few TeV (27, 29). Inverse Compton scattering of photons off 
these high energy TeV electrons, whose lifetime due to 
synchrotron energy loss is around one month (27), could also 
be the origin of the TeV photons detected from Cygnus X-1 
with the MAGIC experiment (30) and possibly also the 
gamma-rays claimed by AGILE (31). 

The position angle (PA) of the electric vector, which gives 
the direction of the electric field lines projected onto the sky, 
is 140 ± 15°. This is at least 100° away from the compact 
radio jet, which is observed at a PA of 21-24° (32). Such 
deviations between the electric field vector and jet direction 
are also found in other jet sources, such as Active Galactic 
Nuclei (33) or the galactic source SS433 (34). 
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Fig. 1. Cygnus X-1 energy spectrum as measured by the 
Integral/IBIS telescope, and obtained with the standard IBIS 
spectral analysis pipeline. Two components are clearly seen: 
a “Comptonisation” spectrum caused by photons upscattered 
by Compton scattering off thermally distributed electrons in a 
hot plasma (dashed line), and an higher energy component 
(dash dot line) whose origin is not known. 

Fig. 2. Cygnus X-1 polarization signal measured in two 
adjacent energy bands. This distribution gives the source 
count rate by azimuthal angle of the Compton scattering. In 
the 250-400 keV energy band (panel a), the signal is 
consistent with a flat signal indicating that the observed 
gamma-rays are weakly or even not polarized. In the 400-
2000 keV energy band (panel b), the signal is now highly 
modulated, indicating that the observed gamma-rays are 
highly polarized. 
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