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Richard Massey, Savita Mathur,...
And also we would like to thank Phil Marshall for his help relative to the use of the
LensEnt2 package.

This package is a compilation of some algorithms and methods which were developed
and/or used successfully in the applications reported in the 2 following publications:
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Chapter 1

Introduction

In the beginning of the twentieth century Albert Einstein derived his Theory of General
Relativity. One of the consequences of this theory was that massive bodies could bend
the path of light rays. One of the first confirmations of Einstein’s new theory was the
observation during the 1919 eclipse of the deflection of light from distant stars by the sun.
The first confirmed gravitational lens has been discovered in (1979) by D. Walsh, R.F.
Carswell & R.J. Weymann perchance while searching for counterparts of radio sources.
In fact, they observed the first mutiple images, two images : 0957+561A and 0957+561B
of the same object (a quasar) only separated by 6”. See Fig. 1.1.

Figure 1.1: The first discovered lensing case, the double quasar 0957+561 (Walsh et al, 1979)

Since, a range of lensing phenomena have been discovered. These include multiply im-
aged quasars, radio rings, giant luminous arcs and arclets. These important observational
advances drove theoretical efforts to exploit lensing as an astrophysical tool, establishing
gravitational lensing as one of the most dynamic area of research in observational astron-
omy.

The gravitational deflection of light generated by mass concentrations along light paths
produces magnification, multiplication, and distortion of images. It also delays photon
propagation from one light of sight to another.These effect illustrated by Fig. 1.2 show-
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8 CHAPTER 1. INTRODUCTION

ing the Abell 2218 cluster which is one of the strongest lens observed. Galaxy Cluster
Abell 2218 is a massive cluster of galaxies some 2 billion light years away towards the
constellation Draco. Fig. 1.3 shows another gravitational lens in the Abell 1689 cluster
2.2 billion light years distant toward the constellation Virgo. These gravitational arcs are
actually the lensed and distorted images of galaxies that are around 10 times more distant
than the cluster. By magnifying the images of distant background galaxies, gravitational
lenses such as galaxy cluster Abell 2218 or Abell 1689 allow detailed views of very distant
galaxies to be obtained.

Figure 1.2: Strong Gravitational Lensing effect in the Abell 2218 cluster (W. Couch et al, 1975 - HST)

Figure 1.3: Strong Gravitational Lensing effect in the Abell 1689 cluster (N. Benitez et al, 2003 - HST)

The properties and the interpretation of this effect depend on the projected mass den-
sity integrated along the line of sight and on the cosmological angular distance between
the observer, the lens and the source (see Fig. 1.4).
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Figure 1.4: Gravitational Lensing effect

We can distinguish two regimes of Gravitational Lensing, in some cases (as seen previ-
ously) the bending of light is so extreme, that the light travels along two different paths
to the observer, and multiple images of one single source appear on the sky. This effect
is called strong lensing. In most cases, the lens is not strong enough to form multiple
images or giant arcs. The background galaxies, however, are still distorted! They are
stretched and magnified, but by small amounts. This is called ”Weak Gravitational Lens-
ing”. Thanks to these effects, Gravitational lenses can provide crucial information on
the geometry of the Universe, on its matter content and on the cosmological scenario of
formation of its structures.

This first version of the package MRLENS (Multi-Resolution methods for gravitational
LENSing) only focuses on Weak Gravitational Lensing. Nowadays Weak Lensing provides
a unique method to directly map the distribution of dark matter in the universe. It relies
on the measurement of the distortions that lensing induces in the images of background
galaxies. For a review see (Refregier, 2003b; Mellier, 1999; Bartelmann and Schneider,
1999). Unlike other methods that probe the distribution of light, Weak Gravitational
Lensing measures the mass and can thus be directly compared to reliable theoretical
models of structure formation.

Ongoing efforts are made to improve the detection of cosmic shear on existing tele-
scopes and future instruments are planned. Several methods are used to derive the lensing
shear from the shapes of background galaxies. But the shear map obtained is always noisy,
and when it is converted into a map of the projected mass κ, the result is dominated by
the noise. To succeed in probing the Universe with Weak Lensing a sophisticated algo-
rithm is required to filter the mass map κ. Some basic algorithms are commonly used like
Gaussian filtering or Wiener filtering but the result is not optimal.

The MRLENS package offers a new algorithm for the reconstruction of weak lensing
mass maps (Starck et al., 2005; Pires et al., 2005) . This new method uses the Multiscale
Entropy concept (which is based on wavelets) and the False Discovery Rate (FDR) which
allows us to derive robust detection levels in wavelet space. Many other tools useful to
process lensing shears from real or simulated data are available in the MRLENS software.
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In this user manual, we first introduce the weak gravitational lensing reconstruction
problem in chapter 2. Chapter 3 describes the simulated data, we worked with. In
Chapter 4, some earlier basic methods for the reconstruction of weak lensing mass maps
are briefly described. And Chapter 5 is dedicated to the description of our new method.
Some results are presented in Chapter 6. An accurate description of the IDL routines
that makeup this package is given in Chapter 7.



Chapter 2

Weak Gravitational Lensing

2.1 Introduction

Weak lensing has now been convincingly detected (Bacon et al., 2000; Kaiser et al.,
2000; Van Waerbeke et al., 2000; Wittman et al., 2000) and has proven to be a powerful
tool in observational cosmology, because it provides a probe of the dark matter distribu-
tion. The measurement of the distortions that lensing induces in the images of background
galaxies, enables a direct measurement of the large-scale structures in the universe.

Nowadays, many efforts are made to improve the detection of the weak lensing effect,
because its effect is very small. Large surveys are planned and several telescopes have been
built or dedicated to the activity (Subaru Telescope, CFHT and its Megacam Camera,...)

2.2 The gravitational lensing effect

We can try to find an equivalent in classical optics to Gravitational lensing. Move
away immediately the idea to represent it with the simple convex lens because the more
the ray paths are closed to the optical axis, the less they are deviated, as we can seen in
Fig. 2.1. On the contrary, a Gravitational lens acts totally in an opposite way. Indeed,
the more the light beam passes close to the deflecting mass, the stronger the deflection is.

Figure 2.1: Light deflection by a thin convex lens

A good equivalent could be a foot of wine glass, see as sketched on Fig. 2.2.
We can try the experiment to observe a source (for example a dot in a paper) through

an upside down wine glass, depending on the distance to the glass axis, we can see one or
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12 CHAPTER 2. WEAK GRAVITATIONAL LENSING

Figure 2.2: Light deflection by a foot of glass

two distorted images. The gravitational lensing effect is obviously more tortuous because
the bending of light is linked to the matter distribution integrated along the line of sight.

2.3 The distortion measurement

The measurement of the weak lensing signal is difficult, but not impossible, as has been
demonstrated in the last few years. The applications of weak lensing are numerous. The
technique has been applied to clusters of galaxies and groups of galaxies. More recent
studies concentrate on lensing by large scale structures. And then it has been used to
constrain cosmological parameters, and to study the relation between galaxies and dark
matter.

For these applications, we need to measure the distortions of galaxies accurately. we
measure the stretching or the compression along x axis, termed γ1 and in the same way,
we measure the stretching or the compression along the 45◦ to x axis, called γ2. See the
Fig. 2.3. Thanks to γ1 and γ2, we can derive the shear maps.

Figure 2.3: The distortion measurement

An essential aspect of weak gravitational lensing is that measurements of its effects
are statistical. Indeed, galaxies have a shape of their own, and the change in the shape of
an individual galaxy caused by weak lensing is too small to be useful. Generally, galaxies
that are closen to each other on the sky experience similar deflections. We can therefore
average over the shapes of many galaxies.
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If all background galaxies would be intrinsically round, gravitational lensing would
transform them into ellipses with the orientation of the local gravitational shear. In re-
ality, galaxies can intrinsically have some shape and orientation. Usually the intrinsic
shape is described by an ellipse. Since the orientation of the intrinsic ellipticities is ran-
dom, each observed image ellipticity provides an unbiased but very noisy estimate of the
lensing shear.

Then, several methods are used to derive the lensing shear from the shapes of back-
ground galaxies. One emergent method based upon the shapes, seems to be ideal to deal
with this problem, it is the Shapelets formalism. This method is based on the decomposi-
tion of a galaxy background image into elementary shapes, that is to say in a dictionnary
of shapes. For more details see (Refregier, 2003a; Refregier and Bacon, 2003).

2.4 PSF correction

The weak lensing effects are quite subtle, or weak, and many of the current challenges
in the field are in the PSF (Point Spread Function) correction due to the camera, the
response of the telescope and the atmosphere. In fact, the real image is convolved by a
transfer function due on the one hand to the limited size of the telescope and on the other
hand, to the atmospheric turbulence (the seeing). And we have to add the CCD camera
noise (nearly Poisson noise) due to the finite number of photons per pixel.

Because of the imperfection of imaging properties in the telescope (tracking errors,
wind shake, or other reasons) the PSF is not necessarily circularly symmetric. Even a
circular image would then appear elongated if observed through an isotropic PSF. Then,
an isotropic PSF mimics shear effect. Actually, the PSF has an 8-10% effect and the weak
lensing effect in the observed ellipticities of galaxies, called ”cosmic shear”, is expected to
be 1-3 % effect. Consequently if we want to measure the shear, we need to correct back-
ground images for the PSF. This remains a major problem in weak lensing (see (Berge,
2005) for more informations).

The MRGL software doesn’t try to solve this problem. We deal either with the lensing
shear corrected; a simple diagnostic test is available to look for a wide range of systematic
errors (see subsection §2.7) or directly with the mass map assuming that there are no
systematic errors.

2.5 Weak Lensing Shear

As we have seen previously, in weak lensing surveys, the shear γi(θ) with i = 1, 2 is
derived from the shapes of galaxies at positions θ in the image. The shear field γi(θ) can
be written in terms of the lensing potential ψ(θ) as (see eg. (Bartelmann and Schneider,
1999))

γ1 =
1

2

(
∂2

1 − ∂2
2

)
ψ

γ2 = ∂1∂2ψ, (2.1)
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where the partial derivatives ∂i are with respect to θi. The convergence κ(θ) can also be
expressed in terms of the lensing potential as

κ =
1

2

(
∂2

1 + ∂2
2

)
ψ (2.2)

and is related to the surface density Σ(θ) projected along the line of sight by

κ(θ) =
Σ(θ)

Σcrit
(2.3)

where the critical surface density is given by

Σcrit =
c2

4πG

Ds

DlDls
(2.4)

and G is Newton’s constant, c is the speed of light and Ds, Dl and Dls are the angular-
diameter distances between the observer and the galaxies, the observer and the lens, and
the lens and the galaxies, see Fig.1.4. In practice, the galaxies are not at a fixed redshift,
and the expression for κ is an average over the redshift of the galaxies (see eg. (Bartel-
mann, 1995)). The lensing gravitational effect is said to be weak or strong if κ " 1 or
κ ! 1, respectively.

The left panel of Fig. 2.4 shows a simulated convergence map derived from ray-tracing
through N-body cosmological simulations performed by (Vale and White, 2003). The sim-
ulation contains 5123 particles with a box size of 300h−1 Mpc. The resulting convergence
map covers 2 × 2 degrees with 1024 × 1024 pixels and an assumed galaxy redshift of 1.
The overdensities correspond to the haloes of groups and clusters of galaxies. The rms
value of κ binned in 0.12 arcmin pixels is σκ = 0.023. The typical values of κ are thus
of the order of a few percent, apart from the core of massive halos (see figure 2.4). The
weak lensing condition therefore holds in most regions of the sky and will be assumed
throughout this handbook.

2.6 The Mass inversion problem

The weak lensing mass inversion problem consists in reconstructing the projected (nor-
malised) mass distribution κ(θ) from the measured shear field γi(θ) by inverting equations
(2.1) and (2.2). For this purpose, we take the Fourier transform of these equations and
obtain

γ̂i = P̂iκ̂, i = 1, 2 (2.5)

where the hat symbol denotes Fourier transforms and we have defined k2 ≡ k2
1 + k2

2 and

P̂1(k) =
k2

1 − k2
2

k2

P̂2(k) =
2k1k2

k2
, (2.6)

with P̂1(k1, k2) ≡ 0 when k2
1 = k2

2, and P̂2(k1, k2) ≡ 0 when k1 = 0 or k2 = 0.
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Figure 2.4: Left: simulated convergence map from (Vale and White, 2003) for a ΛCDM model. The
region shown is 2 × 2 square degree. Right: Shear map superimposed on the convergence map. The size
and direction of each line gives the amplitude and position angle of the shear at this location on the sky.

The shear map γi can be calculated from the convergence map κ using these expres-
sions. The right panel of Fig.2.4, shows the shear field associated with the simulated
convergence field. As is customary, the direction and size of the line segment repre-
sent the orientation and amplitude of the shear. The rms shear in the resulting map is
σγ = 0.0124 (σγ1 = 0.01658 and σγ2 = 0.01601).

Note that to recover κ from γ1 (resp. γ2), there is a degeneracy when k2
1 = k2

2 (resp.
when k1 = 0 or k2 = 0). To recover κ from both γ1 and γ2, there is a degeneracy only
when k1 = k2 = 0. Therefore, the mean value of κ cannot be recovered from the shear
maps. This is a special instance of the well known mass-sheet degeneracy in the weak
lensing reconstruction if only shear information is available (see eg.(Bartelmann, 1995)
for a discussion).

In practice, the observed shear γi is obtained by averaging over a finite number of
galaxies and is therefore noisy. The relations between the observed data γ1b, γ2b binned
in pixels of area A and the true mass map κ are given by:

γib = Pi ∗ κ+ Ni (2.7)

where N1 and N2 are noise contributions with zero mean and standard deviation σn &
σε/

√
Ng, where Ng = ngA is the average number of galaxies in a pixel and ng is the

average number of galaxies per arcmin2. The rms shear dispersion per galaxy σε arises
both from measurement errors and the intrinsic shape dispersion of galaxies. In this
analysis, we will assume σε & 0.3 as is approximately found for ground-based and space-
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based weak lensing surveys. From the central limit theorem, this means that for pixels
with A ! 1 amin2, the noise Ni is, in a good approximation, Gaussian in both cases and
is uncorrelated.

2.7 The E and B inverse Filters

We can easily derive an estimation of the mass map by inverse filtering by noticing
that

P̂1
2
+ P̂2

2
= 1. (2.8)

The least square estimator ˆ̃κ(E)
b of the convergence κ̂ in the Fourier domain is defined by

:

ˆ̃κ(E)
b = P̂1γ̂1b + P̂2γ̂2b (2.9)

The relation between this estimator and the true mass map is ˆ̃κ(E)
b = κ̂ + N̂ , where

N̂ = P̂1N̂1 + P̂2N̂2.

Just as any vector field, the shear field γi(θ) can be decomposed into a gradient, or
electric (E), component and a curl, or magnetic (B) component. Because the weak
lensing arises from a scalar potential (the newtonian potential), it can be shown that
weak lensing only produces E-modes. On the other hand, residual systematics may arise
from imperfect correction of the intrumental PSF or telescope aberrations which generally
generates both E and B modes. The presence of B-modes is thus used to test for the
presence of uncorrected systematic effects in current weak lensing surveys.

The decomposition of the shear field into each of these components can be easily
performed by noticing that a pure E-mode can be transformed into a pure B mode by a
rotation of the shear by 45◦: γ1 → −γ2, γ2 → γ1. As a result, we can form the following
estimator for the B-mode “convergence” field

ˆ̃κ(B)
b = P̂2γ̂1b − P̂1 ∗ γ̂2b, (2.10)

and check that it is consistent with zero in the absence of systematics.

As follows from equation 2.8, the noise N (E) and N (B) in ˆ̃κ(E)
b and ˆ̃κ(B)

b is still Gaussian
and uncorrelated.

The inverse filtering does not amplify the noise, but ˆ̃κ(E)
b and ˆ̃κ(B)

b may be dominated
by the noise if N (E) and N (B) are large, which is the case in practice. Fig. 2.5 shows
the reconstructed mass map using equation 2.9 when a realistic Gaussian noise has been
added to the shear maps plotted on the right of Fig. 2.4 using vectors. As expected, it is
dominated by noise.

To use weak lensing as a dark matter probe, we need to remove the noise in weak
lensing maps. This point has motivated the use of different methods of filtering in the
past which we describe in chapter 4 and this same desire has led to the development of a
sophisticated method that we describe in chapter 5.



2.7. THE E AND B INVERSE FILTERS 17

Figure 2.5: Noisy mass map κ(E)
b for the same simulation with ng = 100 gal/arcmin2, corresponding to

space-based observations. Even in this case, the unfiltered mass map is dominated by noise.
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Chapter 3

Data sets for Weak Gravitational
Lensing

3.1 Simulated Data

3.1.1 Data Set characteristics

We have at our disposal some simulated convergence maps derived from ray-tracing
through N-body cosmological simulations performed by (Vale and White, 2003). See also,
the website where the data are available : http://mwhite.berkeley.edu/Lensing/ValeWhite/

The cosmological model is taken to be a concordance ΛCDM model with parameters :

Model Box OmM OmL h s8
B 300 0.3 0.7 0.7 0.8

where the box side is in Mpc/h. The simulations have 5123 particles. The particles
have equal masses M ∼ 1.7e10 Msun/h.

The overdensities correspond to the halos of groups and clusters of galaxies. The typ-
ical values of κ are thus of the order of a few percent, apart from the core of massive halos.

3.1.2 Simulated Data description

The directory ”Data” contains simulated weak lensing maps : the convergence map,
the shear maps and the shear catalogs derived from simulations of the formation and
evolution of large-scale structures. In all cases the fields are 2 x 2 degrees, downsampled
to 10242 pixels and assume that the sources lie at exactly z=1.

Simulated Mass Map

The folder ”Kappa B” contains ten simulated lensing maps. The ten lensing maps are
semi-independent using the multi-plane ray tracing algorithm (Vale and White, 2003).
The convergence (mass) map is contained in kappa B ?.fits for models B with ? a number
in the range 0-9.

19
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Simulated Shear Maps

Similarly, folder ”Gamma B” contains ten simulated shear maps. The two shear com-
ponents are contained in gamma B ?.fits.

Simulated Shear Catalogs

The folder ”GCat” contains twenty shear structure catalogs corrupted by noise with
the following fields :
- x, y = (1D IDL array) coordinates in pixel of each galaxy
- pixscale = (int) pixel size [in rad]
- weight = (1D IDL array) weight of each galaxy
- gamma1, gamma2 = (1D IDL array) shear γ1 and γ2 of each galaxy

The noisy shear catalogs are contained in gcat ? b1.fits for simulated ground obser-
vations and gcat ? b2.fits for simulated space observations. In weak lensing, the average
number of galaxies per arcmin2 ng is equal typically to :

• ng = 20 gal/arcmin2 for ground-based surveys.

• ng = 100 gal/arcmin2 for space-based surveys.

Simulated Noisy Shear maps : From simulated noiseless shear maps to noisy shear maps

As we have seen in the previous chapter, the observed shear γi are obtained by averaging
over a finite number of galaxies and consequently this measurement is corrupted by noise.

In order to simulate the shear maps γ1b and γ2b obtained in real observations , we have
added a Gaussian noise to the simulated shear maps as followed :

γ1b = γ1 + N1 (3.1)

γ2b = γ2 + N2 (3.2)

where N1 and N2 are noise contributions with zero mean and standard deviation σn &
σε/

√
Ng, where Ng = ngA is the average number of galaxies in a pixel, σε is due both to

measurement errors and to the intrinsic shape of galaxies and ng is the average number
of galaxies per arcmin2.

The folder ”Gamma Noise” contains the noisy shear maps obtained. Then, the two
noisy shear components are contained in gamma B ? b1.fits for simulated ground obser-
vations and gamma B ? b2.fits for simulated space observations.

Simulated Noisy Mass Maps : From simulated noisy shear maps to the noisy mass map

Then, we use the following relation to derive the κb map from the γ1b, γ2b maps :

κ̂b = P̂1γ̂1b + P̂2γ̂2b (3.3)

Similarly, the noisy convergence maps obtained are contained in kappa B ? b1.fits for
simulated ground observations and kappa B ? b2.fits for simulated space observations in
the Kappa noise folder.
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Simulated Shear Maps with an Electric and a Magnetic component

The folder ”Gamma Magnetic” contains an example of noiseless shear maps with both
E and B modes.

The decomposition of the shear field into each of these components can be easily
performed. Weak Lensing only produces E-modes but systematic effects can produce
both E and B modes. Thus, the presence of B-modes is used to trace out the systematic
errors.

3.2 Missing Data

3.2.1 Presentation of the problem

Sometimes during the observations, an incident can cause a loss of data in the image.
For instance, this can be due to a defect of the CCD camera, generating a dark line or a
dark row in the image, or to the presence of a very bright star in the field of vision which
forces us to remove this part of the image. In order to model this problem, all the pixels
in some arbitrary square shaped region are set to zero in the shear maps γ1 and γ2. By
inverse filtering, we have derived the noisy mass map κb in which we can also visualize
the lack of data (Fig. 3.1 - left panel).

Figure 3.1: Mass map with missing data (left) and its mask (right).

3.2.2 How to overcome this problem ?

Filtering in Fourier space

In the presence of a hole, we need to be very careful because the missing data doesn’t
contain any information. For this reason, a data mask is required during a process like
Wiener filtering to compute the Wiener weight function. To build a data mask, we need
just to set to 1 all the pixels in the hole and to set to zero all the others pixels. Fig.
3.1 - right panel, shows the mask of the previous mass map with missing data 3.1 - left
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panel. Fig. 3.2 shows an example of mask obtained for real data, the field is 0.5 x 0.5
square degrees. We can notice that some bright stars have been removed. And during
the filtering, we just consider the pixels outside the mask.

Figure 3.2: An example of real data mask, the field is 0.5 x 0.5 square degrees

Filtering in Wavelet space

In some cases of multi-resolution filtering, a multiscale data mask can be required to
remove all the impact of the hole. Thus, we derive a multi-resolution mask from one scale
to another, in dilating the data mask of the previous scale, see Fig.3.3 . All the pixels, in
the mask are or can be distorted by the presence of the hole or by an edge effect.
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Figure 3.3: Multi-resolution mask of the previous mass map with some missing data
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Chapter 4

Filtering Methods

4.1 Gaussian Filtering

The standard method (Kaiser and Squires, 1993) consists in convolving the noisy mass
map κb with a Gaussian window G with standard deviation σG:

κG = G ∗ κb (4.1)

The quality of the resulting estimation depends strongly on the value of σG.

Figure 4.1: Reconstruction error as a function of the kernel size σG for the Gaussian smoothing method,
with ng = 20 gal/amin2 (left) and ng = 100 gal/amin2 (right).

Fig. 4.1 shows the variation of the error between the original mass map κ shown in
Fig. 2.4 and the filtered mass map κG. For this simulation, the optimal value of σG lies
between 5 and 10 pixels (1 pixel = 0.12 arcmin) for space observations (i.e. ng = 100
gal/amin2) and lies between 20 and 25 pixels for ground observations (i.e. ng = 20
gal/amin2).

We have applied the Gaussian Filtering to the two noisy mass maps simulating the
ground and space observations and the results are shown Fig. 4.2. According to the value
of σG used the overdensities are more or less smoothed and we have a loss of resolution.
Then, it is difficult to attribute any significance to these structures.

An alternative to Gaussian filtering is Wiener filtering.

25
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Figure 4.2: Gaussian filtering: left with σG = 2.5 amin for ng = 20 gals amin−2 and right with σG = 1
amin for ng = 100 gals amin−2.

4.2 Wiener Filtering

Wiener filtering is a method that attempts to minimize the mean squared error be-
tween the original and the restored signal.

The method used here consists in calculating the variance of the signal and that of the
noise on concentric rings increasing logarithmically in Fourier space and then in deriving a
weight function and finally in convolving the observed map κobs with this weight function
that is to say by assigning the following weight to each ring in Fourier Space:

ŵ(k) =
< |κ̂(u, v)|2 >k

< |κ̂(u, v)|2 >k + < |N̂(u, v)|2 >k

(4.2)

where k is the index of the rings, and |κ̂(u, v)|2 is a model of the map power spectrum
and is in practice derived from the data. The weight function makes it possible to atten-
uate or to remove part of the frequencies if the signal-to-noise ratio is low. The filtering
depends on the model of the noise. This Wiener filter is the optimal filter if both the
signal and the noise are stationary and isotropic and well modeled as Gaussian Random
Fields. As can be seen from Fig. 2.4 (left), this assumption is not valid for weak lensing
mass maps which display non-Gaussian features such as galaxy clusters, groups and fila-
ments. Nevertheless, Wiener filtering generally outperforms the simple Gaussian filtering.

For comparison, we have plotted (Fig. 4.3) the Wiener function and the Gaussian
functions used in the previous Gaussian filtering for space observations, on the same
graph.

The Gaussian filter nearest to the Wiener filter has a standard deviation lying between
5 and 10. This is in accordance with the previous observations.

Fig. 4.4, shows the results of the Wiener filtering in our data. The results seems
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Figure 4.3: Comparison between the Gaussian filters and the Wiener filter (ng = 100)

Figure 4.4: Wiener filtering: left for ng = 20 gals amin−2 and right ng = 100 gals amin−2.

good but the texture reconstructed doesn’t exist in the original image and among the
reconstructed structures, some are false. Consequently, maybe we recover more clusters
but with a bad level of confidence.

4.3 Maximun Entropy Method

The Maximum Entropy Method (MEM) is well-known and widely used in image anal-
ysis in astronomy (see (Bridle et al., 1998; Starck et al., 2001; Marshall et al., 2002; Starck
and Murtagh, 2002) for a full description). It considers both the data and the solution
as probability density functions and finds the solution using a Bayesian approach and
adding a prior on the solution. Several definitions of entropy exist. The most common is
the Gull and Skilling definition (1991):

Hg(κ) =
∑

x

∑

y

κ(x, y) − m(x, y) − κ(x, y) ln

(
κ(x, y)

m(x, y)

)
(4.3)
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where m is a model, chosen typically to be a sky background. Hg has a global maximum
at κ = m. MEM does not allow negative values in the solution, which is a problem for
data such weak shear data or the CMB data, where we measure fluctuations around zero.
To overcome this problem, it has been proposed to replace Hg (Maisinger et al., 2004) by:

H+/−(κ) =
∑

x

∑

y

ψ(x, y) − 2m − κ(x, y) ln

(
ψ(x, y) + κ(x, y)

2m

)
(4.4)

where ψ(x, y) =
√
κ2(x, y) + 4m2. Here m does not play the same role. It is a constant

fixed to the expected signal rms.
More generally MEM method present many drawbacks (Narayan and Nityananda,

1986; Starck et al., 2001).

We can find in the following website : ”http://www.mrao.cam.ac.uk/projects/lensent/”
a version of the MEM algorithm (LensEnt2 package).



Chapter 5

The Multiscale Entropy Filtering

In this chapter, we introduce a new reconstruction method (Starck et al., 2005) : an
iterative filtering based on Bayesian methods. This filtering uses a Multiscale Entropy
prior which is only defined for non-significant wavelet coefficients selected by the False
Discovery Rate (FDR) Method (Benjamini and Hochberg, 1995).

We first describe the ”à trous” wavelet transform which is well suited to astronomical
data because of its isotropic scaling function. Then we introduce the multi-resolution
entropy concept and we give our choice for the entropy function in this application. And
finally we present the multiscale entropy filtering used by (Starck et al., 2005) with all
the improvements of this new version.

5.1 The ”à trous” Isotropic Wavelet Transform

In the early 1980s the wavelet transform was studied theoretically in geophysics and
mathematics by Morlet, Grossman and Meyer. In the late 1980s, links with digital signal
processing were pursued by Daubechies and Mallat, thereby putting wavelets firmly into
the application domain.

The wavelet transform of a signal produces, at each scale j, a set of zero-mean coefficient
values wj . Using an algorithm such as the ”à trous” method (Holschneider et al., 1989),
each scale wj has the same number of pixels as the signal and thus this wavelet transform
is a redundant one. Furthermore, using a wavelet defined as the difference between the
scaling functions of two successive scales

(
1
2ψ

(
x
2

)
= φ(x) − φ

(
x
2

))
, the original signal κ,

with a pixel at position (x, y), can be expressed as the sum of all the wavelet scales wj

and the smoothed array CJ

κ(x, y) = CJ(x, y) +
J∑

j=1

wj(x, y)

Thus, the algorithm outputs J + 1 sub-band arrays of size n × n. We will use an
indexing convention such that j = 1 corresponds to the finest scale (high frequencies).

29
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Hence, we have a multiscale pixel representation, i.e. each pixel of the input signal is
associated to a set of pixels of the multiscale transform.

A summary of the ”à trous” wavelet transform algorithm is as follows :

1. Initialize j to 0, starting with a signal Cj(x, y) (where C0(x, y) = κ(x, y)). Index (x,
y) range over all pixels.

2. Carry out a discrete convolution of the data Cj(x, y) using a filter h, yielding Cj+1(x, y).
The convolution is an interlaced one, where the filter’s pixel values gap (growing with
level, j) between them of 2j pixels, giving rise to the name à trous (”with holes”).
Mirroring is used at the data extremes

3. From this smoothing we obtain the discrete wavelet transform, wj+1(x, y) = Cj(x, y)−
Cj+1(x, y).

4. If j is less than the number J of resolution levels wanted, then increment j and
return to step 2.

The set w = w1, w2, .., wJ , CJ , where CJ is a last smooth array, represents the wavelet
transform of the data. If the input data has N pixels, then its transform by the ”à trous”
Wavelet Transform has (J+1)*N pixels. The redundancy factor is J+1 whenever J scales
are employed.

The discrete filter h is derived from the scaling function φ(x) which is a spline of degree
3, which leads to the filter h =

(
1
16 ,

1
4 ,

3
8 ,

1
4 ,

1
16

)
. A 2D implementation can be based on

two 1D sets of (separable) convolutions.

The associated wavelet function is of mean zero, of compact support, with a central
bump and two negative side-lobes. Of interest for us is that, like the scaling function, it
is nearly isotropic.

Fig. 5.1 shows the à trous” transform of the mass map Fig. 2.4 (left). Five wavelet
scales are shown and the final smoothed plane (lower right). The original image is given
exactly by the sum of this six images.

5.2 Multiscale Entropy

1. Multiscale Entropy definition:

The Multiscale Entropy method is based on the standard MEM prior derived from
the wavelet decomposition of a signal. The idea is to consider the entropy of a
signal as the sum of the information at each scale of its wavelet transform. And the
information of a wavelet coefficient is related to the probability of its being due to
noise.

Denoting H(κ) the information relative to the signal and h(wj(k, l)) the information
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Figure 5.1: Wavelet transform of the previous mass map by the à trous” algorithm

relative to a single wavelet coefficient, the entropy is now defined as:

H(κ) = h(CJ(k, l)) +
l∑

j=1

Nj∑

k,l=1

h(wj(k, l)) (5.1)

where l is the number of scales and Nj is the size of map in the band (scale) j.

2. Entropy definition:

The function h in (5.1) assesses the amount of information carried by a specific
wavelet coefficient. Several functions have been proposed for h. A discussion and
comparison between different entropy definitions can be found in (Starck et al., 2005).
We choose the NOISE-MSE entropy (Starck et al., 2001) for the Weak Lensing
reconstruction problem in which the entropy is derived using a model of the noise
contained in the data:

h(wj(k, l)) =

∫ |wj(k,l)|

0

Pn(| wj(k, l) | −u)(
∂h(x)

∂x
)x=udu (5.2)

where Pn(wj(k, l)) is the probability that the coefficient wj(k, l) can be due to the
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noise: Pn(wj(k, l)) = Prob(W >| wj(k, l) |). For Gaussian noise, we have:

Pn(wj(k, l)) =
2√

2πσj

∫ +∞

|wj(k,l)|
exp(−W 2/2σ2

j )dW

= erfc(
| wj(k, l) |√

2σj

) (5.3)

and equation 5.2 becomes 5.4

h(wj(k, l)) =
1

σ2
j

∫ |wj(k,l)|

0

u erfc(
| wj(k, l) | −u√

2σj

)du (5.4)

The NOISE-MSE is very close to the l1 norm (i.e. absolute value of the wavelet
coefficient) when the coefficient value is large, which is known to produce good results
for the analysis of piecewise smooth images (Donoho and Elad, 2003).

3. Signal and noise information:

The mass map derived from shear maps is swamped by noise. The following algorithm
assumes that the observed map can be decomposed as:

κobs = κ + N (5.5)

Then, we can decompose the information contained in our image in two components,
the first one (Hs) corresponding to the non corrupted part, and the other one (Hn)
describing a component which contains no information for us:

H(κobs(k, l)) = Hs(κobs(k, l)) + Hn(κobs(k, l)) (5.6)

For each wavelet coefficient wj(k, l), we have to estimate the fractions hn and hs of
h:

H(κobs(k, l)) =
l∑

j=1

Nj∑

k,l=1

hs(wj(k, l)) +
l∑

j=1

Nj∑

k,l=1

hn(wj(k, l)) (5.7)

(5.8)

5.3 Multiscale Entropy Filtering

1. Filtering:
The problem of filtering the observed map κobs can be expressed as follows. We look
for a filtered map κf such that the difference between κf and κobs minimizes the
information due to the signal (to recover all the signal) and such that κf minimizes
the information due to the noise. These two requirements are somehow competing. A
tradeoff is necessary, because, on one hand, we want to remove all the noise (heavy
filtering) and on the other hand, we want to recover the signal with fidelity. In
practice, we minimize for each wavelet coefficient wj(k, l) :

l(w̃j(k, l)) = hs(wj(k, l) − w̃j(k, l)) + β.hn(w̃j(k, l)) (5.9)
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where wj(k, l) are the wavelet coefficients of the observed map κobs, w̃j(k, l) the
wavelet coefficients of the filtered map κf and β is the so called regularization (trade-
off) parameter.

2. Selecting significant Wavelet coefficients:
Whatever the filtering, the signal is always substantially modified. We want to
fully reconstruct significant structures, without imposing strong regularization while
eliminating efficiently the noise. The introduction of the multiresolution support
(Murtagh et al., 1995), helps to do so. The idea is to apply the previous regularization
(i.e. filtering) only on the non-significant (noisy) wavelet coefficients (Pantin and
Starck, 1996). In this way, the choice of the regularization parameter is not really
a critical point. The other components of the maps are left untouched. The new
Multiscale Entropy becomes:

h̃(wj(k, l)) = M̄(j, k, l)h(wj(k, l)) (5.10)

where M̄(j, k, l) = 1−M(j, k, l), and M is the ”multiresolution support” defined as:

M(j, k, l) =

{
1 if wj(k, l) is significant
0 if wj(k, l) is not significant

(5.11)

M describes, in a Boolean way, whether the data contains information at a given scale
j and at a given position (k, l). wj(k, l) is said to be significant if the probability
that the wavelet coefficient is due to noise is small. In the case of Gaussian noise,
a coefficient wj(k, l) is significant if | wj(k, l) |> kσj , where σj is the noise standard
deviation at scale j, and k is a constant. Without an objective method for selecting
the threshold, it is adjusted arbitrarly, generally taken between 3 and 5 (Murtagh
et al., 1995).

3. Selecting significant Wavelet coefficients using the FDR:
The False Discovery Rate (FDR) is a new statistical procedure due to (Benjamini
and Hochberg, 1995) which offers an effective way to select an adaptative threshold
to compute the multiresolution support. This technique has recently been described
by (Miller et al., 2001; Hopkins et al., 2002; Starck et al., 2005; Pires et al., 2005)
with several examples of astrophysical applications. The FDR procedure provides
the means to adaptively control the fraction of false discoveries over total discoveries.
The FDR is given by the ratio (5.12), that is, the proportion of declared active which
are false positives:

FDR =
Via

Da
(5.12)

where Via is the number of pixels truly inactive declared active, and Da is the number
of pixels declared active. The FDR formalism ensures that, on average, the False
Discovery Rate is no larger than α which lies between 0 and 1. This procedure
guarantees control over the FDR in the sense that:

E(FDR) ≤ Ti

V
.α ≤ α (5.13)
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The unknown factor Ti
V is the proportion of truly inactive pixels where Ti is the

number of inactive pixels and V the total number of pixels.

The FDR procedure is as follows :
Let P1, ..., Pn denote the p values from the N tests, listed from smallest to largest.
Let :

d = max
{
k : Pk <

k.α

cN .N

}
(5.14)

where cN = 1, if p values are statistically independants.
Now, declare actived all the pixels with p values less than or equal to Pd.
Graphically, this procedure corresponds to plotting the Pk versus k

N , superposing the
line through the origin of slope α

cN
(see Fig. 5.2), and finding the last point at which

Pk falls below the line, termed Pd. From this p value Pd, we can derive a threshold
T . All the pixels greater than T have a p value less than Pd and are declared actives.

Figure 5.2: Finding a threshold graphically using the FDR procedure

A complete description of the FDR method can be found in (Miller et al., 2001). In
(Hopkins et al., 2002; Starck et al., 2005; Pires et al., 2005), it has been shown that
the FDR outperforms standard method for source detection.

In this application, we use the FDR method in a multiresolution framework (see
(Starck et al., 2005)). We select a detection threshold Tj for each scale. We have
chosen to take a different α value per scale using the following relation as in (Starck
et al., 2005) : αj = α0 ∗ 2j where α0=0.0125 for ng = 100 and α0=0.017 for ng = 20.
A wavelet coefficient wj(k, l) is considered significant if its absolute value is larger
than Tj as seen below.

4. Multiscale Entropy Filtering algorithm:

Assuming Gaussian noise, the Multiscale Entropy restoration method reduces to
finding the image κf that minimizes J(κf ), given the map κobs output of source
separation with:

J(κf ) =
‖ κobs − κf ‖2

2σ2
n

+ β
J∑

j=1

∑

k,l

h̃n((Wκf )j,k,l) (5.15)
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Figure 5.3: Multiscale Entropy filtering: left for ng = 20gal/arcmin2 and right ng = 100gal/arcmin2.

where σn is the noise standard deviation in κobs, J is the number of Wavelet scales,
W is the Wavelet Transform operator and h̃n(wj,k,l) is the multiscale entropy only
defined for non significant coefficient (outside de Support selected by the FDR thresh-
olding). Full details of the minimization algorithm can be found in (Starck et al.,
2001) .

The result of the filtering by the Multiscale Entropy can be improved by an iterative
process. Its goal is to recover the information lost during the reconstruction by the
inverse Wavelet Transform. In fact, the Wavelet Transform is not reversible anymore
after thresholding.

This process consists in adding to the map κi
f , for each iteration i, a residual obtained

by the inverse Wavelet Transform of the difference between the corrected wavelet
coefficients and the wavelet coefficients calculated from the map reconstructed at the
iteration i-1. The convergence is rather fast, approximately 5 iterations are enough.

κf
iter = κf

iter−1 + W−1(M̄(w̃ −Wκf
iter−1)) (5.16)

where W and W−∞ are the Wavelet Transform operator and its inverse operator;
M̄ = 1 − M , and M is the ”multiresolution support”; w̃ are the wavelet coefficients
filtered by our multiscale entropy filtering and κiter−1

f is the mass map reconstructed
at the iteration i.

Fig. 5.3 shows the result of the filtering by the Multiscale Entropy using the FDR to
compute a different threshold per scale and using the iterative process (5 iterations).
The FDR method, guarantees control over the false detection rate and the iterative
process enables a better recovering of image levels.
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Chapter 6

Results

6.1 Comparisons

As we have seen previously, we have used a simulated data set obtained using a standard
Λ-CDM cosmological model. The κ mass map and the shear maps are shown on Fig. 2.4.
The field size is 2 × 2 square degrees, sampled with 1024 ∗ 1024 pixels.

Noisy shear maps, corresponding to both spatial (i.e. ng = 100 gals/amin−2) and
ground-based observations (i.e. ng = 20 gals/amin−2), have been created using equa-
tion 2.7. Then we have reconstructed the two noisy mass maps from equation 2.9 and
applied the following filtering methods:

1. Gaussian filtering with a standard deviation equal to σG = 1 amin

2. Gaussian filtering with a standard deviation equal to σG = 2.5 amin

3. Wiener filtering.

4. Maximum Entropy Method (MEM) using the LensEnt2 package. As this code has
not been designed for manipulating large images, we had to restrict the restoration
by this method to a field size of 0.5×0.5 square degree, sampled with 256*256 pixels.

5. Multiscale Entropy method.

The evaluation is done by i) visual inspection of the images, ii) computing the standard
deviation of the difference between the original κ mass map and the reconstructed map
(i.e. E = STD(κ−κ̃)

STD(κ) ), iii) computing the standard deviation of the difference between the

original κ mass map and the reconstructed map scale by scale (i.e. Ej = STD((Wκ)j−(Wκ̃)j)
STD((Wκ)j)

),

iv) computing the log power spectrum of the error between the original κ mass map and
the reconstructed map (i.e. P = log(PSD(κ − κ̃)) where PSD is the Power Spectral
Density.

6.1.1 Visual inspection of the images

Fig. 6.1 shows from top to bottom the reconstructed maps for the Gaussian, the Wiener
and the Multiscale Entropy filtering. Fig. 6.1 left corresponds to ground-based observa-
tions (i.e. ng = 20) and Fig. 6.1 right corresponds to spatial observations (i.e. ng = 100).
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Figure 6.1: Restoration of the 2×2 square degrees ground-based observation (left) and spatial observation
(right). From top to bottom, Gaussian filtering, Wiener filtering and Multiscale Entropy filtering.
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Figure 6.2: In a region of 0.5× 0.5 square degrees, a sixteenth of the original field : Upper left, simulated
mass map, upper right, Multiscale entropy filtering for ng = 100 gal/arcmin2. Bottom left, MEM
filtering for ng = 20 gals/amin−2 (ICFwidth = 210) and bottom right for ng = 100 gals/amin−2

(ICFwidth = 180).
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Fig. 6.2 shows the denoising results on a portion of the previous image. Fig. 6.2 shows
the original noise free simulated image of the 0.5 × 0.5 square degrees field (upper left),
the Multiscale Entropy Filtering for the spatial simulated observations (nG = 100) (upper
right), the MEM-LensEnt2 restoration with an ICF (Intrinsic Correlation function) equal
to 210” for the ground based observations (bottom left) and the spatial observations with
an ICF equal to 180” (bottom right).

The computation time for the 1024*1024 pixels map is 4 minutes for the Multiscale
Entropy method, 26 seconds for the Wiener filtering and 4 seconds for the Gaussian
smoothing. The computation time for the 256*256 pixels map is around 60 minutes (it
depends on the convergence of the result) using the MEM-LensEnt2 package.

6.1.2 Quadratic error in direct space

Method Error (ng = 20 gal/amin2) Error (ng = 100 gal/amin2)
Gaussian Filtering (σG = 1 amin) 1.108 0.775

Gaussian Filtering (σG = 2.5 amin) 0.9138 0.868
Wiener Filtering 0.888 0.770
MEM-LensEnt2 1.091 0.821

Multiscale Entropy Filtering 0.888 0.746

Table 6.1: Standard deviation of the reconstruction error with five different methods.

Table 6.1 gives the standard deviation of the error for the four reconstructed mass
maps. It shows that i) the Wiener filtering is better than the Gaussian filtering and
the MEM-LensEnt2 method and ii) the Multiscale Entropy outperforms the three other
methods.

6.1.3 Wavelet-based estimator

Figure 6.3: Standard deviation versus scale for the ground-based simulation (left) and the space-based
simulation (right).

Fig. 6.3 shows the error versus the scale (each wavelet scale) for both simulations using
the Gaussian filtering (continuous line), the Wiener filtering (dotted line), the MEM-
LensEnt2 filtering (dashed line) and the Multiscale Entropy filtering (dotted-dashed line).
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The wavelet scales 1 to 6 correspond to scales of 0.12, 0.23, 0.47, 0.94, 1.87, 3.75 amin
respectively. We can see that the Multiscale Entropy method produces better results for
all scales.

6.1.4 Fourier-based estimator

Figure 6.4: Log Power Spectrum of the Error by Multiscale Entropy Filter and MEM for the ground-based
simulation (left) and the space-based simulation (right).

Fig. 6.4 shows the log power spectrum of the error. It is very consistent with the previ-
ous one. Indeed, the MEM error becomes very important toward the smallest frequencies
(largest wavelet scales). The same experiment has been done with a smaller ICF (ICF
= 120” for the spatial simulation), but the result is worse, which is surprising since this
ICF value was chosen to get the best results by maximizing the evidence (See (Marshall
et al., 2002))

6.2 Robustness to missing data

During the observations, various problem can cause a loss of data in the image. In
order to study this problem, we mask two rectangular areas, setting all pixel values to 0,
in the shear maps γ1 and γ2. By inverse filtering, we have derived the noisy mass map
κb in which we can also visualize the lack of data (Fig. 6.5 upper left). Then we have
applied the three methods, Gaussian filtering, Wiener filtering and Multiscale Entropy,
to the noisy mass map and the results can be seen respectively in Fig. 6.5 upper right,
Fig. 6.5 bottom left and bottom right. We can see that all three methods are robust to
the missing data. Note however that, for the Wiener filtering, we have assumed perfect
knowledge of the power spectrum of κ, while, in practice, its estimation is made more
complicated by the complex field geometry.

Fig. 6.6 shows the error versus the scale for both simulations using the Gaussian filtering
(continuous line), the Wiener filtering (dotted line) and Multiscale Entropy. We can see
that the Multiscale Entropy still produces better results at all scales. Bayesian methods
such as MEM could also be made to properly handle missing data, however this is not as
straightforward as in multiscale methods.
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Figure 6.5: Upper left, noisy shear map (ng = 100 gal/arcmin2). Upper right, Gaussian filtering. Bottom
left, Wiener filtering, and bottom right, Multiscale Entropy filtering.

Figure 6.6: Standard deviation versus scale for the ground-based simulation(left) and the spatial simula-
tion (right) with missing data
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6.3 Cluster detection

Another important aspect of the weak shear mass reconstruction is the possibility to
detect clusters and to build a catalog. Here, using the FDR in the wavelet space, we detect
as significant a set of wavelet coefficients. We built an isophote map, where each isophote
level corresponds to the detection level in a given scale. This isophote is overplotted on
the true mass map, which allows us to visually check the false detections and the missed
detections. A cluster surrounded by two isophotes means that it has been detected at two
scales.

Figure 6.7: The isophotes represent the detected clusters using the Gaussian filtering (upper left), the
Wiener filtering (upper right) and the wavelet-FDR method.

Figure 6.7 shows a comparison between the Gaussian filtering, the Wiener filtering and
FDR-Wavelet method for the detection of clusters. In the Gaussian and Wiener maps,
the isophotes corresponds to a kσ detection level where k = 3, 4, 5. It shows clearly how
the FDR-Wavelet method outperforms the other methods.
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6.4 E/B Decomposition

The shear pattern induced by lensing has even parity. It is often referred to as a (posi-
tive) E-mode. In the absence of lens-lens coupling or higher order effects the shear pattern
induced by lensing is pure E since lensing arises from a scalar gravitational potential. A
45◦ rotation of the shear to produce the B-mode, will null the lensing map. Thus as
explained in section 2 §2.7, a simple diagnostic test for a wide range of systematic effects
is to search for the presence of B-mode in the lensing maps. In order to test this, we have
simulated mass maps with a B-mode.

Figure 6.8: left mass map (E-mode), right mass map (B-mode)

Figure 6.9: Noisy simulated mass map

Fig. 6.8 left shows a simulated mass map with a lensing E-mode signal (left) and an
arbitrary B-mode signal (right). As usual, we have added a realistic space-based Gaussian
noise to the shear of this simulation. Fig. 6.9 shows the resulting noisy mass map. Using
the Multiscale Entropy filtering, we have then reconstructed the two components of the



6.4. E/B DECOMPOSITION 45

Figure 6.10: left filtered noisy mass map (E-mode), right filtered noisy mass map (B-mode)

mass map (see §2.7): E-mode in Fig. 6.10 left and B-mode in Fig. 6.10 right. We see
clearly that the wavelet separation of the E and B modes is very good. Indeed, the
two main features in the B-mode have been well recovered, without interfering with the
reconstruction of the E-mode.
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Chapter 7

IDL Routines

A set of routines has been developed in IDL (summarized in flowchart Fig. 7.1).
Starting IDL using the script program mrl.pro allows the user to add the MRLENS
software to the IDL environment. Thus, all routines described in the following can be
called. An online help, facility is also available by calling the mrh IDL program.

7.1 Installation

7.1.1 System requirements

• Disk space : Make sure you have approximately 400 MB of disk space available. After
installation MRLENS package occupies approximately 100 MB or 200MB (version
with data) of disk space.

• Platform : The binaries C++ called by IDL routines are not available under all the
systems therefore you cannot use the package on all platforms. The supported plat-
forms are : Unix, Linux, Mac OS X. They will be soon available in Windows platform.

7.1.2 Download

Use the link to download the package MRL and copy the file in your home directory
(/home/user/).
Then, uncompress the filename.tar.gz file by typing:
gunzip filename.tar.gz
tar -xvf filename.tar

7.1.3 Installation instructions

The MRLENS package requires that IDL (version 6.0 or later) to be installed. The alias
idl should also be defined to launch the IDL environment. Then, installing the MRLENS
package simply requires adding some lines in your shell environment profile depending on

47
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your shell : (The command ”echo $SHELL” will give your SHELL environment : bash,
csh or tcsh)

• define the environment variable MRL :
In csh or tcsh :
setenv MRL /home/user/MRL
In bash :
MRL=/home/user/MRL;export MRL

• define the alias mrl
In csh or tcsh :
alias mrl ’idl $MRL/idl/mrl’
In bash :
alias mrl =’idl $MRL/idl/mrl’

7.1.4 Startup instructions

The command ”mrl” will start the IDL session using the MRL environment. The pro-
grams can be found in $MRL/idl. These routines use data in directory $MRL/Data. The
command ”mrh” will open the online help.

Two scripts are included in the package giving examples of how to run some main
routines :
- mk test 1.pro
- mk test 2.pro
These scripts use the data files provided with the package in $MRL/Data. The first use
a simulated noiseless mass map and the second a simulated noisy catalogue.

7.2 Build an Electric noisy mass map

7.2.1 IDL routines for simulated data

" Starting from a mass map without noise

# mk kappa.pro : Build a mass map structure from a mass map :
Build a mass map structure from the mass map and the field size in pixels and in degrees
(or arcmin)

USAGE : mk kappa, map, npix1, npix2, theta1, theta2, amin = amin, smap

INPUTS :

• map = IDL array of mass map

• npix1, npix2 = (int) map size in pixels

• theta1, theta2 = (int) map size in degrees (or arcmin if the keyword amin is set)
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KEYWORD :

• amin = (string) if set, the map size theta1 and theta2 are assumed to be in arcmin

OUTPUTS :

• smap = mass map IDL structure with the following fields :
- n1, n2 = (int) map size in pixels
- theta1, theta2 = (int) map size in radians
- delta1, delta2 = (int) pixel size in radians
- kappa = (IDL array) mass map

# add gnoise kappa.pro : Add a Gaussian noise to a mass map structure : Add a
Gaussian noise to the mass map by adding a gaussian noise to the shear maps depending
on the number of galaxies per pixel.

USAGE : add gnoise kappa, smap, ng, s, smapn

INPUTS :

• smap = IDL structure of mass map with the following fields :
- n1, n2 = (int) map size in pixels
- theta1, theta2 = (int) map size in radians
- delta1, delta2 = (int) pixel size in radians
- kappa = (IDL array) mass map

• ng = (int) galaxies number per arcmin square

OUTPUTS :

• s = (int) the root mean square of the noise

• smapn = IDL structure of mass map embedded in a gaussian noise with the following
fields :
- n1, n2 = (int) map size in pixels
- theta1, theta2 = (int) map size in radians
- delta1, delta2 = (int) pixel size in radians
- kappa = (IDL array) noisy mass map

" Starting from a shear maps without noise

# mk gamma.pro : Build a shear maps structure from shear maps : Build a shear
maps structure from shear maps and the field size in pixels and in degrees (or arcmin)

USAGE : mk gamma, gamma1, gamma2, npix1, npix2, theta1, theta2, amin
= amin, sgamma

INPUTS :

• gamma1, gamma2 = IDL array of shear maps γ1 and γ2

• npix1, npix2 = (int) map size in pixels
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• theta1, theta2 = (int) map size in degrees (or arcmin if the keyword amin is set)

KEYWORD :

• amin = (string) if set, the map size theta1 and theta2 are assumed to be in arcmin

OUTPUTS :

• sgamma = shear maps IDL structure with the following fields :
- n1, n2 = (int) map size in pixels
- theta1, theta2 = (int) map size in radians
- delta1, delta2 = (int) pixel size in radians
- gamma1, gamma2 = (IDL array) shear maps γ1 and γ2

# add gnoise gamma.pro : Add a Gaussian noise to a shear maps structure : Add
a Gaussian noise to the shear maps depending on the number of galaxies per pixel.

USAGE : add gnoise gamma, sgamma, ng, s, sgamman

INPUTS :

• sgamma = IDL structure of mass map with the following fields :
- n1, n2 = (int) map size in pixels
- theta1, theta2 = (int) map size in radians
- delta1, delta2 = (int) pixel size in radians
- gamma1, gamma2 = (IDL array) shear maps γ1 and γ2

• ng = (int) galaxies number per arcmin square

OUTPUTS :

• s = (int) the root mean square of the noise

• sgamman = IDL structure of shear maps embedded in a gaussian noise with the
following fields :
- n1, n2 = (int) map size in pixels
- theta1, theta2 = (int) map size in radians
- delta1, delta2 = (int) pixel size in radians
- gamma1, gamma2 = (IDL array) noisy shear maps γ1b and γ2b

# gamma to kappa.pro : Derive a mass map structure from a shear maps structure:
Derive a mass map structure from shear maps structure using the relation 2.9 in chapter
2.

USAGE : gamma to kappa, sgamma, smap

INPUTS :

• sgamma = IDL structure of shear maps with the following fields :
- n1, n2 = (int) map size in pixels
- theta1, theta2 = (int) map size in radians
- delta1, delta2 = (int) pixel size in radians
- gamma1, gamma2 = (IDL array) shear maps γ1 and γ2
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KEYWORD :

• cat = (string) if set, some fields (specific to real data) are added to the output mass
map structure (ng, wtot, mask, gamma err, kappa err, ng eff, sigma gamma,x1 ran,
x2 ran, x1 m, x2 m)

• bmode = (string) if set, the magnetic component of the mass map is computed,
otherwise is the electric component that is computed

OUTPUTS :

• smap = IDL structure of mass map with the following fields :
- n1, n2 = (int) map size in pixels
- theta1, theta2 = (int) map size in radians
- delta1, delta2 = (int) pixel size in radians
- kappa = (IDL array) mass map
- gamma1, gamma2 = (IDL array) shear maps γ1 and γ2

if keyword set(cat) :

• smap = IDL structure of mass map with the following fields :
- n1, n2 = (int) map size in pixels
- theta1, theta2 = (int) map size in radians
- delta1, delta2 = (int) pixel size in radians
- kappa = (IDL array) mass map
- gamma1, gamma2 = (IDL array) shear maps
- ng = (IDL array) number of galaxies per pixel
- wtot = (IDL array) weight per pixel
- mask = (IDL array) mask of the missing data
- gamma err = (IDL array) measurement error in shear maps per pixel taking into
account the weight of each galaxy
- kappa err = (IDL array) measurement error in mass map per pixel
(kappa err=gamma err/sqrt(2.))
- ng eff = (IDL array) effective number of galaxies per pixel taking into account the
weight of each galaxy
- sigma gamma = (int) measurement error in shear maps per pixel
- x1 ran, x2 ran = (int) exact range in degree
- x1 m, x2 m = IDL array with the exact middle position (in deg) of each pixel

7.2.2 IDL routines for real data

" Build a catalogue structure

# mk gcat.pro : Build a shear catalogue structure :

USAGE : mk gcat, x, y, pixscale, weight, g1, g2, gcat

INPUTS :

• x, y = (1D IDL array) coordinates in pixels of each galaxy
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• pixscale = (int) pixel size [in rad]

• weight = (1D IDL array) weight of each galaxy

• g1, g2 = (1D IDL array) shear γ1 and γ2 of each galaxy

OUTPUTS :

• gcat = IDL structure of catalogue with the following fields :
- x, y = (1D IDL array) coordinates in pixels of each galaxy
- pixscale = (int) pixel size [in deg]
- weight = (1D IDL array) weight of each galaxy
- gamma1, gamma2 = (1D IDL array) shear γ1 and γ2 of each galaxy

" Build a shear maps structure

# gcat to gamma.pro : Build a (pixelised) shear maps structure from a shear cat-
alogue structure :

USAGE : gcat to gamma, gcat, gamma, delta=delta

INPUTS :

• gcat = IDL structure of catalogue with the following fields :
- x, y = (1D IDL array) galaxies position in pixels of each galaxy
- pixscale = (int) pixel size [in rad]
- weight = (1D IDL array) weight of each galaxy
- gamma1, gamma2 = (1D IDL array) shear γ1 and γ2 of each galaxy

KEYWORD :

• delta = (string) pixel size in arcmin, default is 1

OUTPUTS :

• gamma = IDL structure of shear maps with the following fields :
- n1, n2 = (int) map size in pixels
- theta1, theta2 = (int) map size in radians
- delta1, delta2 = (int) pixel size in radians
- kappa = (IDL array) mass map
- gamma1, gamma2 = (IDL array) shear maps γ1 and γ2

- ng = (IDL array) number of galaxies per pixel
- wtot = (IDL array) weight per pixel
- mask = (IDL array) mask of the missing data
- gamma err = (IDL array) measurement error in shear maps per pixel taking into
account the weight of each galaxy
- kappa err = (IDL array) measurement error in mass map per pixel
(kappa err=gamma err/sqrt(2.))
- ng eff = (IDL array) effective number of galaxies per pixel taking into account the
weight of each galaxy
- sigma gamma = (int) measurement error in shear maps per pixel
- x1 ran, x2 ran = (int) exact range in degree
- x1 m, x2 m = IDL array with the exact middle position (in deg) of each pixel
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7.3 Relations between the distortion field and the projected
(Electric) mass concentration

7.3.1 From shear maps γ1, γ2 to mass map κ

# gamma to kappa.pro : See description in previous subsection.

7.3.2 From mass map κ to shear maps γ1, γ2

# kappa to gamma.pro : Derive a shear maps structure from a mass map structure
using the relation 2.7 in chapter 2.

USAGE : kappa to gamma, smap, sgamma

INPUTS :

• smap = IDL structure of mass map with the following fields :
- n1, n2 = (int) map size in pixels
- theta1, theta2 = (int) map size in radians
- delta1, delta2 = (int) pixel size in radians
- kappa = (IDL array) mass map κ

KEYWORD :

• cat = (string) if set, some fields (specific to real data) are added to the output mass
map structure (ng, wtot, mask, gamma err, kappa err, ng eff, sigma gamma,x1 ran,
x2 ran, x1 m, x2 m)

OUTPUTS :

• sgamma = IDL structure of shear maps with the following fields :
- n1, n2 = (int) map size in pixels
- theta1, theta2 = (int) map size in radians
- delta1, delta2 = (int) pixel size in radians
- kappa = (IDL array) mass map
- gamma1, gamma2 = (IDL array) shear maps γ1 and γ2

if keyword set(cat) :

• sgamma = IDL structure of mass map with the following fields :
- n1, n2 = (int) map size in pixels
- theta1, theta2 = (int) map size in radians
- delta1, delta2 = (int) pixel size in radians
- kappa = (IDL array) mass map
- gamma1, gamma2 = (IDL array) shear maps
- ng = (IDL array) number of galaxies per pixel
- wtot = (IDL array) weight per pixel
- mask = (IDL array) mask of the missing data
- gamma err = (IDL array) measurement error in shear maps per pixel taking into
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account the weight of each galaxy
- kappa err = (IDL array) measurement error in mass map per pixel
(kappa err=gamma err/sqrt(2.))
- ng eff = (IDL array) effective number of galaxies per pixel taking into account the
weight of each galaxy
- sigma gamma = (int) measurement error in shear maps per pixel
- x1 ran, x2 ran = (int) exact range in degree
- x1 m, x2 m = IDL array with the exact middle position (in deg) of each pixel

7.4 Electric and Magnetic mass maps

# geb to ke kb.pro : Compute the Electric and the Magnetic mass map from the
shear maps : Perform a decomposition of the shear field into its 2 components : the
Electric (E) component and the Magnetic (B) one. The decomposition is based on a
rotation of the shear by 45◦ to obtain the Magnetic component. The presence of B-modes
is used to test the presence of systematic errors in Weak Lensing shear maps. Indeed,
Weak Lensing only produces E-modes.

USAGE : geb to ke kb, gEB, mE, mB, cat= cat

INPUTS :

• gEB = IDL structure of shear maps with the following fields :
- n1, n2 = (int) map size in pixels
- theta1, theta2 = (int) map size in radians
- delta1, delta2 = (int) pixel size in radians
- kappa = IDL array of the mass map
- gamma1, gamma2 = (IDL array) shear maps γ1 and γ2

KEYWORD :

• cat = (string) if set, some fields (specific to real data) are added to the output mass
map structure (ng, wtot, mask, gamma err, kappa err, ng eff, sigma gamma,x1 ran,
x2 ran, x1 m, x2 m)

OUTPUTS :

• mE= IDL structure of the magnetic component mass map with the following fields :
- n1, n2 = (int) map size in pixels
- theta1, theta2 = (int) map size in radians
- delta1, delta2 = (int) pixel size in radians
- kappa = (IDL array) mass map with simulated missing data
- gamma1, gamma2 = (IDL array) shear maps γ1 and γ2

if keyword set(cat) :

• mE = IDL structure of the magnetic component mass map with the following fields:
- n1, n2 = (int) map size in pixels
- theta1, theta2 = (int) map size in radians
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- delta1, delta2 = (int) pixel size in radians
- kappa = (IDL array) mass map
- gamma1, gamma2 = (IDL array) shear maps
- ng = (IDL array) number of galaxies per pixel
- wtot = (IDL array) weight per pixel
- mask = (IDL array) mask of the missing data
- gamma err = (IDL array) measurement error in shear maps per pixel taking into
account the weight of each galaxy
- kappa err = (IDL array) measurement error in mass map per pixel
(kappa err=gamma err/sqrt(2.))
- ng eff = (IDL array) effective number of galaxies per pixel taking into account the
weight of each galaxy
- sigma gamma = (int) measurement error in shear maps per pixel
- x1 ran, x2 ran = (int) exact range in degree
- x1 m, x2 m = IDL array with the exact middle position (in deg) of each pixel

• mB = IDL structure of the magnetic component mass map with the following fields:
- n1, n2 = (int) map size in pixels
- theta1, theta2 = (int) map size in radians
- delta1, delta2 = (int) pixel size in radians
- kappa = (IDL array) mass map with simulated missing data
- gamma1, gamma2 = (IDL array) shear maps γ1 and γ2

if keyword set(cat) :

• mB = IDL structure of the magnetic component mass map with the following fields:
- n1, n2 = (int) map size in pixels
- theta1, theta2 = (int) map size in radians
- delta1, delta2 = (int) pixel size in radians
- kappa = (IDL array) mass map
- gamma1, gamma2 = (IDL array) shear maps
- ng = (IDL array) number of galaxies per pixel
- wtot = (IDL array) weight per pixel
- mask = (IDL array) mask of the missing data
- gamma err = (IDL array) measurement error in shear maps per pixel taking into
account the weight of each galaxy
- kappa err = (IDL array) measurement error in mass map per pixel
(kappa err=gamma err/sqrt(2.))
- ng eff = (IDL array) effective number of galaxies per pixel taking into account the
weight of each galaxy
- sigma gamma = (int) measurement error in shear maps per pixel
- x1 ran, x2 ran = (int) exact range in degree
- x1 m, x2 m = IDL array with the exact middle position (in deg) of each pixel
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7.5 Missing data

7.5.1 Add a hole in order to simulate missing data

# add hole.pro : Add a hole to the mass map : Add a square hole in the data (pixels
are set to zero) to simulate missing data. To add more than one hole, we can use the
procedure in an iterative way, adding holes one by one.

USAGE : add hole, smap, xh, yh, sh, mask,smaph

INPUTS :

• smap = IDL structure of mass map with the following fields :
- n1, n2 = (int) map size in pixels
- theta1, theta2 = (int) map size in radians
- delta1, delta2 = (int) pixel size in radians
- kappa = IDL array of the mass map

• xh, yh = (int) hole position (center)

• sh = (int) square size (half side)

OUTPUTS :

• mask = (IDL array) mask to hide missing data in the mass map

• smaph = IDL structure of mass map with simulated missing data with the following
fields :
- n1, n2 = (int) map size in pixels
- theta1, theta2 = (int) map size in radians
- delta1, delta2 = (int) pixel size in radians
- kappa = (IDL array) mass map with simulated missing data

7.5.2 How to overcome this problem?

# whole.pro : Compute the multi-resolution mask : In some cases in multi-resolution
filterings, a multiscale mask data mask can be required to remove all the impact of the
missing data. All the pixels in the multi-resolution mask can be distorted by the presence
of the hole or by the edge of the image.

USAGE : whole, mask, ny, wmask

INPUTS :

• mask = (IDL array) mask of the missing data in the mass map

• ny = (int) number of scales used in the wavelet transform

OUTPUTS :

• wmask = (3D IDL array) multi-resolution mask of the missing data in the mass map
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7.6 Filtering

7.6.1 Gaussian Filtering

# rec kap gaus.pro : Perform a Gaussian Filtering to filter a noisy mass map :
Perform a Gaussian filtering by calculating the convolution between the noisy mass map
and a gaussian window.

USAGE : rec kap gaus, map, sigma, mapg

INPUTS :

• map = IDL array of a noisy mass map

• sigma = (int) the width (σ) of the Gaussian window

OUTPUTS :

• mapg = IDL array of a filtered mass map by Gaussian filtering

7.6.2 Wiener Filtering

# rec kap wiener.pro : Perform a Wiener Filtering to filter a noisy mass map :
Perform a Wiener filtering (classical 1D method). Build the Wiener weight function by
computing a weight for each ring (7) of the image.

USAGE : rec kap wiener, smap, sigmae, ng, mapw

INPUTS :

• smap = IDL structure of a noisy mass map with the following fields :
- n1, n2 = (int) map size in pixels
- theta1, theta2 = (int) map size in radians
- delta1, delta2 = (int) pixel size in radians
- kappa = IDL array of a noisy mass map

• sigmae = (int) shear error measurement (a common value is 0.3)

• ng = (int) number of galaxies per pixel (ng is equal to 20 gal/amin2 for ground
observations and 100 gal/amin2 for space observations)

OUTPUTS :

• mapw = IDL array of a filtered mass map by Wiener filtering
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7.6.3 Multiscale Entropy Filtering

# rec kap wl.pro : Perform a Multiscale Entropy Filtering described in chapter 5
to filter a noisy mass map : Apply the Multi-Resolution Filtering using the Multiscale
Entropy concept and the False Discovery Rate (FDR) to derive robust detection levels in
wavelet space.

USAGE : rec kap wl, map, mapwl, Opt=’-n7 -k -I5 -C2 -c2. -s0.05 -F3 -K

INPUTS :

• map = (IDL array) noisy mass map

KEYWORDS :
Opt: string which contains the different options. Options are:

[-n number of scales]
Number of scales used in the multiresolution transform
default is 4.

[-F first detection scale]
First scale used for the detection
default is 1.

[-g sigma]
sigma = noise standard deviation assuming a Gaussian noise
by default, the standard deviation is automatically estimated.

[-k]
Suppress isolated pixels in the support. Default is no.

[-K]
Remove the smoothed plane. Default is no.

[-I NbIter]
Number of iterations in an iterative process of reconstruction
default is 10.

[-s NSigma]
Thresolding at NSigma * SigmaNoise at each scale
default is 3.
FDR-Thresolding NSigma = alpha0

default value is 0.05.

[-C Thresh Type]
Thresh Type = 1 : Use a NSigma * SigmaNoise thresholding
Thresh Type = 2 : Use a FDR Thresholding
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default is 1.

[-c Alpha Variation]
If Thresh Type = 2, use a different alpha per band.
Choose a Alpha Variation value range between 1.7 and 2.

[-P]
Apply the positivity constraint
default is no.

[-R RMS Map File Name]
RMS Map

[-r]
rms map is automatically calculated

[-v]
Verbose.
default is no.

OUTPUTS :

• mapwl = IDL array of the filtered mass map by Multiscale Entropy filtering

EXTERNAL CALL :

• wl t2 filter (C++ program)

7.7 Tools

7.7.1 Characterization

" Error per scale
# run sigma.pro : Compute an error per scale : Compute the error between the

original mass map and the filtered one for each scale taking into account the edges.

USAGE : run sigma, w, ny, wn, sigma n

INPUTS :

• w = (3D IDL array) wavelet transform of the original image

• ny = (int) number of scales used in the wavelet transform

• wn = (3D IDL array) wavelet transform of the filtered image

OUTPUTS :

• sigma n= error per scale
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# run sigma hole.pro : Compute an error per scale for a map with missing data
: Compute the error between the original mass map and the filtered one for each scale
taking into account the edges and the missing data.

USAGE : run sigma hole, wmask, w, ny, wn, sigma n

INPUTS :

• wmask = (3D IDL array) multi-resolution hole mask

• w = (3D IDL array) wavelet transform of the original image

• ny = (int) number of scales used in the wavelet transform

• wn = (3D IDL array) wavelet transform of the filtered image

OUTPUTS :

• sigma n= error per scale

" Cluster detection
Another important aspect of the weak shear mass reconstruction is the possibility to

detect clusters and to build a catalog. Thanks to isophote map overplotted on the true
mass map as contours, we can check visually the false detections.

# isophot gaus rms.pro : Compute an isophote map for Gaussian filtering : In the
Gaussian isophote maps, the isophotes corresponds to a kσ detection level where k = 3,
4, 5.

USAGE : isophot gaus rms, map, sigma, rms map, mapg, isog

INPUTS :

• map = IDL array of a noisy mass map

• sigma = (int) the width (σ) of the Gaussian window

• rms map = (IDL array) rms map, if rms = cte map of constant value

OUTPUTS :

• mapg = IDL array of a filtered mass map by Gaussian filtering

• isog = (IDL array) isophote map for Gaussian filtering

# isophot wiener rms.pro : Compute an isophote map for Wiener filtering : In the
Wiener isophote maps, the isophotes corresponds to a kσ detection level where k = 3, 4,
5.

USAGE : isophot wiener rms, smap, rms map, sigmae, ng, mapw, isow

INPUTS :

• smap = IDL structure of a noisy mass map

• rms map = (IDL array) rms map, if rms = cte map of constant value
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• sigmae = (int) measurement error in γi,j per pixel

• ng= (int) number of galaxies per pixel

OUTPUTS :

• mapw = IDL array of a filtered mass map by Wiener filtering

• isow = (IDL array) isophote map for Wiener filtering

# isophot fdrl.pro : Compute an isophote map for Multiscale Entropy filtering :
Using the FDR-thresholding in wavelet space, we detect as significant a set of wavelet
coefficients. Then, we built an isophote map, where each isophote level corresponds to
the detection level in a given scale. A cluster surrounded by two isophotes means that it
has been detected at two scales.

USAGE : isophot fdrl, smap, ny, ground=ground, space = space, min scale,
iso fdr

INPUTS :

• smap = IDL structure of a noisy mass map

• ny = (int) number of scales used in the wavelet transform

KEYWORD :

• ground = (string) if set, we compute the fdr-threshold for ground observations

• space = (string) if set, we compute the fdr-threshold for space observations

OUTPUTS :

• min scale = (IDL array) map with the minimum scale of detection for each pixel

• iso fdr = (IDL array) isophote map with the maximum detection for each pixel for
Multiscale Entropy filtering

7.7.2 Plots

" Plot the shear map

# plt shear.pro : Plot a shear map from a mass map or shear maps. Overplot the
shear on the corresponding mass map.

USAGE : plt shear, smap, kappa = kappa, gamma = gamma

INPUTS :

• smap = IDL structure of a mass map or shear maps

KEYWORD :

• kappa = (string) is set if mass map input
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• gamma = (string) is set if shear maps input

OUTPUTS :

• overplot the shear field over the mass map

" Plot galaxies position from a shear catalogue

# plt xy gcat.pro : Plot for each galaxy of the catalogue a cross to give the position.

USAGE : plt xy gcat, gcat

INPUTS :

• gcat = IDL structure of a shear catalogue with the following fields :
- x, y = (IDL array) coordinates in pixel of each galaxy
- gamma1, gamma2 = (IDL array) shear maps γ1 and γ2

- pixscale = (int) pixel size [rad]

OUTPUTS :

• plot the galaxies position of the catalogue

" Plot a mass map field (specific to real data)

# plt kappa.pro : Plot the mass map field using the real dimensions [in rad] and
overplot the snr contours.

USAGE : plt kappa, smap, contours = contours

INPUTS :

• smap = IDL structure of a mass map with the following fields :
- n1, n2 = (int) map size in pixels
- theta1, theta2 = (int) map size in radians
- delta1, delta2 = (int) pixel size in radians
- kappa = (IDL array) mass map
- gamma1, gamma2 = (IDL array) shear maps
- ng = (IDL array) number of galaxies per pixel
- wtot = (IDL array) weight per pixel
- mask = (IDL array) mask of the missing data
- gamma err = (IDL array) measurement error in shear maps per pixel taking into
account the weight per galaxy
- kappa err = (IDL array) measurement error in mass map per pixel
(kappa err=gamma err/sqrt(2.))
- ng eff = (IDL array) effective number of galaxies per pixel taking into account the
weight of each galaxy
- sigma gamma = (int) measurement error in shear maps of each pixel
- x1 ran, x2 ran = (int) exact range in degree
- x1 m, x2 m = IDL array with the exact middle position (in deg) of each pixel
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KEYWORD :

• contours = (string) if set we overplot the snr contours

OUTPUTS :

• plot the κ field using the real dimensions and overplot the snr contours (if contours
is set)

" Plot an image scaled to the current window

# plt image.pro : Plot an image scaled to the current window. Further plotting
(such as contours) can be performed over the resulting plot. Optionally, an annotated
color bar can be drawn at the top. The ’scalable’ keyword must be invoked when outputing
to a postscript file.

USAGE : plt image, map, frame = frame, colbar=colbar, cran=cran,
title=title, xtitle=xtitle, ytitle=ytitle, ctitle=ctitle, inverse=inverse,

scalable=scalable, csize=csize

INPUTS :

• map = (IDL array) an image

KEYWORD :

• frame = (string) if set, draw a frame with pixel index limits

• colbar = (string) if set, draw color bar

• cran = (string) change the range (default: [min(map),max(map)])

• title = (string) set a title for the plot

• x,ytitle = (string) set titles for the frame

• ctitle = (string) set a title for the colorbar

• inverse = (string) if set, invert the color coding

• scalable = (string) if set, use scalable pixels which is to be ps devices (default:
nonscalable to be used with x-term device)

• csize = (string) vertical size of the color bar (0-1, default:.12)

OUTPUTS :

• plot of the scaled image with, optionally, a coordinate frame and a color bar.
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Figure 7.1: software MRL flowchart
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7.8 Conclusion

We have now at your disposal all the tools to process Weak Lensing data. In the
flowchart in Fig.7.1, the different areas stand for the different main processings. All the
routines write down in this flowchart are described in the IDL routines section.

In the yellow area, we have the specific routines to simulated data and in the green
area, we have the ones that are specific to real data. The red area is dedicated to the
building of the Electric and Magnetic mass map. The white area stands for the relation
and the inverse relation between the mass map and the shear maps. Finally the blue area
represents the filtering step (Gaussian filtering, Wiener Filtering, Multiscale Entropy Fil-
tering). Optionally, we can add a characterization step.

Depending on the kind of data at your disposal, one can take a different path in the
flowchart. And then you run one by one the different routines.
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