Ab-initio calculation of the neutron-proton mass difference

Laurent Lellouch

CPT Marseille CNRS & Aix-Marseille U.

Budapest-Marseille-Wuppertal collaboration (BMWc)

(based mainly on arXiv:1406.4088, PRL 111 '13, Science 322 '08)

Nucleon mass difference

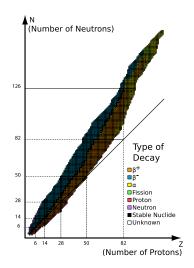
Well known experimentally (PDG '13)

 $\Delta M_N = M_n - M_p$ $= 1.2933322(4) \, \text{MeV}$ $= 0.14\% \times M_N$

w/ $M_N = (M_n + M_p)/2$

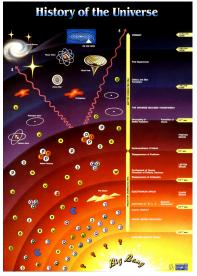
Tiny but very important, e.g.

- required for stability of *p* and ¹H
- with $\Delta M_N < 0.05\% \times M_N$, $p + e^- \rightarrow n + \nu_e$ \rightarrow universe w/ mostly n
- determines valley of stability through β-decay
- \rightarrow necessary for stability of matter



Importance in the early universe

Time of interest here: 1 μ s $\lesssim t \lesssim$ 3 min



 $E_{\beta} = \Delta M_N - m_e - m_{\nu_e} = 0.08\% \times M_N$ \downarrow $n \rightarrow p + e^- + \bar{\nu}_e$ in $\tau_n \sim 15$ min

Critical for Big Bang nucleosynthesis (BBN)

- If ΔM_N were larger and thus τ_n smaller
 - \rightarrow *n* decay before trapped and preserved in nuclei
 - \rightarrow easily get an universe without *n* !
- If $0.14\% > \Delta M_N/M_N \gtrsim 0.05\%$
 - \rightarrow much more ⁴He and less *p*
- → very finely tuned system → goal: understand physics behind ΔM_N and similar phenomena

Why are *n* and *p* so similar?

Very similar because differences between u and d very small on strong interaction scale

 \rightarrow nature has a near SU(2) isospin symmetry

$$\left(egin{array}{c} u \\ d \end{array}
ight) \longrightarrow \exp[iec{ heta}\cdot rac{ au}{2}] \ \left(egin{array}{c} u \\ d \end{array}
ight)$$

Only broken by small, often competing effects

$$\frac{u}{m_q \, [\text{FLAG 13}] \quad 2.16(11) \, \text{MeV}} \quad 4.68(16) \, \text{MeV}}{e_q \qquad \frac{2}{3}e \qquad -\frac{1}{3}e}$$

$$3 \, \frac{m_d - m_u}{M_N} \sim 1\% \qquad \text{and} \qquad (Q_u^2 - Q_d^2) \, \alpha \sim 1\%$$

Further importance of isospin breaking

- EM presently limiting factor in knowledge of m_u and m_d (e.g. FLAG 13)
 - \rightarrow though very unlikely (e.g. FLAG 13), if $m_u = 0 \rightarrow$ solution to strong CP problem
 - \rightarrow But: $m_u/M_p \sim 0.002$
- Important flavor observables are becoming very precisely known: e.g. $\operatorname{err}(m_{ud}), \operatorname{err}(m_s) \sim 2\%, \operatorname{err}(m_s/m_{ud}) \leq 1\%, \operatorname{err}(F_{\kappa}) \sim 1\%, \operatorname{err}(F_{\kappa}/F_{\pi}) \sim 0.5\%, \operatorname{err}(F_{+}^{K\pi}(0)) \sim 0.8\%$
 - $\rightarrow\,$ isospin breaking corrections required to improve indirect search for new physics

Can these effects be reliably computed in the fundamental theory?

Can be computed to low order in $\alpha \& (m_d - m_u) \dots$

... but mixing w/ nonperturbative QCD

⇒ nonperturbative QCD tool

 \Rightarrow include QED and $m_u \neq m_d$

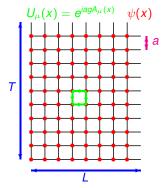
What is lattice QCD (LQCD)?

To describe ordinary matter, QCD requires \geq 104 numbers at every point of spacetime $\rightarrow \infty$ number of numbers in our continuous spacetime

- → must temporarily "simplify" the theory to be able to calculate (regularization)
- \Rightarrow Lattice gauge theory \longrightarrow mathematically sound definition of NP QCD:
 - UV (& IR) cutoff → well defined path integral in Euclidean spacetime:

$$\begin{array}{ll} \langle \boldsymbol{O} \rangle &=& \int \mathcal{D} \boldsymbol{U} \mathcal{D} \bar{\psi} \mathcal{D} \psi \ \boldsymbol{e}^{-S_G - \int \bar{\psi} D[\boldsymbol{M}] \psi} \ \boldsymbol{O}[\boldsymbol{U}, \psi, \bar{\psi}] \\ \\ &=& \int \mathcal{D} \boldsymbol{U} \ \boldsymbol{e}^{-S_G} \det(\boldsymbol{D}[\boldsymbol{M}]) \ \boldsymbol{O}[\boldsymbol{U}]_{\text{Wick}} \end{array}$$

DUe^{-S_G} det(*D*[*M*]) ≥ 0 & finite # of dofs
 → evaluate numerically using stochastic methods



LQCD is QCD when $m_q \rightarrow m_q^{\text{phys}}$, $a \rightarrow 0$ (after renormalization), $L \rightarrow \infty$ (and stats $\rightarrow \infty$) HUGE conceptual and numerical ($\sim 10^9$ dofs) challenge

Huge progress in lattice QCD simulations

A little over 10 years ago we were stuck:

- Cost of calculations scaled very poorly as:
 - $m_{ud} \searrow m_{ud}^{\text{phys}}$
 - *a* _ 0
 - \Rightarrow stuck with $m_{ud} \gtrsim 15 m_{ud}^{\text{phys}}$ and $a \gtrsim 0.1 \text{ fm}$
 - ⇒ too far away to make controlled contact with Nature

In past years, thanks to the work of many: (Sexton et al '92, Hasenbusch '01, Urbach et al '06, Lüscher '04, Del

Debbio et al '06, Lüscher '07, BMWc '08, Blum et al '12, Frommer et al '13, ...)

- Insights into how lattice QCD challenges our algorithms and better understanding of the dynamics of the Hybrid Monte Carlo
- ⇒ innovative solutions based on modern numerical mathematics
- ⇒ design of more effective discretizations of QCD
- Arrival of multi-Tflop/s \rightarrow Pflop/s supercomputers
- Optimization of algorithms and codes for available resources
- \Rightarrow tools to perform % level QCD calculations ... of "simple" quantities

 \Rightarrow need large number of simulations over large range of relevant parameters to control all systematics

Hadron spectrum and mass of ordinary matter

- $\rightarrow\,$ validation of QCD as theory of strong interaction at low energy, in nonperturbative domain
- $\rightarrow\,$ validation of mechanism that gives mass to ordinary matter
 - > 99% of mass of visible universe is in the form of p & n
 - < 5% of mass of *p* & *n* comes from mass of quark constituents
 - Light hadron masses generated by QCD energy imparted to q and g via:

 $m = E/c^2$

- $\bullet\,$ mechanism at origin of $\,\gtrsim\,$ 95% of mass of visible universe
- Higgs "only" gives masses to the q in N, whose sum < 2% of M_N

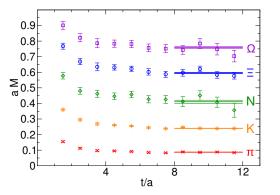
Hadron mass extraction

e.g. in pseudoscalar channel, M_{π} from correlated fit

$$C(t) \equiv \frac{1}{(L/a)^3} \sum_{\vec{x}} \langle [\vec{d}\gamma_5 u](x) [\vec{u}\gamma_5 d](0) \rangle \overset{0 \ll t \ll T}{\longrightarrow} \frac{\langle 0 | \vec{d}\gamma_5 u | \pi^+(\vec{0}) \rangle \langle \pi^+(\vec{0}) | \vec{u}\gamma_5 d | 0 \rangle}{2M_{\pi}} e^{-M_{\pi}t}$$

Can define an effective mass

$$aM(t+a/2) = \log[C(t)/C(t+a)] \stackrel{0 \ll t \ll T}{\longrightarrow} aM_{\pi}$$



Effective masses for simulation at $a \approx 0.085 \, \mathrm{fm}$ and $M_\pi \approx 0.19 \, \mathrm{GeV}$

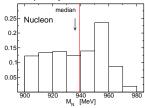
Ab initio calculation of light hadron masses

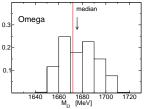
Dürr et al [BMWc], Science 322 (2008) 1224

BMWc '08 set: 20 large scale $N_f = 2 + 1$ simulations w/ $M_\pi \gtrsim 190$ MeV, $3a's \approx 0.065 \div 0.125$ fm and $L \nearrow 4$ fm

- Correct treatment of resonant states
- Perform 432 independent full analyses of our data for 12 particles ...

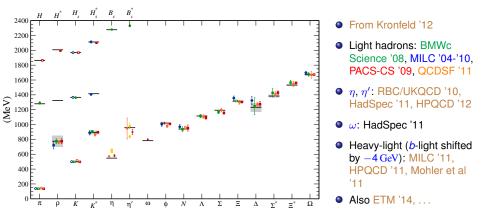
 \Rightarrow systematic error distributions for the hadron masses by weighing each result w/ its fit quality





- Median → central value
- Central 68% CI → systematic error
- Repeat procedure for 2000 independent bootstrap samples
 - \rightarrow statistical error from central 68% CI of bootstrap distribution of medians

Lattice QCD and the hadron spectrum



- ightarrow mass generation mechanism checked at few % level
- $\rightarrow\,$ impressive validation of nonperturbative QCD

Including isospin breaking on the lattice

$$S_{
m QCD+QED} = S_{
m QCD+QED}^{
m iso} + rac{1}{2}(m_u - m_d)\int (\bar{u}u - \bar{d}d) + ie\int A_\mu j_\mu$$

with $j_\mu = \bar{q}Q\gamma_\mu q$

(1) operator insertion method

$$\langle \mathcal{O} \rangle_{\text{QCD+QED}} = \langle \mathcal{O} \rangle_{\text{QCD}}^{\text{iso}} - \underbrace{\frac{1}{2} (m_{\upsilon} - m_{d}) \langle \mathcal{O} \int (\bar{\upsilon} u - \bar{d} d) \rangle_{\text{QCD}}^{\text{iso}}}_{(a)} + \underbrace{\frac{1}{2} e^{2} \langle \mathcal{O} \int_{xy} j_{\mu}(x) D_{\mu\nu}(x - y) j_{\nu}(y) \rangle_{\text{QCD}}^{\text{iso}}}_{(b)} + \text{hot}$$

(2) direct method

Include $m_u \neq m_d$ and QED directly in simulation

Including isospin breaking on the lattice (cont'd)

What has been done:

- $m_u \neq m_d$ in valence only (MILC '09, Blum et al '10, Laiho et al '11, QCDSF/UKQCD '12, BMWc '10-, ...)
 - no new simulations
 - \checkmark error of $O(\alpha) \Rightarrow$ use phenomenology
- (a) (RM123 '12) and (b) (RM123 '13) of operator insertion method tried w/out quark-disconnected contributions
 - no new simulations
 - × error of $O(\alpha(m_s m_{ud})/(N_c M_{\rm QCD}))$
- QED & $m_u \neq m_d$ in valence only (Eichten et al '97, Blum et al '07, '10, BMWc '10-, MILC '10-)
 - no new simulations
 - × error of $O(\alpha(m_s m_{ud})/(N_c M_{QCD}))$
- QED (Blum et al '12) & $m_u \neq m_d$ (PACS-CS '12) in sea w/ reweighting
 - \checkmark as good as full simulation
 - × exponentially expensive in the volume
 - $\times~$ only tried w/ low statistics in a single simulation \rightarrow not very conclusive

Dürr et al (BMWc), arXiv:1406.4088

First full QCD + QED calculation w/ non-degenerate u, d, s, c quarks

• 41 large statistics simulations with $m_u \neq m_d$

 \rightarrow 41 m_u , m_d , m_s , m_c combinations w/ pion masses $M_{\pi} = 195 \nearrow 420 \text{ MeV}$ (sufficient for light hadron masses cf. Science '08)

- 5 values of $e = 0 \nearrow 1.4$ (physical ~ 0.3)
- 4 lattice spacings $a = 0.06 \nearrow 0.10 \text{ fm}$
- 11 volumes w/ *L* = 2.1 *∧* 8.0 fm
- New algorithm for (non-compact) QED
- Highly improved algorithms and codes
- State-of-the-art physics analysis and determination of uncertainties

 \rightarrow fully controlled calculation of per mil, $M_n - M_p$ effect w/ total error < 20%

Important challenges addressed:

- formulate QED in a finite box (long-range interactions)
 → photon zero mode subtraction (Hayakawa et al '08, BMWc '14)
- subtract large finite-volume effects ("soft" photons)
 → determine coefficients of leading effects analytically (BMWc '14)
- avoid unwanted phase transitions of lattice QED
 → use non-compact formulation (Duncan et al '96)
- fight large autocorrelations of QED field
 → Fourier accelerated algorithm (BMWc '14)
- consistently renormalize QCD+QED theory
 → renormalize α using Wilson flow (Lüscher '10, BMWc '14)
- fight large noise/signal ratio
 - → larger than physical *e* (Duncan et al '96)

- finding asymptotic time-range for hadron mass extractions
 → method based on Kolmogorov-Smirnov test (BMWc '14)
- robust estimation of systematic errors
 - → improve Science '08 method using Akaike information criterion (BMWc '14)
- unprecedented precision required (×1000 more statistics for ΔM_N than for M_N)

 $\rightarrow O(10k)$ trajectories/ensemble, O(500) sources/configuration, using 2-level multigrid inverter (Frommer et al '13) and variance reduction technique (Blum et al '13)

Discretization of QED

To avoid phase transition issues, use non-compact formulation of QED (Duncan et al '96)

- \Rightarrow remains gauge invariant on lattice but must fix gauge
- \Rightarrow naively discretize Maxwell action in Feynman gauge:

$$\mathcal{S}_{\gamma}[\mathcal{A}_{\mu}(x)] = -rac{a^4}{4}\sum_{\mu,
u, \chi} \left(\partial_{\mu}\mathcal{A}_{
u}(x) - \partial_{
u}\mathcal{A}_{\mu}(x)
ight)^2$$

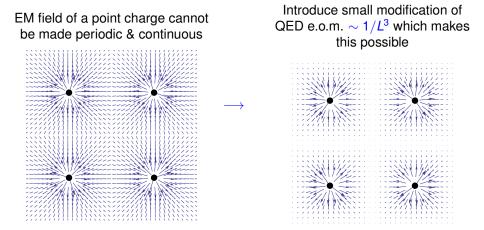
w/ ∂_{μ} a finite difference operator

- \rightarrow transform to Coulomb gauge, $\vec{\nabla} \cdot \vec{A} = 0$, to have well defined Hamiltonian
- ightarrow couple photons to quarks through gauge-invariant lattice action

$$\sum_{x} \bar{\psi}(x) D[U] \psi(x) \qquad \mathsf{W}/\qquad U_{\mu} = e^{iaeqA_{\mu}} U_{\mu}^{\mathrm{QCD}}$$

and *qe* the charge of the quark

QED in finite volume



Induces finite-volume effects ~ α/L that must be subtracted
 → small on QCD quantities but significant for isospin splittings

Finite-volume QED and zero-mode problem

A $T \times L^3$ spacetime with periodic BCs has the topology of a four-torus On four-torus **zero mode**, $\tilde{A}_{\mu}(k = 0)$, of photon field is troublesome:

• usual perturbative calculations are not well defined

• HMC algorithm is ineffective in updating the zero mode

Problem can be solved by removing zero mode(s)

- \rightarrow modification of $\tilde{A}_{\mu}(k)$ on set of measure zero
- $\rightarrow\,$ does not change infinite-volume physics
- $\rightarrow\,$ physically equivalent to adding a canceling uniform charge distribution
 - $\bullet\,$ different schemes $\rightarrow\,$ different finite-volume behaviors
 - some schemes more interesting than others

QED_{TL} zero-mode subtraction

- Set $\tilde{A}_{\mu}(k=0) = 0$ on $T \times L^3$ four-torus (Duncan et al '96)
- Used in most previous studies
- Violates reflection positivity!
 - \rightarrow no Hamiltonian
 - \rightarrow divergences when L fixed, T $\rightarrow \infty$

$$\frac{\alpha}{TL^3} \sum_{k \neq 0} \frac{1}{k^2} \cdots \qquad \xrightarrow[T \to +\infty, L \text{ fixed} \qquad \alpha \int \frac{dk_0}{2\pi} \frac{1}{L^3} \sum_{\vec{k}} \frac{1}{k^2} \cdots$$

Checked analytically in 1-loop spinor (also scalar) QED calculation

$$m(T,L) \underset{T,L \to +\infty}{\sim} m\left\{1 - q^{2}\alpha \left[\frac{\kappa}{2mL}\left(1 + \frac{2}{mL}\left[1 - \frac{\pi}{2\kappa}\frac{T}{L}\right]\right) - \frac{3\pi}{(mL)^{3}}\left[1 - \frac{\coth(mT)}{2}\right] - \frac{3\pi}{2(mL)^{4}}\frac{L}{T}\right]\right\}$$

up to exponential corrections, with $\kappa = 2.837 \cdots$

QED_L zero-mode subtraction

- Set $\tilde{A}_{\mu}(k_0, \vec{k} = 0) = 0$ on $T \times L^3$ four-torus for all $k_0 = 2\pi n_0/T$, $n_0 \in \mathbb{Z}$
- Used here (orginally suggested in Hayakawa & Uno '08)
- Satisfies reflection positivity
 - \rightarrow fixing to Coulomb gauge, $\vec{\nabla} \cdot \vec{A} = 0$, ensures existence of Hamiltonian
 - \rightarrow well defined asymptotic states
 - \rightarrow well defined $T, L \rightarrow \infty$ limit

Checked analytically in 1-loop spinor (and scalar) QED calculation

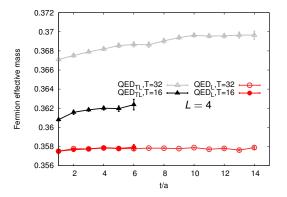
$$m(T,L) \underset{T,L\to+\infty}{\sim} m\left\{1-q^2\alpha\left[\frac{\kappa}{2mL}\left(1+\frac{2}{mL}\right)-\frac{3\pi}{(mL)^3}\right]\right\}$$

up to exponential corrections, with $\kappa = 2.837 \cdots$

 \Rightarrow only inverse powers of *L* and no powers in *T*

QED_{TL} vs QED_L : numerical tests

Numerical studies in pure spinor QED (w/out QCD)



QED_{TL}, as expected, has:

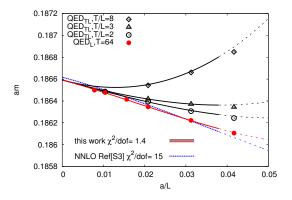
- no clear mass plateaux
- mass increases w/ T

As predicted, QED_L has none of these problems:

- ground state dominates at large t/a
- T-independent mass

QED_{TL} vs QED_L : numerical tests

Test pure QED simulations against our 1-loop finite-volume predictions



- Excellent agreement
- Both schemes give the same result in infinite volume
- QED_L cleaner and has more controlled infinite-volume limit

QED_L finite-volume effects for composite particles

How about QED_L FV effects on composite particles (e.g. hadrons)? In our point spinor and scalar QED_L calculations find

$$m(T,L) \underset{T,L \to +\infty}{\sim} m\left\{1 - q^2 \alpha \frac{\kappa}{2mL} \left[1 + \frac{2}{mL}\right] + \mathcal{O}(\frac{\alpha}{L^3})\right\}$$

independent of particle spin

Same result found for:

- Mesons in SU(3) PQ χ PT (Hayakawa et al '08)
- Mesons/baryons in non-relativistic EFT (Davoudi et al '14)

\rightarrow leading 1/L and 1/L² terms independent of particle spin and structure?

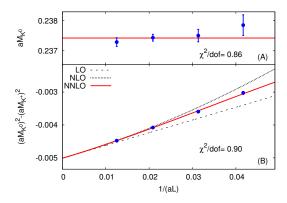
For a general field theory, this universality follows from Ward identities (BMWc '14), assuming:

- the photon is the only massless asymptotic state
- the charged particle considered is stable and non-degenerate in mass

\rightarrow leading FV effects can be removed analytically

FV effects in kaon masses

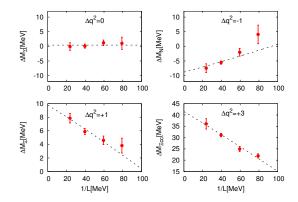
Dedicated FV study w/ $L = 2.4 \nearrow 8.0$ fm and other parameters fixed (bare $\alpha \sim 1/10$, $M_{\pi} = 290$ MeV, $M_{K^0} = 450$ MeV, a = 0.10 fm)



- M_{K^0} has no significant volume dependence
- $M_{K^0}^2 M_{K^+}^2$ well described by universal 1/L, 1/L² and fitted 1/L³ terms

FV effects in baryon masses

Dedicated FV study w/ $L = 2.4 \nearrow 8.0 \text{ fm}$ and other parameters fixed (bare $\alpha \sim 1/10$, $M_{\pi} = 290 \text{ MeV}$, $M_{K^0} = 450 \text{ MeV}$, a = 0.10 fm)



ΔM_Σ = M_{Σ⁺} − M_{Σ⁻} shows no volume dependence (Δq² = 0)
 Strategy: fix universal 1/L, 1/L² terms and add 1/L³ if required

Dynamical QED and autocorrelations

Long range QED \rightarrow huge autocorrelations in standard HMC, even in free case (uncoupled oscillators)

$$\mathcal{H} = \frac{1}{2V} \sum_{\mu,k} \left\{ |\Pi_{\mu,k}|^2 + \hat{k}^2 |A_{\mu,k}|^2 \right\}$$

$$o A_{\mu,k}(au) = A_{\mu,k}(0)\cos(|\hat{k}| au) + rac{\Pi_{\mu,k}}{|\hat{k}|}\sin(|\hat{k}| au)$$

and small k modes practically unchanged after $\tau = 1$ trajectory

Solution: give system *k*-dependent mass M_k

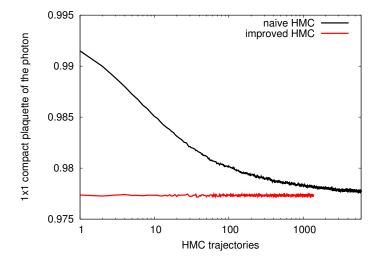
$$\mathcal{H} = \frac{1}{2V} \sum_{\mu,k} \left\{ \frac{|\Pi_{\mu,k}|^2}{M_k} + \hat{k}^2 |A_{\mu,k}|^2 \right\} \quad \text{with} \quad M_k = \frac{4\hat{k}^2}{\pi^2}$$

$$\rightarrow \textit{A}_{\mu,k}(\tau) = \textit{A}_{\mu,k}(0)\cos(\frac{\pi}{2}\tau) + \frac{\pi}{2}\frac{\Pi_{\mu,k}}{\hat{k}^2}\sin(\frac{\pi}{2}\tau)$$

and all memory of initial condition forgotten at $\tau = 1$ for all k

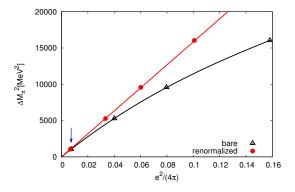
 \rightarrow only works w/ zero-mode subtraction

Dynamical QED and autocorrelations



Requires an FFT in every HMC step

Renormalization of α



• $\Delta M_{\pi}^2 = M_{\pi^+}^2 - M_{\pi^0}^2$ is not linear in α_{bare}

- Becomes so in terms of $\alpha_{\rm ren}$ renormalized around scale of processes involved
- \Rightarrow simulate for 5 values $\alpha_{bare} \in [0, 0.16]$
- \Rightarrow interpolate linearly in α_{bare} to physical value

Renormalization of α

• Use Wilson flow (Lüscher '10) (discretized version of):

$$\frac{\partial B_{\mu}(\tau; \mathbf{x})}{\partial \tau} = -\partial_{\nu} F^{(B)}_{\mu\nu}(\tau; \mathbf{x}), \qquad E(\tau) = \tau^2 \int_{\mathbf{x}} F^{(B)}_{\mu\nu}(\tau; \mathbf{x}) F^{(B)}_{\mu\nu}(\tau; \mathbf{x})$$

with $B_{\mu}(\tau = 0; x) = A_{\mu}(x)$

• Then define

 $\alpha_{\rm ren}(\tau) = Z(\tau) \alpha_{\rm bare}$ W/ $Z(\tau) = \langle E(\tau) \rangle / E_{\rm tree}(\tau)$

- Sizeable FV effects can be corrected by considering $E_{\text{tree}}(\tau)$ in FV
- Choose renormalization scale $(8\tau)^{1/2} \simeq 280 \nearrow 525$ MeV and match $\alpha_{\rm ren}(\tau)$ to Thomson limit

Sketch of analysis

Mass splittings on 41 ensembles modeled by

 $\Delta M_{X} = F_{X}(M_{\pi^{+}}, M_{K^{0}}, M_{D^{0}}, L, a) \cdot \alpha_{\text{ren}} + G_{X}(M_{\pi^{+}}, M_{K^{0}}, M_{D^{0}}, a) \cdot \Delta M_{K}^{2}$

- F_X , G_X parametrize m_{ud} , m_s , m_c , , L and a dependences
- Results at physical point obtained by setting M_{π^+} , M_{K^0} , M_{D^0} to their physical values, $L \to \infty$ and $a \to 0$, w/ a determined by M_{Ω^-}
- Systematic error estimation
 - Carry out O(500) equally plausible analyses, differing in time-fit ranges for M_X determinations, functional forms for F_X, G_X, ...
 - Use Akaike information criterion

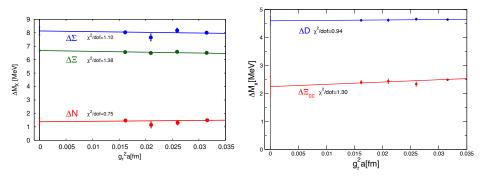
$$AIC = \chi^2_{\min} + 2k$$

• Weight different analyses w/

$$exp[-(AIC - AIC_{min})/2]$$

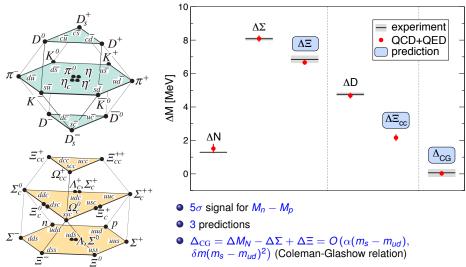
- central value = weighted mean, syst. error = (weighted variance)^{1/2}
- Final results with other weights or median and distribution width consistent
- Statistical error from variance of central values from 2000 bootstrap samples

Continuum extrapolations



Continuum extrapolations smooth even in presence of valence (and sea) charm

Results for isospin mass splittings



• Full calculation: all systematics are estimated

Separation of QED and $(m_d - m_u)$ contributions

• At LO in α and $\delta m \equiv (m_d - m_u)$ can separate

 $\Delta M_X = \Delta_{\rm QED} M_X + \Delta_{\rm QCD} M_X$

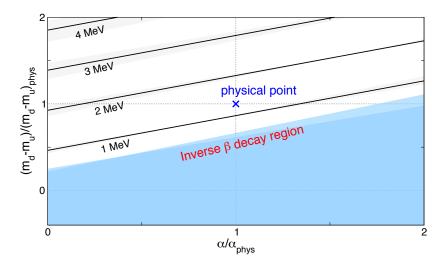
w/ first term $\propto \alpha$ and second $\propto \delta m$

- Intrinsic scheme ambiguity of $O(\alpha \delta m, \alpha^2, \delta m^2, \alpha m_{ud})$
- ΔM_{Σ} largely dominated by δm contribution
 - \rightarrow use $\Delta_{\text{QED}} \textit{M}_{\Sigma} \equiv 0$ to define separation
 - \rightarrow sufficient for current level of precision

	mass splitting [MeV]	QCD [MeV]	QED [MeV]
$\Delta N = n - p$	1.51(16)(23)	2.52(17)(24)	-1.00(07)(14)
$\Delta\Sigma = \Sigma^ \Sigma^+$	8.09(16)(11)	8.09(16)(11)	0
$\Delta \Xi = \Xi^ \Xi^0$	6.66(11)(09)	5.53(17)(17)	1.14(16)(09)
$\Delta D = D^{\pm} - D^0$	4.68(10)(13)	2.54(08)(10)	2.14(11)(07)
$\Delta \Xi_{cc} = \Xi_{cc}^{++} - \Xi_{cc}^+$	2.16(11)(17)	-2.53(11)(06)	4.69(10)(17)
$\Delta_{\rm CG} = \Delta N - \Delta \Sigma + \Delta \Xi$	0.00(11)(06)	-0.00(13)(05)	0.00(06)(02)

Nature's fine tuning

Use PDG '14 ΔM_N to get $\Delta_{QCD} M_N / \Delta_{QED} M_N = -2.49(23)(29)$ and



Conclusions

- Have now a good theoretical understanding of QCD+QED on a finite lattice
- Powerful theorem determines coefficients of leading 1/L and 1/L² finite-volume (FV) corrections
 - \Rightarrow large QED FV effects can be extrapolated away reliably and precisely
- Have all of the algorithms required to reliably simulate QCD+QED
- Our QCD+QED simulations w/ u, d, s, c sea quarks and $m_u \neq m_d$

 \rightarrow full description low-energy standard model w/ potential precision of $O(\alpha^2, 1/N_c m_b^2) \sim 10^{-3}$

 \rightarrow increase in accuracy $\sim \times 10$ compared to state-of-the-art $N_f = 2 + 1$ simulations with intrinsic errors of $O(\alpha, \delta m, 1/N_c m_c^2) \sim 10^{-2}$

- Isosplittings in hadron spectrum determined accurately w/ full control over uncertainties
- Determine nucleon splitting as 5σ effect

- Fully controlled computation of the *u* & *d* quark masses
- Isospin corrections to hadronic matrix elements (e.g. $K_{\ell_2}, K_{\ell_3}, K \to \pi\pi, ...$)

 \rightarrow bring indirect search for new physics to new level

 QCD+QED to compute hadronic corrections to anomalous magnetic moment of the μ, (g_μ – 2)

 \rightarrow currently > 3 σ deviation between SM and experiment w/ \sim matched errors

 \rightarrow need to bring SM calculation to new level in view of new experiments $~\gtrsim 2017$ that will reduce error by 4

• . . .

Progess since 2008

