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Nucleon mass difference

Well known experimentally (PDG ’13)

∆MN = Mn −Mp

= 1.2933322(4) MeV
= 0.14%×MN

w/ MN = (Mn + Mp)/2

Tiny but very important, e.g.

required for stability of p and 1H

with ∆MN < 0.05%×MN ,
p + e− → n + νe

→ universe w/ mostly n

determines valley of stability through
β-decay

→ necessary for stability of matter
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Importance in the early universe

Time of interest here:
1 µs <∼ t <∼ 3 min Eβ = ∆MN −me −mνe = 0.08%×MN

↓

n→ p + e− + ν̄e in τn ∼ 15 min

Critical for Big Bang nucleosynthesis (BBN)

If ∆MN were larger and thus τn smaller
→ n decay before trapped and preserved in nuclei

→ easily get an universe without n !

If 0.14% > ∆MN/MN >∼ 0.05%

→ much more 4He and less p

→ very finely tuned system
→ goal: understand physics behind ∆MN
and similar phenomena
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Why are n and p so similar?

Very similar because differences between u and d very small on strong
interaction scale
→ nature has a near SU(2) isospin symmetry(

u
d

)
−→ exp[i~θ · ~τ

2
]

(
u
d

)

Only broken by small, often competing effects

u d
mq [FLAG 13] 2.16(11) MeV 4.68(16) MeV
eq

2
3 e − 1

3 e

3
md −mu

MN
∼ 1% and (Q2

u −Q2
d )α ∼ 1%
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Further importance of isospin breaking

EM presently limiting factor in knowledge of mu and md (e.g. FLAG 13)

→ though very unlikely (e.g. FLAG 13), if mu = 0→ solution to strong CP
problem

→ But: mu/Mp ∼ 0.002

Important flavor observables are becoming very precisely known: e.g.
err(mud ), err(ms) ∼ 2%, err(ms/mud ) <∼ 1%, err(FK ) ∼ 1%, err(FK/Fπ) ∼ 0.5%,
err(F Kπ

+ (0)) ∼ 0.8%

→ isospin breaking corrections required to improve indirect search for new
physics

Can these effects be reliably computed in the fundamental theory?

Can be computed to low order in α & (md −mu) . . .

. . . but mixing w/ nonperturbative QCD

⇒ nonperturbative QCD tool
⇒ include QED and mu 6= md
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What is lattice QCD (LQCD)?

To describe ordinary matter, QCD requires ≥ 104 numbers at every point of spacetime
→∞ number of numbers in our continuous spacetime
→ must temporarily “simplify” the theory to be able to calculate (regularization)
⇒ Lattice gauge theory −→ mathematically sound definition of NP QCD:

UV (& IR) cutoff→ well defined path integral
in Euclidean spacetime:

〈O〉 =

∫
DUDψ̄Dψ e−SG−

∫
ψ̄D[M]ψ O[U, ψ, ψ̄]

=

∫
DU e−SG det(D[M]) O[U]Wick

DUe−SG det(D[M]) ≥ 0 & finite # of dofs
→ evaluate numerically using stochastic
methods
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Uµ(x) = eiagAµ(x) ψ(x)

LQCD is QCD when mq → mphys
q , a→ 0 (after renormalization), L→∞ (and stats→∞)

HUGE conceptual and numerical (∼ 109 dofs) challenge
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Huge progress in lattice QCD simulations

A little over 10 years ago we were stuck:

Cost of calculations scaled very poorly as:
mud ↘ mphys

ud
a↘ 0

⇒ stuck with mud >∼ 15mphys
ud and a >∼ 0.1 fm

⇒ too far away to make controlled contact with Nature

In past years, thanks to the work of many: (Sexton et al ’92, Hasenbusch ’01, Urbach et al ’06, Lüscher ’04, Del

Debbio et al ’06, Lüscher ’07, BMWc ’08, Blum et al ’12, Frommer et al ’13, . . . )

Insights into how lattice QCD challenges our algorithms and better understanding of the
dynamics of the Hybrid Monte Carlo

⇒ innovative solutions based on modern numerical mathematics

⇒ design of more effective discretizations of QCD

Arrival of multi-Tflop/s→ Pflop/s supercomputers

Optimization of algorithms and codes for available resources

⇒ tools to perform % level QCD calculations . . . of “simple” quantities
⇒ need large number of simulations over large range of relevant parameters
to control all systematics
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Hadron spectrum and mass of ordinary matter

→ validation of QCD as theory of strong interaction at low energy, in
nonperturbative domain

→ validation of mechanism that gives mass to ordinary matter

> 99% of mass of visible universe is in the form of p & n

< 5% of mass of p & n comes from mass of quark constituents

Light hadron masses generated by QCD energy imparted to q and g via:

m = E/c2

mechanism at origin of >∼ 95% of mass of visible universe

Higgs “only” gives masses to the q in N, whose sum < 2% of MN
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Hadron mass extraction
e.g. in pseudoscalar channel, Mπ from correlated fit

C(t) ≡
1

(L/a)3

∑
~x

〈[d̄γ5u](x)[ūγ5d ](0)〉 0�t�T−→
〈0|d̄γ5u|π+(~0)〉〈π+(~0)|ūγ5d |0〉

2Mπ
e−Mπ t

Can define an effective mass

aM(t + a/2) = log[C(t)/C(t + a)]
0�t�T−→ aMπ
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Ab initio calculation of light hadron masses
Dürr et al [BMWc], Science 322 (2008) 1224

BMWc ’08 set: 20 large scale Nf = 2 + 1 simulations w/ Mπ >∼ 190 MeV, 3a′s ≈ 0.065
÷0.125 fm and L↗ 4 fm

Correct treatment of resonant states

Perform 432 independent full analyses of our data for 12 particles . . .
⇒ systematic error distributions for the hadron masses by weighing each result w/
its fit quality
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Repeat procedure for 2000 independent bootstrap samples
→ statistical error from central 68% CI of bootstrap distribution of medians
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Lattice QCD and the hadron spectrum
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∗ η φ N Λ Σ Ξ ∆ Σ∗ Ξ∗ Ωπ η′ ω0

200

400

600

800

1000

1200

1400

1600

1800

2000

2200

2400

(M
eV

)

H H
* H

s
H

s

*
B

c
B

c

*

© 2012 Andreas Kronfeld/Fermi Natl Accelerator Lab. From Kronfeld ’12

Light hadrons: BMWc
Science ’08, MILC ’04-’10,
PACS-CS ’09, QCDSF ’11

η, η′: RBC/UKQCD ’10,
HadSpec ’11, HPQCD ’12

ω: HadSpec ’11

Heavy-light (b-light shifted
by −4 GeV): MILC ’11,
HPQCD ’11, Mohler et al
’11

Also ETM ’14, . . .

→ mass generation mechanism checked at few % level
→ impressive validation of nonperturbative QCD
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Including isospin breaking on the lattice

SQCD+QED = Siso
QCD+QED +

1
2

(mu −md )

∫
(ūu − d̄d) + ie

∫
Aµjµ

with jµ = q̄Qγµq

(1) operator insertion method

〈O〉QCD+QED = 〈O〉iso
QCD −

1
2

(mu −md )〈O
∫

(ūu − d̄d)〉iso
QCD︸ ︷︷ ︸

(a)

+
1
2

e2〈O
∫

xy
jµ(x)Dµν(x − y)jν(y)〉iso

QCD︸ ︷︷ ︸
(b)

+hot

(2) direct method

Include mu 6= md and QED directly in simulation
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Including isospin breaking on the lattice (cont’d)
What has been done:

mu 6= md in valence only (MILC ’09, Blum et al ’10, Laiho et al ’11, QCDSF/UKQCD
’12, BMWc ’10-, . . . )

X no new simulations
X error of O(α)⇒ use phenomenology

(a) (RM123 ’12) and (b) (RM123 ’13) of operator insertion method tried w/out
quark-disconnected contributions
X no new simulations
× error of O(α(ms −mud )/(NcMQCD))

QED & mu 6= md in valence only (Eichten et al ’97, Blum et al ’07, ’10, BMWc ’10-,
MILC ’10-)

X no new simulations
× error of O(α(ms −mud )/(NcMQCD))

QED (Blum et al ’12) & mu 6= md (PACS-CS ’12) in sea w/ reweighting
X as good as full simulation
× exponentially expensive in the volume
× only tried w/ low statistics in a single simulation→ not very conclusive

(1) & (2): pb of having to put long-range QED interaction in a box
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QCD + QED à la BMWc

Dürr et al (BMWc), arXiv:1406.4088

First full QCD + QED calculation w/ non-degenerate u, d , s, c quarks

41 large statistics simulations with mu 6= md

→ 41 mu, md , ms, mc combinations w/ pion masses
Mπ = 195↗ 420 MeV (sufficient for light hadron masses cf. Science ’08)
5 values of e = 0↗ 1.4 (physical ∼ 0.3)
4 lattice spacings a = 0.06↗ 0.10 fm
11 volumes w/ L = 2.1↗ 8.0 fm
New algorithm for (non-compact) QED
Highly improved algorithms and codes
State-of-the-art physics analysis and determination of uncertainties

→ fully controlled calculation of per mil, Mn −Mp effect w/ total error < 20%
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QCD+QED challenges

Important challenges addressed:

formulate QED in a finite box (long-range interactions)
→ photon zero mode subtraction (Hayakawa et al ’08, BMWc ’14)

subtract large finite-volume effects (“soft” photons)
→ determine coefficients of leading effects analytically (BMWc ’14)

avoid unwanted phase transitions of lattice QED
→ use non-compact formulation (Duncan et al ’96)

fight large autocorrelations of QED field
→ Fourier accelerated algorithm (BMWc ’14)

consistently renormalize QCD+QED theory
→ renormalize α using Wilson flow (Lüscher ’10, BMWc ’14)

fight large noise/signal ratio
→ larger than physical e (Duncan et al ’96)
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QCD+QED challenges

finding asymptotic time-range for hadron mass extractions
→ method based on Kolmogorov-Smirnov test (BMWc ’14)

robust estimation of systematic errors
→ improve Science ’08 method using Akaike information criterion (BMWc ’14)

unprecedented precision required (×1000 more statistics for ∆MN than
for MN )
→ O(10k) trajectories/ensemble, O(500) sources/configuration, using 2-level
multigrid inverter (Frommer et al ’13) and variance reduction technique (Blum et al
’13)
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Discretization of QED

To avoid phase transition issues, use non-compact formulation of QED
(Duncan et al ’96)

⇒ remains gauge invariant on lattice but must fix gauge

⇒ naively discretize Maxwell action in Feynman gauge:

Sγ [Aµ(x)] = −a4

4

∑
µ,ν,x

(∂µAν(x)− ∂νAµ(x))2

w/ ∂µ a finite difference operator

→ transform to Coulomb gauge, ~∇ · ~A = 0, to have well defined Hamiltonian

→ couple photons to quarks through gauge-invariant lattice action∑
x

ψ̄(x)D[U]ψ(x) w/ Uµ = e iaeqAµUQCD
µ

and qe the charge of the quark
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QED in finite volume

EM field of a point charge cannot
be made periodic & continuous

−→

Introduce small modification of
QED e.o.m. ∼ 1/L3 which makes

this possible

Induces finite-volume effects ∼ α/L that must be subtracted
→ small on QCD quantities but significant for isospin splittings
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Finite-volume QED and zero-mode problem

A T × L3 spacetime with periodic BCs has the topology of a four-torus

On four-torus zero mode, Ãµ(k = 0), of photon field is troublesome:

usual perturbative calculations are not well defined

α

∫
d4k

(2π)4
1
k2 · · · −→ α

TL3

∑
k

1
k2 · · ·

↑ ↑
possible IR divergences contains a straight 1/0!
but not in physical qties

HMC algorithm is ineffective in updating the zero mode
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Finite-volume QED and zero-mode problem

Problem can be solved by removing zero mode(s)
→ modification of Ãµ(k) on set of measure zero
→ does not change infinite-volume physics
→ physically equivalent to adding a canceling uniform charge distribution

different schemes→ different finite-volume behaviors
some schemes more interesting than others
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QEDTL zero-mode subtraction

Set Ãµ(k = 0) = 0 on T × L3 four-torus (Duncan et al ’96)

Used in most previous studies
Violates reflection positivity!
→ no Hamiltonian
→ divergences when L fixed, T →∞

α

TL3

∑
k 6=0

1
k2 · · · −→

T→+∞,L fixed
α

∫
dk0

2π
1
L3

∑
~k

1
k2 · · ·

Checked analytically in 1-loop spinor (also scalar) QED calculation

m(T , L) ∼
T ,L→+∞

m
{

1− q2α

[
κ

2mL

(
1 +

2
mL

[
1− π

2κ
T
L

])
− 3π

(mL)3

[
1− coth(mT )

2

]
− 3π

2(mL)4

L
T

]}
up to exponential corrections, with κ = 2.837 · · ·
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QEDL zero-mode subtraction

Set Ãµ(k0, ~k = 0) = 0 on T × L3 four-torus for all k0 = 2πn0/T , n0 ∈ Z
Used here (orginally suggested in Hayakawa & Uno ’08)
Satisfies reflection positivity

→ fixing to Coulomb gauge, ~∇ · ~A = 0, ensures existence of Hamiltonian
→ well defined asymptotic states
→ well defined T ,L→∞ limit

Checked analytically in 1-loop spinor (and scalar) QED calculation

m(T , L) ∼
T ,L→+∞

m
{

1− q2α

[
κ

2mL

(
1 +

2
mL

)
− 3π

(mL)3

]}
up to exponential corrections, with κ = 2.837 · · ·

⇒ only inverse powers of L and no powers in T
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QEDTL vs QEDL: numerical tests

Numerical studies in pure spinor QED (w/out QCD)
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problems:

ground state dominates at large t/a

T -independent mass
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QEDTL vs QEDL: numerical tests

Test pure QED simulations against our 1-loop finite-volume predictions
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Both schemes give the same result in infinite volume
QEDL cleaner and has more controlled infinite-volume limit
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QEDL finite-volume effects for composite particles
How about QEDL FV effects on composite particles (e.g. hadrons)?

In our point spinor and scalar QEDL calculations find

m(T , L) ∼
T ,L→+∞

m
{

1− q2α
κ

2mL

[
1 +

2
mL

]
+O(

α

L3 )

}
independent of particle spin

Same result found for:
Mesons in SU(3) PQ χPT (Hayakawa et al ’08)

Mesons/baryons in non-relativistic EFT (Davoudi et al ’14)

→ leading 1/L and 1/L2 terms independent of particle spin and structure?

For a general field theory, this universality follows from Ward identities
(BMWc ’14), assuming:

the photon is the only massless asymptotic state

the charged particle considered is stable and non-degenerate in mass

→ leading FV effects can be removed analytically
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FV effects in kaon masses

Dedicated FV study w/ L = 2.4↗ 8.0 fm and other parameters fixed (bare
α ∼ 1/10, Mπ = 290 MeV, MK 0 = 450 MeV, a = 0.10 fm)
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FV effects in baryon masses

Dedicated FV study w/ L = 2.4↗ 8.0 fm and other parameters fixed (bare
α ∼ 1/10, Mπ = 290 MeV, MK 0 = 450 MeV, a = 0.10 fm)
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Strategy: fix universal 1/L, 1/L2 terms and add 1/L3 if required
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Dynamical QED and autocorrelations

Long range QED→ huge autocorrelations in standard HMC, even in free
case (uncoupled oscillators)

H =
1

2V

∑
µ,k

{
|Πµ,k |2 + k̂2|Aµ,k |2

}

→ Aµ,k (τ) = Aµ,k (0) cos(|k̂ |τ) +
Πµ,k

|k̂ |
sin(|k̂ |τ)

and small k modes practically unchanged after τ = 1 trajectory

Solution: give system k -dependent mass Mk

H =
1

2V

∑
µ,k

{
|Πµ,k |2

Mk
+ k̂2|Aµ,k |2

}
with Mk =

4k̂2

π2

→ Aµ,k (τ) = Aµ,k (0) cos(
π

2
τ) +

π

2
Πµ,k

k̂2
sin(

π

2
τ)

and all memory of initial condition forgotten at τ = 1 for all k

→ only works w/ zero-mode subtraction
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Dynamical QED and autocorrelations
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Renormalization of α
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is not linear in αbare

Becomes so in terms of αren renormalized around scale of processes
involved

⇒ simulate for 5 values αbare ∈ [0,0.16]

⇒ interpolate linearly in αbare to physical value
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Renormalization of α

Use Wilson flow (Lüscher ’10) (discretized version of):

∂Bµ(τ ; x)

∂τ
= −∂νF (B)

µν (τ ; x), E(τ) = τ2
∫

x
F (B)
µν (τ ; x)F (B)

µν (τ ; x)

with Bµ(τ = 0; x) = Aµ(x)

Then define

αren(τ) = Z (τ)αbare w/ Z (τ) = 〈E(τ)〉/Etree(τ)

Sizeable FV effects can be corrected by considering Etree(τ) in FV

Choose renormalization scale (8τ)1/2 ' 280↗ 525 MeV and match
αren(τ) to Thomson limit
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Sketch of analysis
Mass splittings on 41 ensembles modeled by

∆MX = FX (Mπ+ ,MK 0 ,MD0 , L, a) · αren + GX (Mπ+ ,MK 0 ,MD0 , a) ·∆M2
K

FX ,GX parametrize mud , ms , mc , , L and a dependences
Results at physical point obtained by setting Mπ+ , MK 0 ,MD0 to their physical values,
L→∞ and a→ 0, w/ a determined by MΩ−

Systematic error estimation
Carry out O(500) equally plausible analyses, differing in time-fit ranges for MX
determinations, functional forms for FX ,GX , . . .
Use Akaike information criterion

AIC = χ2
min + 2k

Weight different analyses w/

exp [−(AIC− AICmin)/2]

central value = weighted mean, syst. error = (weighted variance)1/2

Final results with other weights or median and distribution width consistent

Statistical error from variance of central values from 2000 bootstrap
samples
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Continuum extrapolations
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Results for isospin mass splittings

0

2

4

6

8

10

Δ
M

 [M
eV

]
ΔN

ΔΣ

ΔΞ

ΔD

ΔCG

ΔΞcc

experiment
QCD+QED
prediction

BMW 2014    HCH

5σ signal for Mn −Mp

3 predictions

∆CG = ∆MN −∆Σ + ∆Ξ = O (α(ms −mud ),
δm(ms −mud )2) (Coleman-Glashow relation)

Full calculation: all systematics are estimated

Laurent Lellouch SphN, 14 November 2014



Separation of QED and (md −mu) contributions

At LO in α and δm ≡ (md −mu) can separate

∆MX = ∆QEDMX + ∆QCDMX

w/ first term ∝ α and second ∝ δm

Intrinsic scheme ambiguity of O(αδm, α2, δm2, αmud )

∆MΣ largely dominated by δm contribution

→ use ∆QEDMΣ ≡ 0 to define separation
→ sufficient for current level of precision

mass splitting [MeV] QCD [MeV] QED [MeV]
∆N = n − p 1.51(16)(23) 2.52(17)(24) -1.00(07)(14)
∆Σ = Σ− − Σ+ 8.09(16)(11) 8.09(16)(11) 0
∆Ξ = Ξ− − Ξ0 6.66(11)(09) 5.53(17)(17) 1.14(16)(09)
∆D = D± − D0 4.68(10)(13) 2.54(08)(10) 2.14(11)(07)
∆Ξcc = Ξ++

cc − Ξ+
cc 2.16(11)(17) -2.53(11)(06) 4.69(10)(17)

∆CG = ∆N −∆Σ + ∆Ξ 0.00(11)(06) -0.00(13)(05) 0.00(06)(02)
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Nature’s fine tuning

Use PDG ’14 ∆MN to get ∆QCDMN/∆QEDMN = −2.49(23)(29) and
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Conclusions

Have now a good theoretical understanding of QCD+QED on a finite lattice

Powerful theorem determines coefficients of leading 1/L and 1/L2 finite-volume
(FV) corrections

⇒ large QED FV effects can be extrapolated away reliably and precisely

Have all of the algorithms required to reliably simulate QCD+QED

Our QCD+QED simulations w/ u, d , s, c sea quarks and mu 6= md

→ full description low-energy standard model w/ potential precision of
O(α2, 1/Ncm2

b) ∼ 10−3

→ increase in accuracy ∼ ×10 compared to state-of-the-art Nf = 2 + 1
simulations with intrinsic errors of O(α, δm, 1/Ncm2

c ) ∼ 10−2

Isosplittings in hadron spectrum determined accurately w/ full control over
uncertainties

Determine nucleon splitting as 5σ effect
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Outlook

Fully controlled computation of the u & d quark masses

Isospin corrections to hadronic matrix elements (e.g. K`2 , K`3 , K → ππ, . . . )

→ bring indirect search for new physics to new level

QCD+QED to compute hadronic corrections to anomalous magnetic moment of
the µ, (gµ − 2)

→ currently > 3σ deviation between SM and experiment w/ ∼matched errors

→ need to bring SM calculation to new level in view of new experiments >∼ 2017
that will reduce error by 4

. . .
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Progess since 2008
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