

- **Nom:** de Boissière Thibault
- **Cursus:** Ecole Centrale

• **Motivations:** Exploring the frontier between cosmology and particle physics, many possibilities: experiments, analysis, phenomenology...

• Looking for Dark Matter with the EDELWEISS experiment

A lightning history of Dark Matter direct detection

The EDELWEISS experiment

Background analyses

Extra sugar: axion searches

A lightning history of Dark Matter direct detection

F. Zwicki (1933)

Excess of gravitational mass

EDELWEISS I (1988-2002)

First cryogenic detectors

EDELWEISS III (2014-)

36 detectors

Thibault de Boissière

Typical energy: keV to < 100 keV

Expected WIMP event rate: < 0.1 per ton per day

Radioactive background: most materials give higher rate

We need :

- Low thresholds
- High exposure
- Background rejection

A lightning history of Dark Matter direct detection

The EDELWEISS experiment

Thibault de Boissière

The EDELWEISS experiment

DE LA RECHERCHE À L'INDUSTRI

The EDELWEISS experiment

EDELWEISS III status

- 2012 to early 2014: detector fabrication, installation, first commissioning
- 2014 2016: physics run
- 36 detectors at the lab, 24 read out, current cool-down successful !
- Analyses in next slides based on 2013 commissioning data

Dealing with backgrounds in EDELWEISS: 2 arrows

1st arrow : VOLUME versus **SURFACE** distinction

Many background events interact on the SURFACE of the detector: γ , β , Pb, α

WIMPs, y and neutrons interact in the VOLUME of the detector

Tagging VOLUME versus SURFACE gives efficient background rejection

(EDELWEISS uses 4 different electrodes for **VOLUME/SURFACE** rejection, see later)

OF LA RECHERCHE À L'INDUSTRI

The EDELWEISS experiment

2nd arrow: DUAL SENSORS for event discrimination

- We measure:
 - the heat
 - the ionisation

• Combine them:

- Estimate the recoil energy: Erecoil
- > Derive a discriminating variable :
 - **Q** = Eion/Erecoil

Erecoil (keV)

The EDELWEISS experiment

DE LA RECHERCHE À L'INDUSTRI

The EDELWEISS experiment

VOLUME events: WIMPs, y and neutrons

SURFACE events: γ , β , Pb, α

Thibault de Boissière

OF LA RECHERCHE À L'INDUSTRI

Background analyses

We can check we understand the surface events :

Recall the detector:

Electrons drift in the electric field of the crystal.

Joule effect !

The heat energy depends on: ★ the electric field ★ the type of particle

 \Rightarrow Changing the electric field shifts the heat spectrum differently for each particle.

Boosted trees / Neural networks

(Increasing efficiency at low energies)

Thibault de Boissière

DE LA RECHERCHE À L'INDUSTRI

Neural network / Boosted Tree

Neural network / Boosted Tree

Low masses:

- Heat only events dominate
- Surface events are much harder to reject: efficiency loss
- Use 6 variables
 (4 ionisation, 2 heat)
- More variables will be added in subsequent analyses

WIMP signal. Mass: 6 GeV, Cross section: 1 pb, Exposure: 4 kg.d

Extra sugar: axion searches

Extra sugar: axion searches

- Axions are elementary particles that solve the strong CP problem
- Axions are also a prime Dark Matter candidate
- Axions are predicted to interact with Standard Model particles, like electrons
- EDELWEISS bolometers are sensitive to electronic recoils

We studied **4 channels** involving:

- The axio-nucleon coupling: g_{aN}
- The axio-electron coupling: g_{ae}
- The axio-photon coupling: $g_{a\gamma}$

I used data from EDELWEISS II physics run

Extra sugar: axion searches

For the full paper: **JCAP 1311 (2013) 067**

Hatched region excluded by EDELWEISS

We can **combine the 4 channels** and interpret this as **a constraint on the axion mass** within an axion model:

We can exclude **over 5 orders of magnitude** of the axion mass!

time

Ph.D

Now

Conclusion

- Used EDELWEISS II data to look for axions in 4 channels JCAP 1311 (2013) 067
- EDELWEISS II excludes DFSZ axions over 5 orders of magnitude
- Integration of the calibration procedure into a new framework
- Currently working on novel data analysis methods: multivariate analyses and pulse shape recognition
- Use Boosted Trees/Neural Networks to gain sensitivity in the critical low-mass region

- New results on low mass WIMPs coming in 2015 (fingers crossed)
- Improve multivariate methods
- Dark Matter phenomenology

DE LA RECHERCHE À L'INDUSTRIE

EDELWEISS III projections

Summary: SURFACE events

Select events with: SIGNAL on veto

Collecting electrode

Veto electrode (for surface events)

- Estimate the recoil energy
- Can look at the recoil spectrum

β, Pb and heat-only recoil spectrum

VOLUME events

(y**)**

Select events with:
NO SIGNAL on veto
SIGNAL on collectrode

Collecting electrode

Veto electrode (for surface events)

- Estimate the recoil energy
- Can look at the recoil spectrum

