H-> ZZ^(*) -> 4lep - Mass and Width Measurements with the ATLAS Detector

<u>Alessandro Calandri</u> (ED 517 - Université Paris Sud) Thesis Director: Professor Bruno Mansoulié CEA - Saclay, IRFU/SPP

- Alessandro Calandri
- ED 517 (Université Paris Sud) PhD starting date: October 1st, 2012
- Motivations: exploring the frontiers of the high energy physics at LHC
- <u>Propriétés du Boson de Higgs se disintegrant dans le mode 4 leptons à</u> <u>LHC: masse, limite sur la contribution à haute masse et sur la largeur</u>
- Standard Model, ATLAS detector, LHC, Higgs mechanism, Higgs mass measurement, Electrons, Higgs width measurement

Outline of the talk

- Performance of the LHC and the ATLAS detector
- The Higgs boson mass measurement
 - track and cluster combination for the electrons
- The Higgs boson indirect width measurement and the constraint on the off-shell couplings

Performance of LHC

- Proton-proton collider @ \sqrt{s} = 7 TeV (2011) and 8 TeV (2012)
- Peak luminosity: 7.7*10³³ cm⁻²s⁻¹
- Integrated luminosity delivered: ~23 fb⁻¹ (8 TeV) and 5 fb⁻¹ (7 TeV)
- Bunch crossing 50 ns

The ATLAS Detector

Higgs Boson Mass Measurement

Higgs Boson Discovery

- 4th July, 2012, the ATLAS and CMS collaborations announced the observation of a new particle
- ATLAS channels (7 TeV and 8 TeV)
 - Н→үү
 - H→ZZ→4I
 - H→WW→lulu

arXiv: 1207.7214, 1207.7235

Higgs - Results

H→ZZ→4lep - Event display

H→ZZ→4lep - The Golden Channel

- Small BR, but very clear 4-lepton final state
- \rightarrow high signal purity
- <u>4e, 4µ and mixed final channel (2e2µ and 2µ2e)</u>
- Analysis background: ZZ, Z+jets, top

- Irreducible background: $pp \rightarrow ZZ$ reduction driven by kinematic cuts. Shape and normalization from MC \rightarrow analysis discriminant deployed to remove ZZ bkg (BDT) (pt and η of the 4lepton system, as well as other kinematic variables used in this discriminant).
- <u>Reducible background</u>: Z+jets, tt kinematic cuts Z+jets from signalfree region, Zbb shape from MC and normalization from data.

• More information on the H4lep (number of the events in the sub-channnel) in the backup slides

Energy - Momentum Combination for Electrons

Why combining track and cluster information

- 3/4 decay channels contain electrons in the final state (4e, 2e2 μ , 2 μ 2e)
- Electron energy is measured using the cluster deposit at the calorimeter level.
- Track information of the particle may be used too not trivial to treat because of the bremsstrahlung.
- We can gain acceptance (number of events in a rare decay mode) by lowering the transverse momentum (pT) cut at the analysis level
 - ... but the calorimeter resolution decreases when E decreases; on the contrary, the track resolution increases
- Exploited an algorithm that combines track and cluster information and built a "combined" momentum for electrons.

Usage of track and cluster information holds potential for significant improvement in energy resolution → Statistical combination of E and p (maximum likelihood fit) using the full expected statistical distributions of each electron, parametrized for all pT, region of the detector (η) and bremsstrahlung emission. Track and cluster - The combination algorithm

- Maximum-likelihood fit:
 - combination of track and cluster information.
- Extracted some parameters (from simulation) of the distributions (mean value, σ etc.) of p_T track/ p_T truth and p_T cluster/ p_T truth (fitted with a CrystalBall function)

Combination - results on single electron and J/Ψ

Higgs Mass (H4lep) and systematic uncertainties

Indirect Higgs Boson Width Measurement

The present analysis is currently under approval and internal circulation (the goal is to release a conf note for the summer conferences) \rightarrow Limited selection of material for this section (overall procedures and public results) selection of material to the section (overall brocedures and public results)

Off-peak Contribution (1)

- We used to search the Higgs as a new on-shell particle (peak on the final state invariant mass spectrum) refer to slide 11
- Recently, N. Kauer and G. Passarino explained the possible inadequacy of the zero-width approximation → Higgs has also contributions as a virtual particle (propagator) and can be therefore measured in the high mass region.
- In the 0-width approximation (no off-peak contribution), the integrated cross section is given by:
 - $\sigma_{\text{on-peak}} \sim g^2_{ggH} g^2_{HZZ} / \Gamma^2_{H}$
 - it depends on the couplings to the initial and final state particles as well as on the Higgs width.
 - The total cross section is unchanged if the product of the coupling (*BR) and the total width are scaled by a common constant
- In the off-shell regions (where the Higgs acts as a propagator), the cross section is:
 - $\sigma_{\text{off-peak}} \sim g^2_{ggH} g^2_{HZZ}$
 - the cross section is independent of the total width and it may provide extra information about possible non-SM Higgs nature
- $\frac{1}{100}$ It is evident that the ratio of off-shell and on-shell production will lead to a direct measurement of the μ _offShell and consequently the Higgs width, as long as the ratio of the coupling remains constant
 - We'll present a limit on the off-shell couplings (μ _offshell) in the high mass region
 - We'll interpret this off-shell limit as a limit on gammaH (gammaH_SM=4.2 MeV) when combining with the on shell measurement.

Off-peak contribution (2)

- It is important to have a good theory prediction to properly model the analysis:
 - quantum interference effects (between HZZ and continuum ggZZ, featured by the same initial state) is included in the simulation
 - perturbative corrections are also added in order to better model the kinematic distributions.
 - higher order Monte Carlo predictions and effects are to be taken into account too.

The higher order calculations for QCD-related gluon emissions on the background ggZZ do not exist → we have to rely on phenomenological models

Analysis Strategy

- The analysis is performed in the off-shell ZZ region (m4l>220 GeV):
 - the ZZ final state contribution is produced by signal (ggHZZ), continuumbackground (ggZZ) and interference between signal and background
- We try to reject the qqZZ background using simple (cut-based) or more sophisticated methods (multivariate analysis deploying several kinematic variables that fully exploit the ZZ kinematics)

Rejecting the ZZ background

Wrapping up

- The primary result is a limit on μ _offShell as this is independent on the width and the hypotheses in the analysis
- Through the hypothesis µ_offShell = µ_onShell, the above-defined limit is converted into a limit on the Higgs width (CMS showed an observed limit of approximately 20 MeV in the ZZ→4I and ZZ→2I2v channels).
- ATLAS will publish results on the indirect limits on the width very soon (summer conferences).

Conclusions

- <u>The final paper on the Higgs mass measured by ATLAS has now been published (http:// inspirehep.net/record/1300650)</u>
 - main contribution to the mass extraction
 - E-p combination algorithm (qualification task) now fully developed, validated and released to the ATLAS collaboration
 - EGamma paper including the Ep combination produced (Supporting note too)
- <u>Higgs Indirect Width measurement</u>
 - the analysis note is now going through the approval process- ready for the summer conferences.
 - Personal contribution to the analysis: production and validation of the Monte Carlo simulations, development of the BDT and cut-based approaches, extraction of the final limit on the width, studies on the systematic uncertainties, supporting note redaction
- <u>Future prospects/plans</u>
 - Paper on the Indirect Higgs Boson Width measurement likely to be scheduled by next fall
 - Studies on prospects for run2 (re-calibration of the EP combination, other possible H4lep-related topics,...)
 - ...looking forward to new data by April 2015!

Backup slides

H→ZZ→4lep - Wrapping up

Final state	Signal full mass range	Signal	ZZ*	$Z + jets, t\bar{t}$	s/b	Expected	Observed			
- <u></u> 595	Tun muss runge		$\sqrt{s} = 7 \text{ TeV}$							
4μ	1.00 ± 0.10	0.91 ± 0.09	0.46 ± 0.02	0.10 ± 0.04	1.7	1.47 ± 0.10	2			
2e2µ	0.66 ± 0.06	0.58 ± 0.06	0.32 ± 0.02	0.09 ± 0.03	1.5	0.99 ± 0.07	2			
2µ2e	0.50 ± 0.05	0.44 ± 0.04	0.21 ± 0.01	0.36 ± 0.08	0.8	1.01 ± 0.09	1			
4e	0.46 ± 0.05	0.39 ± 0.04	0.19 ± 0.01	0.40 ± 0.09	0.7	0.98 ± 0.10	1			
Total	2.62 ± 0.26	2.32 ± 0.23	1.17 ± 0.06	0.96 ± 0.18	1.1	4.45 ± 0.30	6			
$\sqrt{s} = 8 \text{ TeV}$										
4μ	5.80 ± 0.57	5.28 ± 0.52	2.36 ± 0.12	0.69 ± 0.13	1.7	8.33 ± 0.6	12			
2e2µ	3.92 ± 0.39	3.45 ± 0.34	1.67 ± 0.08	0.60 ± 0.10	1.5	5.72 ± 0.37	7			
2µ2e	3.06 ± 0.31	2.71 ± 0.28	1.17 ± 0.07	0.36 ± 0.08	1.8	4.23 ± 0.30	5			
4e	2.79 ± 0.29	2.38 ± 0.25	1.03 ± 0.07	0.35 ± 0.07	1.7	3.77 ± 0.27	7			
Total	15.6 ± 1.6	13.8 ± 1.4	6.24 ± 0.34	2.00 ± 0.28	1.7	22.1 ± 1.5	31			
$\sqrt{s} = 7 \text{ TeV}$ and $\sqrt{s} = 8 \text{ TeV}$										
4μ	6.80 ± 0.67	6.20 ± 0.61	2.82 ± 0.14	0.79 ± 0.13	1.7	9.81 ± 0.64	14			
2e2µ	4.58 ± 0.45	4.04 ± 0.40	1.99 ± 0.10	0.69 ± 0.11	1.5	6.72 ± 0.42	9			
2µ2e	3.56 ± 0.36	3.15 ± 0.32	1.38 ± 0.08	0.72 ± 0.12	1.5	5.24 ± 0.35	6			
4e	3.25 ± 0.34	2.77 ± 0.29	1.22 ± 0.08	0.76 ± 0.11	1.4	4.75 ± 0.32	8			
Total	18.2 ± 1.8	16.2 ± 1.6	7.41 ± 0.40	2.95 ± 0.33	1.6	26.5 ± 1.7	37			

Higgs Combination

m_H [GeV]

Electron categories for the combination

- Electrons are placed in categories according to their transverse momentum and pseudorapidity values:
 - LowPt (7 < pT < 15 GeV), mediumPt (15 < pT < 30 GeV) and highPt (pT > 30 GeV) regions;
 - CentralEta (0<|η|<0.7), MediumEta(0.7<|η|<1.37), CrackEta (1.37<|η|<1.52) and ForwardEta (1.52<|η|<2.5) regions.
- Another categorization is exploited using <u>fbrem</u> variable:
 - this variable takes into account the amount of bremsstrahlung the track has experienced in the Inner Detector.
 - fbrem= $((q/p)_{Fin}-(q/p)_{In}) / (q/p)_{Fin}$

Track and cluster - The combination algorithm

- Maximum-likelihood fit:
 - combination of track and cluster information.
- Extracted some parameters (from simulation) of the distributions (mean value, σ etc.) of p_T track/ p_T truth and p_T cluster/ p_T truth (fitted with a CrystalBall function)

PtTrack/PtTruth

Single Electron (LowPt)

PtCombined/PtTruth

 $H \rightarrow ZZ \rightarrow 4 lep - 2012$

Observed and expected pvalue vs Higgs Mass

Analysis Strategy (3)

sample	2µ2e	2e2µ	4μ	4e	TOTAL
$gg \to H \to ZZ$	0.48 ± 0.00	0.60 ± 0.01	0.62 ± 0.00	0.45 ± 0.00	2.15 ± 0.01
$gg \rightarrow ZZ (S+B+I)$	7.28 ± 0.04	7.14 ± 0.04	9.01 ± 0.03	5.67 ± 0.02	29.10 ± 0.06
$gg \rightarrow ZZ$ (Int)	-0.81 ± 0.05	-1.00 ± 0.05	-1.06 ± 0.04	-0.70 ± 0.03	-3.57 ± 0.08
$qq \rightarrow ZZ$	38.14 ± 0.27	37.00 ± 0.27	48.87 ± 0.26	28.52 ± 0.19	152.53 ± 0.50
$gg \rightarrow ZZ$ (B)	7.61 ± 0.03	7.54 ± 0.03	9.45 ± 0.03	5.93 ± 0.02	30.52 ± 0.06
Reducible	0.24 ± 0.05	0.07 ± 0.01	0.09 ± 0.01	0.21 ± 0.05	0.61 ± 0.07
Total Backgrounds	45.98 ± 0.28	44.61 ± 0.27	58.41 ± 0.26	34.66 ± 0.20	183.66 ± 0.51
$gg \rightarrow ZZ (S+B+I, 25\Gamma_H^{SM})$	15.46 ± 0.06	17.37 ± 0.06	19.55 ± 0.05	13.27 ± 0.04	65.65 ± 0.11

summary of the algorithm

- A detailed study was pursued in order to define under which conditions/assumptions the Ep combination is to be applied.
- if $\rightarrow \sigma = |\text{ECluster-pTrack}| / \sqrt{(\sigma^2_{\text{ECluster}} + \sigma^2_{\text{pTrack}})} < 4 \rightarrow \text{PtCombined}$
- else → PtCluster
- if PtTrack/PtCluster<"0.4" (depends on the η- pt category)
 - →PtCombined=PtCluster+PtTrack

Linearity

