# Forward physics and two-photon interactions in the ATLAS experiment

#### Mateusz Dyndal (supervisor: Laurent Schoeffel)

3 July 2014

## Outline

- Atlas Forward Detectors Full Simulation
  - Qualification work for the ATLAS experiment
  - Then, convener of the forward detectors simulation sub-group

- Measurement of exclusive  $\gamma\gamma \rightarrow I^+I^-$  production
  - Ongoing ATLAS data analysis
  - Long-term prospects:  $\gamma\gamma \rightarrow W^+W^-$  with experience gained from  $I^+I^-$

#### **AFP Detector Full Simulation**

 <u>Core idea</u>: measure intact proton far away from the interaction point



#### **AFP Detector Simulation**



- Simulation is based on the Hamburg Beam Pipe approach
  - two HBPs per ATLAS side: inner station with Silicon Detector and outer station with Silicon and two Timing Detectors
- The design will change in the future to Roman Pots (RP) setup and different layout of Timing Detectors
  - It is expected this will reduce the material scattering effects

#### **AFP Detector Simulation**

- Full Geant4 simulation of Forward Region + AFP Stations in the ATLAS Athena framework:
  - Geo Models of: Forward Region, Hamburg Beam Pipes (HBPs), AFP Silicon (SiD) and Timing (TD) Detectors
  - Forward Region simulation (for the 1st time)
    - Magnetic field specification
    - Contains beam pipe, collimators and beamscreens models
    - Plan to study the effect of dead material, starting from the closest (most affecting) regions
  - Description of Sensitive Detectors (+ data models)
  - Reconstruction algorithms for SiD and TD
  - AFP D3PD scheme prepared (D3PD maker for AFP)
    - D3PD dumper for AFP + ATLAS made

3 July 2014



# AFP SiD performance

- SiD tracking resolution
- 15 μm RMS in x (plot)
- 72 μm RMS in y
- Numbers above consistent with the formula: RMS = pixel\_size / V12
- Staggering of the layers will improve the resolution, even with 4 Si layers configuration
- Expected tracking resolution wrt 4 staggered layers:
   8 μm in x, 20 μm in y



# **AFP SiD performance**

- x-y track positions hitmap for outer SiD station before (left) and after (right) track matching included for outer (AFP 212) station
- Tracks matched between inner and outer SiD stations are considered
- Positions are calculated in the ATLAS Coordinate System beam center at x = -97mm



# Summary (AFP Simulation)

- Full Geant4 simulation of ATLAS Forward Region + AFP Stations in the Athena framework is ready
  - Support for the simulation of all forward detectors in ATLAS
- Simulated detector performance in agreement with the expectations - based on the basic material calculations / estimates
- Big potential of ATLAS Forward Region full simulation
  - p+p, p+Pb collisions (synergy with existing forward detectors in ATLAS)
  - Background studies

#### Measurement of exclusive $\gamma\gamma \rightarrow \ell^+\ell^-$

 <u>Core idea</u>: measure cross sections for elastic and dissociative processes, determination of the photon content in the proton



# Analysis context (CMS results)

- Exclusive  $\gamma\gamma \rightarrow \mu\mu$  production in pp collisions at  $\sqrt{s}=7TeV$  [arXiv:1111.5536]
- $\gamma\gamma \rightarrow \mu^+\mu^- \rightarrow definition$  of exclusivity cuts to select such events with a good efficiency (2010 data; 40/pb)
- Determination of the pp  $\rightarrow$  pp  $\mu^{\scriptscriptstyle +}\mu^{\scriptscriptstyle -}$  cross section
- Study of exclusive  $\gamma\gamma$  production of W(+)W(-) in pp collisions at  $\sqrt{s}=7TeV$ and constraints on anomalous quartic gauge couplings [arXiv:1305.5596]
- Using the exclusivity requirements from the previous studies, select exclusive events: γγ → W<sup>+</sup>W<sup>-</sup>
- Best limits on anomalous couplings in QGC are then obtained
- (2011 data; 5/fb)



 <u>Perspectives</u>: more statistics needed, more work on the physics - MC generators (dissociative part)

#### Elastic processes: $pp \rightarrow p \mu \mu p$



Via quasi-real photons exchange (diagram)

The cross section for this process is calculated:

(1) Using the number of equivalent photons (EPA) by integration over the whole virtuality range:

$$Q_{min}^2 \simeq m_p^2 \frac{x^2}{1-x}; \qquad Q_{max}^2 = 2 \text{ GeV}^2$$

Integrand contains the proton EM form factors (calculations done by Budnev et al., 74')

(2) And the QED  $\gamma\gamma \rightarrow \mu^+\mu^-$  cross section

Implemented in HERWIG++, LPAIR (used at HERA, Tevatron and CMS) and FPMC

Cross checks between HERWIG++ (ATLAS) and LPAIR done

# Impact on the other SM (EW) results

#### Low mass Drell-Yan analysis

FEWZ+MRST2004QED PDF used to estimate photon induced (PI) contribution

GeV

- $\Delta^{\text{Pl}}$  corrections contribuite **2-3%** of the NNLO theory predictions
- Remark:
  - No exclusive and single-diss PI parts

in FEWZ -> they should contribute

≈ 50% of the total PI cross section

|                       |                          |                   | $\overbrace{0}^{\circ} 10^{5} \boxed{10^{5}}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|-----------------------|--------------------------|-------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                       | FEWZ                     | $\Delta^{PI}$     | $\overset{G}{=} 10^4 \overset{G}{=} 1$ |
| $m_{\mu\mu}$ [GeV] [r | $\frac{du}{dm_{\mu\mu}}$ | [pb/GeV]          | 10 <sup>3</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 12 - 17               | 12.09                    | $0.000\pm0.000$   | 10 <sup>2</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 17 - 22               | 21.22                    | $0.190 \pm 0.070$ | 10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| 22 - 28               | 13.56                    | $0.240 \pm 0.087$ | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| 28 - 36               | 6.74                     | $0.150 \pm 0.054$ |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 36 - 46               | 3.10                     | $0.085 \pm 0.030$ | ≚ 1.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| 46 - 66               | 1.28                     | $0.037 \pm 0.013$ |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                       |                          |                   | 20 40 60 80 100 120 140 160 180                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |

200

M<sub>u\*u</sub> [GeV]

Data 201

Exclusive γγ→μμ (HERWIG++ Double Diss. γγ→μμ (PYTHIA8

EG+PYTHIA

#### **Event selection**

- 2011 period B-M GRL
- Triggers : EF\_2mu(e) || EF\_mu(e)
- Dilepton events:
  - Opposite charge
  - Kinematic cuts depend on the trigger thresholds (different for ee and mumu)
     <sup>3</sup> 1<sub>E</sub> 1<sub>E</sub> 1<sub>E</sub> 1<sub>E</sub>
- Exclusivity selection:
  - Exactly **2 tracks** in the dimuon vertex
  - Standard p<sub>T</sub>>400 MeV tracking cuts
  - Exclusivity veto: distance dimuon vtx
    - closest vtx (or track) > 3 mm
- Elastic selection:
  - p<sub>T</sub> of the dilepton system < 1.5 GeV</li>
     -> effective, single cut



#### Dimuon selection:

- Medium staco cuts
- $p_T^{\mu} > 10 \text{ GeV}, |\eta_{\mu}| < 2.4, M_{\mu\mu} > 20 \text{ GeV}$
- Working in the trigger turn-on region...



- Binned log-likelihood method used to extract excl. and diss. factors
- Single and double-diss. parts added
- DY contribution assumed to be well described (Z region check)
- Tried on different distributions



240

220

200

180 160

Events / ( 0.1

400

350

300

250

200

150

100

50

0

Events / ( 0.0012 )

diss\_yield =  $822 \pm 109$ 

excl\_yield =  $810 \pm 107$ 

dy yield = 145

x = 0.75

- All distributions give reasonable values
- Agreement with factors obtained by CMS
- Exclusive cross-section = 0.70 ± 0.05 (stat) pb (M > 20GeV, p<sub>T</sub> > 10GeV, |η| < 2.4)</li>
- Equivalent Proton Approximation predictions: σ = 0.79 pb



#### **Electron channel**

- Dielectron selection:
  - Medium++ electrons
  - $p_T^e > 12 \text{ GeV}, |\eta_e| < 2.4, M_{ee} > 24 \text{ GeV}$
  - Also working in the trigger turn-on region



#### **Electron channel**

- Same procedure to extract scaling factors (RooFit)
- Due to the lower statistics in this channel extraction possible only with acoplanarity distribution



#### **Systematics**

- Systematics related with muons (similar for electrons):
  - Momentum resolution / energy scale
    - MuonMomentumCorrections package is used -> 0.5 % effect on exclusive yield
  - Reconstruction efficiency
    - MuonEfficiencyCorrections package is used -> 0.2 % effect on exclusive yield
  - Muon Trigger efficiency
    - Evaluated using SF's uncertainties -> 0.3 % effect on exclusive yield
- Pileup correction / exclusivity cut
  - Varying the nominal 3 mm veto distance from 2 to 4 mm -> 3.3 % effect
- Nonzero beam crossing angle:
  - Boost of the dimuon system in the y direction -> 0.3 % effect
- Background uncertainties:
  - DY part varied by ± 10% to check the impact of this contribution -> 1.4 % effect
- Work is still ongoing on this part...

## Summary (Exclusive dileptons)

- $\gamma\gamma \rightarrow \ell^+\ell^-$  is an important process to cosider to achieve high precision measurement of DY
- Potential source of background for any other dilepton analysis
- Analysis is based on full 2011 pp dataset (both muon and electron channels)
- Exclusive cross section extracted, first results on the photon PDF in the proton
- <u>Supporting note almost ready</u> (we will ask for an Ed Board)

## Conclusions / outlook

- Simulation of AFP detectors
  - 3 internal notes written in order to document all the details / algorithms
  - This work is also a support for simulation of exisiting forward detectors
- Exclusive dileptons analysis
  - Analysis is well advanced
  - Editorial Board will be set up soon
  - Long-term prospect: exclusive diboson analysis
- In parallel: finalization of Pb-Pb forward-backward correlations analysis (2010 ATLAS data)
  - Testing the physics of particle production in heavy ion collisions
  - Ed Board already set up

#### **Simulation Setup**

- Actual SiD setup:
  - 2 AFP stations with Si detectors per ATLAS side (SiD 0 1 <- IP -> SiD 2 3)
  - 6 Si layers/station separated by 10 mm (13 deg tilt in the x-z plane)
  - No staggering of the layers (yet)
  - 336 x 80 array of 50 x 250 μm<sup>2</sup> pixels per layer
  - Kalman filter is used for the tracking reconstruction



#### **Simulation Setup**

- Actual TD Setup:
  - 2 staggered (non overlapped) Timing Detectors per side, placed in the outer stations (AFP 212)
  - 4 trains with 8 bars /detector configuration
  - Straight Qbar geometry ( $\theta_c \approx 48 \text{ deg}$ , 2mm x 6mm x 150 mm)
  - Fast Cherenkov algorithm developed to transport optical photons in Geant4 (≈ 100 times faster wrt full G4 simulation!)



# **AFP SiD performance**

- Reconstructed track multiplicity with  $|x_{slope}| < 0.003$  and  $|y_{slope}| < 0.003$  cut (per station) to separate proton tracks from showers
- Events are generated without any cut on the proton kinematics (i.e.  $\xi < 1$ )
- Approximately 50% of protons in the sample do not enter the AFP acceptance region (0.015 < ξ < 0.15) which results in no reconstructed tracks</li>



- AFP SiD tracking cuts:
  - Tracks are reconstructed when N<sub>pix</sub> < 1000 (per station)</li>
  - Trk\_quality > 6  $(quality = N_{hits} + \frac{chi2_{max} chi2_{trk}}{chi2_{max} + 1})$ , with chi2<sub>max</sub> = 2.0 and cut on  $chi2_{trk} = 2.0$ )
  - ITrk\_x\_slope < 0.003, |Trk\_y\_slope < 0.003</p>
  - Trk\_n = 1 / station (Trk\_n  $\leq$  2 in inner + Trk\_n  $\leq$  5 in outer station as a pileup robust setup)
  - |Trk\_x<sub>siD0</sub> Trk\_x<sub>siD1</sub>| < 1.5mm (same for the other pair of stations)</li>
     |Trk\_y<sub>siD0</sub> Trk\_y<sub>siD1</sub>| < 1.5mm</li>

- AFP TD cuts:
  - Signal: 1 train with 8 fired and  $\leq$  4 saturated bars (per side)
  - Pile-up robust setup: ≤ 2 trains with SiD+TD geo matching (wrt track x position)

- 4 x 30k HERWIG++ DPE jets sample (with 20 < p<sub>T</sub><sup>jet</sup> < 80 GeV cut)</li>
- Different pile-up conditions: μ = 0 (signal only), 1, 5, 15
- Pile-up events are generated using PYTHIA8



# **AFP SiD performance**

- AFP proton track reconstruction efficiency for different pile-up scenarios
- $\approx 95\%$  in  $0.02 < \xi < 0.11$  and  $\mu$  = 0/1
- Tracks matched between the inner (AFP 204) and outer (AFP 212) stations are included
- Events with track multiplicity

   ≤ 2 in inner and
   track multiplicity ≤ 5 in outer
   station are considered
- Optimization of cuts will further improve the tracking efficiency



#### **AFP TD performance**

- SiD + TD combined efficiency in the range  $0.02 < \xi < 0.11$ :
  - ≈ 85% for μ = 0/1
  - ≈ 80% for μ = 5
  - ≈ **77%** for μ = **15**
- SiD + TD geo matching included
- TD ToF correction for the reconstructed track y position is also applied
- Agreement with the previous studies and expectations, e.g. for low  $\mu$ :
  - TD eff. = 90% (2% ineff./ bar + 3% for rest of material)
    SiD eff. \* TD eff. = 85%

• TD z-vertex reconstruction resolution for double tag events:

- 2.3 mm resolution for low μ case
- This value corresponds to **10 ps** TOF resolution per TD station

# AFP simulation: plans, prospects

- Migration to Roman Pots configuration
- First Geant4 GeoModel of AFP Pot is ready
- <u>SiD</u>: study the optimal number of layers (depends on space available in RP, dead material, resolution achieved, ...)
- <u>TD</u>: prepare the LQbar design of ToF detectors
- Implement a new version of Fast Cherenkov algorithm – speeding up the simulation



- Standalone Geant4 simulation of LQbars very promising results
- New ideas for a "taper" to speed up the 2nd peak
- 2-3 times more light in the same time window as the Qbar case



- Kalman filter optimal estimator of the state vector of a linear dynamical system <- minimization of the mean square estimation error
- State vector  $x_k$ :

$$\boldsymbol{x}_k \equiv \boldsymbol{F}_{k-1} \boldsymbol{x}_{k-1} + \boldsymbol{w}_{k-1}$$

- $F_{k-1}$  track propagator from layer k-1 to k
- $w_{k-1}$  process noise (e.g. multiple scattering)
- Track parametrization for AFP SiDs -> 2D position + slopes:

• 
$$\mathbf{x}_{k} = \left(x_{k}, \frac{dx_{k}}{dz}, y_{k}, \frac{dy_{k}}{dz}\right)^{T}$$
  
•  $\mathbf{F}_{k-1} = \begin{pmatrix} 1 & \Delta z_{k} & 0 & 0\\ 0 & 1 & \Delta z_{k} & 0\\ 0 & 0 & 1 & 0\\ 0 & 0 & 0 & 1 \end{pmatrix}$ ,  $\Delta z_{k}$  - distance between layers  $k$  and  $k$ -1

- Generation and transportation of optical (Cherenkov) photons in GEANT4 is very time-consuming
- Main idea of Fast Cherenkov algorithm:
  - Generation of Cherenkov photons w.r.t. known formulas , e.g. the number of photons per cm of radiator:

$$dN = 370 \cdot Z^2 \left[ \frac{\text{photons}}{\text{eV} \cdot \text{cm}} \right] \left( 1 - \frac{1}{\beta^2 \cdot n^2(\epsilon)} \right) d\epsilon dx$$

 Transportation - multiple reflections of photons inside the quartic bar
 -> Calculation of effective path length
 -> Calculation of time

**2D:** 
$$L_{\text{eff}} = \frac{L}{\cos \alpha}$$
  
**3D:**  $L_{\text{eff}} = \frac{y_0}{\cos \alpha \cdot \cos \delta}$ 





Photons in the proton(s) can also couple to quark/anti-quarks (diagrams below)

- Calculations need to be done using QED corrections: like PDF MRST2004QED
- here <Q<sup>2</sup>> depends also on the partons momenta => spread in Delta\_pT of the muons, very subtle check of the proton structure



3 July 2014

- Z boson transverse momentum analysis
  - Up to 1% contribution in the first pT(Z) bins



| 2011 Period | Muon Triggers                       |
|-------------|-------------------------------------|
| B-I         | EF_2mu10_loose    EF_mu18_MG        |
| J           | EF_2mu10_loose    EF_mu18_MG_medium |
| К           | EF_2mu10_loose    EF_mu18_MG_medium |
| L-M         | EF_2mu10_loose    EF_mu18_MG_medium |

| 2011 Period | Electron Triggers                     |
|-------------|---------------------------------------|
| B-I         | EF_2e12_medium    EF_e20_medium       |
| J           | EF_2e12_medium    EF_e20_medium       |
| К           | EF_2e12T_medium    EF_e22_medium      |
| L-M         | EF_2e12Tvh_medium    EF_e22vh_medium1 |

 Note: dilepton triggers prescaled in periods K-M (≈ 66% of 2011 int. lumi)

1778 events after all selection criteria



- Double-diss PYTHIA8 (MRST2004QED) vs LPAIR comparison (after scaling factors imposed)
- pT(µ<sup>+</sup>µ<sup>-</sup>) description:
  - At low pT's LPAIR gives better agreement (left)
  - Higher pT's: PYTHIA8 is better (right plot)

