

Calorimètre Liquide Ionisation Position Scintillation Organométallique

Détection γ par effet Cerenkov dans le détecteur CaLIPSO :

Préparation, étude et optimisation d'un Démonstrateur Optique

Emilie RAMOS Journées doctorants IRFU 2 juillet 2013

Calorimètre Liquide Ionisation Position Scintillation Organométallique

Un détecteur pour l'imagerie TEP

1. Injection radio-traceur (¹⁸FDG, ¹⁸F-choline) → fixation sur cellules d'intérêt Emission β⁺ parcours 0,5 mm → annihilation ⇒ 2 gammas de 511 keV à ≈ 180°

Calorimètre Liquide Ionisation Position Scintillation Organométallique

Un détecteur pour l'imagerie TEP

 Détection des gammas en coïncidence grâce à un anneau de détecteurs.

Millions de lignes de réponse / s

 \Rightarrow Points de croisement

= zones d'activité

Calorimètre Liquide Ionisation Position Scintillation Organométallique

Un détecteur pour l'imagerie TEP

- I. Fonctionnement et atouts de CaLIPSO
- II. Propriétés optiques du TMBi
- III. Conception du 1^{er} démonstrateur optique
- IV. Voies d'optimisation
- V. Futur démonstrateur optique optimisé

- I. Fonctionnement et atouts de CaLIPSO
 - a) Principe du détecteur
 - b) Intérêt en imagerie TEP
 - c) Enjeux technologiques
- II. Propriétés optiques du TMBi
- III. Conception du 1^{er} démonstrateur optique
- IV. Voies d'optimisation
- V. Futur démonstrateur optique optimisé

Calorimètre Liquide Ionisation Position Scintillation Organométallique

• Principe du détecteur

- I. Fonctionnement et atouts de CaLIPSO
 - a) Principe du détecteur
 - b) Intérêt en imagerie TEP
 - c) Enjeux technologiques
- II. Propriétés optiques du TMBi
- III. Conception du 1^{er} démonstrateur optique
- IV. Voies d'optimisation
- V. Futur démonstrateur optique optimisé

Calorimètre Liquide Ionisation Position Scintillation Organométallique

caractéristiques	LSO	CdTE	Xénon Liquide	ТМВі
Pouvoir d'atténuation	95% (2,2cm)	95% (5cm)	95% (10cm)	85% (5cm)
Rapport photoélectrique	30%	15%	21%	47% Bi : Z = 83 !
Résolution en temps	500 ps optimisé	2 ns optimisé	< 1 ns	375 ps à optimiser
Résolution énergie (FWHM)	15%	1%	5%	<10%
Localisation des interactions (Résolution spatiale)	1 cm 0.2 cm fraction	0,8 mm pixels	0,2 mm calculés	0,2 mm calculés
Utilisateur	Facile	Facile	Difficile (cryogénie)	Facile

Calorimètre Liquide Ionisation Position Scintillation Organométallique

caractéristiques	LSO	CdTE	Xénon Liquide	ТМВі
Pouvoir d'atténuation	95% (2,2cm)	95% (5cm)	95% (10cm)	85% (5cm)
Rapport photoélectrique	30%	15%	21%	47% Bi : Z = 83 !
Résolution en temps	500 ps optimisé	2 ns or		375 ps à optimiser
Résolution énergie (FWHM)	15%	1		<10%
Localisation des interactions (Résolution spatiale)	1 cm 0.2 cm fraction	0,8 mn	dences vraies	0,2 mm calculés
Utilisateur	Facile	Fa(<mark>⇒ bien le</mark> ligne de	ocalisés sur la projection	Facile
		⇒ inform	nation utile	

Calorimètre Liquide Ionisation Posit

• Intérêt en imagerie TEP

caractéristiques	LSO	coïncidences f	on Gortuites	TMBi
Pouvoir d'atténuation	95% (2,2cm)	 ⇒ mauvaise loc ⇒ réduction des 	calisation Dcm)	85% (5cm)
Rapport photoélectrique	30%	capacités de ⇒ biais quantita	comptage atif 6	47% Bi : Z = 83 !
Résolution en temps	500 ps optimisé	2 ns optimisé	< 1 ns	375 ps à optimiser
Résolution énergie (FWHM)	15%	1%	5%	<10%
Localisation des interactions (Résolution spatiale)	1 cm 0.2 cm fraction	0,8 mm pixels	0,2 mm calculés	0,2 mm calculés
Utilisateur	Facile	Facile	Difficile (cryogénie)	Facile

ganométallique

Calorimètre Liquide Ionisation Posit

1 Λ.

Interet en image						
caractéristiques	LSO	coïncidences f	Cortuites			
Pouvoir d'atténuation	95% (2,2cm)	 ⇒ mauvaise loc ⇒ réduction des 	calisation	mesure de t2-t1		
Rapport photoélectrique	30%	capacités de ▷ biais quantita	estimation directe de la position de projection bittatif Bi : Z = 8		hilation sur la ligi	
Résolution en temps	500 ps optimisé	2 ns optimisé	< 1 ns	375 ps à optimiser		
Résolution énergie (FWHM)	15%	1%	5%	<10%		
Localisation des interactions (Résolution spatiale)	1 cm 0.2 cm fraction	0,8 mm pixels	0,2 mm calculés	0,2 mm calculés		
Utilisateur	Facile	Facile	Difficile (cryogénie)	Facile		

collimation électronique

ganométallique

Calorimètre Liquide Ionisation Position Scintillation Organométallique

caractéristiques	LSO				ТМВі
Pouvoir d'atténuation	95% (2,2cm)	9			85% (5cm)
Rapport photoélectrique	30%		coïncide	nces diffusées	47% Bi : Z = 83 !
Résolution en temps	500 ps optimisé	2 r	 ⇒ mauvaise ⇒ diminutie ⇒ biais qua 	on du contraste	375 ps à optimiser
Résolution énergie (FWHM)	15%		1%	5%	<10%
Localisation des interactions (Résolution spatiale)	1 cm 0.2 cm fraction	0,8	s mm pixels	0,2 mm calculés	0,2 mm calculés
Utilisateur	Facile		Facile	Difficile (cryogénie)	Facile

Calorimètre Liquide Ionisation Position Scintillation Organométallique

caractéristiques	LSO	CdTE	Xénon Liquide	ТМВі
Pouvoir d'atténuation	95% (2,2cm)	95% (5cm)	95% (10cm)	85% (5cm)
Rapport photoélectrique	30%	15%	21%	47% Bi : Z = 83 !
Résolution en temps	500 ps optimisé	2 ns optimisé	< 1 ns	375 ps à optimiser
Résolution énergie (FWHM)	15%	1%	5%	<10%
Localisation des interactions (Résolution spatiale)	1 cm 0.2 cm fraction	0,8 mm pixels	0,2 mm calculés	0,2 mm calculés
Utilisateur	Facile	Facile	Difficile (cryogénie)	Facile

Calorimètre Liquide Ionisation Position Scintillation Organométallique

caractéristiques	LSO	CdTE	Xénon Liquide	ТМВі
Pouvoir d'atténuation	95% (2,2cm)	95% (5cm)	95% (10cm)	85% (5cm)
Rapport photoélectrique	30%	15%	21%	47% Bi : Z = 83 !
Résolution en temps	500 ps optimisé	2 ns optimisé	< 1 ns	375 ps à optimiser
Résolution énergie (FWHM)	15%	1%	5%	<10%
Localisation des interactions (Résolution spatiale)	1 cm 0.2 cm fraction	0,8 mm pixels	0,2 mm calculés	0,2 mm calculés
Utilisateur	Facile	Facile	Difficile (cryogénie)	Facile

Calorimètre Liquide Ionisation Position Scintillation Organométallique

I. Fonctionnement et atouts de CaLIPSO

- a) Principe du détecteur
- b) Intérêt en imagerie TEP
- c) Enjeux technologiques
- II. Propriétés optiques du TMBi
- III. Conception du 1^{er} démonstrateur optique
- IV. Voies d'optimisation
- V. Futur démonstrateur optique optimisé

Calorimètre Liquide Ionisation Position Scintillation Organométallique

• Enjeux technologiques

- Ultra-vide, ultra-propreté, ultra-purification

- Enjeux technologiques
 - Ultra-vide, ultra-propreté, ultra-purification
 - TMBi réactif avec tous matériaux oxydants
 - TMBi méconnu car jamais utilisé dans un détecteur
 - Pas de scintillation : effet Cerenkov
 - ⇒Très peu de lumière !

- I. Fonctionnement et atouts de CaLIPSO
- II. Propriétés optiques du TMBi
 - a) Indice de réfraction
 - b) Coefficient d'absorption
- III. Conception du 1^{er} démonstrateur optique
- IV. Voies d'optimisation
- V. Futur démonstrateur optique optimisé

Calorimètre Liquide Ionisation Position Scintillation Organométallique

indice de réfraction

Mesure au goniomètre

Cellules prismatiques étanches

Test sur l'acétone avec 2 cuves différentes

Emilie Ramos

Calorimètre Liquide Ionisation Position Scintillation Organométallique

• indice de réfraction

Daniel Desforge Emilie Ramos

Erreurs : géométrie de la cuve

Mesure au goniomètre Cellules prismatiques étanches Mesure sur le TMBi

- I. Fonctionnement et atouts de CaLIPSO
- II. Propriétés optiques du TMBi
 - a) Indice de réfraction
 - **b)** Coefficient d'absorption
- III. Conception du 1^{er} démonstrateur optique
- IV. Voies d'optimisation
- V. Futur démonstrateur optique optimisé

Calorimètre Liquide Ionisation Position Scintillation Organométallique

longueur d'absorption

Cuves en verre à faces parallèles étanches

Tenir compte des différentes pertes lumineuses:

- Absorption dans le verre
- Réflexions de Fresnel à toutes les interfaces

Test avec de l'eau

* sans compter l'abs du verre
* en comptant l'abs du verre
* référence

ightarrow pertes de lumière 2%

Calorimètre Liquide Ionisation Position Scintillation Organométallique

longueur d'absorption

Cuves en verre à faces parallèles étanches

Tenir compte des différentes pertes lumineuses:

- Absorption dans le verre
- Réflexions de Fresnel à toutes les interfaces

Mesure sur le TMBi

erreurs dominées par l'incertitude sur les pertes de lumière

- I. Fonctionnement et atouts de CaLIPSO
- II. Propriétés optiques du TMBi
- III. Conception du 1^{er} démonstrateur optique
 - a) Plans et montage
 - b) Efficacité et résolution en temps
- IV. Voies d'optimisation
- V. Futur démonstrateur optique optimisé

Calorimètre Liquide Ionisation Position Scintillation Organométallique

Calorimètre Liquide Ionisation Position Scintillation Organométallique

Calorimètre Liquide Ionisation Position Scintillation Organométallique

- I. Fonctionnement et atouts de CaLIPSO
- II. Propriétés optiques du TMBi
- III. Conception du 1^{er} démonstrateur optique
 - a) Plans et montage
 - **b)** Efficacité et résolution en temps
- IV. Voies d'optimisation
- V. Futur démonstrateur optique optimisé

Calorimètre Liquide Ionisation Position Scintillation Organométallique

Démonstrateur intégré au banc de mesure

★ 3 raquettes PMTs (tag cosmiques)

- Voir déclenchement de plusieurs cellules sur un signal fort (cosmiques)
- Évaluer efficacité de déclenchement du démonstrateur

Calorimètre Liquide Ionisation Position Scintillation Organométallique

Démonstrateur intégré au banc de mesure

- Visualisation déclenchement de plusieurs cellules sur un signal fort (cosmiques) —>
- Validation du principe de déclenchement sur un 511 keV <u>Cerenkov</u> (1^{ère} mondiale)
- Mesures préliminaires de l'efficacité de déclenchement et de la résolution en temps du démonstrateur

- Remplacement de la source de ²²Na par du ¹⁸F
- \Rightarrow Pas d'émission γ parasite à 1,3 MeV
- Nouveaux détecteurs YAP optimisés (cristaux plus petits, meilleur rendement de scintillation, meilleurs couplages optiques)
- \Rightarrow Meilleure résolution en temps et en énergie (sélection des 511 keV)

- I. Fonctionnement et atouts de CaLIPSO
- II. Propriétés optiques du TMBi
- III. Conception du 1^{er} démonstrateur optique
- IV. Voies d'optimisation
 - a) Simulation Monte Carlo du démonstrateur
 - b) Optimisations pour améliorer la collection de lumière
 - c) Résolution en temps attendue
- V. Futur démonstrateur optique optimisé

Calorimètre Liquide Ionisation Position Scintillation Organométallique

Géométrie du démonstrateur optique dans Geant4

Calorimètre Liquide Ionisation Position Scintillation Organométallique

Devenir des photons lumineux **55% auto-absorption Diaphonie 76%** ⇒ 12% incidents photocathode voie 5

Efficacité **globale** de détection des gamma **12,1%** (seuil de détection 1 photoélectron)

Géométrie initiale du démonstrateur optique

- I. Fonctionnement et atouts de CaLIPSO
- II. Propriétés optiques du TMBi
- III. Conception du 1^{er} démonstrateur optique
- IV. Voies d'optimisation
 - a) Simulation Monte Carlo du démonstrateur
 - **b)** Optimisations pour améliorer la collection de lumière
 - c) Résolution en temps attendue
- V. Futur démonstrateur optique optimisé

Calorimètre Liquide Ionisation Position Scintillation Organométallique

• Voies d'optimisation :

Modifications	DO version 1	DO version 2 optimisé
Joint optique	Épaisseur 2 mm n = 1,41	Epaisseur 10 μm n = 1,55
Verre du corps de chambre	BK7 n = 1,5	Saphir N = 1,75
Épaisseur de la fenêtre	7 mm	2 mm
PMTs	R11265-100	R11265-200 Meilleure DQE
Épaisseur du détecteur	5 cm de TMBi	3 cm de TMBi ⇒ Diminution de l'auto- absorption

Calorimètre Liquide Ionisation Position Scintillation Organométallique

• Efficacité attendue :

Devenir des photons lumineux 55% auto-absorption $\rightarrow 41\%$ Diaphonie $76\% \rightarrow 24\%$ 12% incidents photocathode voie $5 \rightarrow 35\%$ \Rightarrow Efficacité de collection de lumière x3

Efficacité **globale** de détection des gamma 12,1% (seuil de détection 1 photoélectron) → 25%

 \Rightarrow Efficacité <u>globale</u> x2

Géométrie optimisée 3cm du démonstrateur optique (v10)

Calorimètre Liquide Ionisation Position Scintillation Organométallique

• Efficacité attendue :

Efficacité **globale** de détection des gamma 12,1% (seuil de détection 1^{er} photoélectron) → 25%

MAIS processus d'intérêt = effet photoélectrique

Efficacité de détection des gamma sur l'effet photoélectrique (seuil de détection 1^{er} photoélectron) → 68%

- I. Fonctionnement et atouts de CaLIPSO
- II. Propriétés optiques du TMBi
- III. Conception du 1^{er} démonstrateur optique
- IV. Voies d'optimisation
 - a) Simulation Monte Carlo du démonstrateur
 - b) Optimisations pour améliorer la collection de lumière
 - c) Résolution en temps attendue
- V. Futur démonstrateur optique optimisé

Calorimètre Liquide Ionisation Position Scintillation Organométallique

• Données d'entrée:

Calorimètre Liquide Ionisation Position Scintillation Organométallique

• Résultats:

Calorimètre Liquide Ionisation Position Scintillation Organométallique

• Résultats:

- I. Fonctionnement et atouts de CaLIPSO
- II. Propriétés optiques du TMBi
- III. Conception du 1^{er} démonstrateur optique
- IV. Voies d'optimisation
- V. Futur démonstrateur optique optimisé

Calorimètre Liquide Ionisation Position Scintillation Organométallique

• Plans du démonstrateur optique v2

Calorimètre Liquide Ionisation Position Scintillation Organométallique

Montage cet été Résultats à venir . . .

Calorimètre Liquide Ionisation Position Scintillation Organométallique

Merci de votre attention

- Modélisation statistique de la détection
- Données d'entrée (Monte Carlo démonstrateur optique v2) :
 - Histogramme <u>temps d'arrivée des photons optiques</u> à la photocathode (n°5).
 - Histogramme <u>nombre de photons optiques détectés</u> par la photocathode (n°5), tenant compte de sa DQE.
 - Cas ou le gamma fait UNIQUEMENT un effet photoélectrique dans le TMBi.
- Modèle simplifié :
 - <u>Tirage aléatoire n°1</u>: Nombre de photons optiques détectés
 - <u>Tirage aléatoire n°2</u>: Pour chaque photon optique détecté, tirage de son temps d'arrivée à la photocathode Tarr
 - <u>Tirage aléatoire n°3</u>: Décalage en temps Tdec induit par le PMT, tiré dans une gaussienne 270 ps FWHM (TTS des PMTs)
 - Temps de détection T du photon optique = Tarr + Tdec
 - Seuil = 1^{er} photoélectron donc on retient le T le plus petit (Tmin) parmi tous les photons optiques détectés
 - \Rightarrow Histogramme de tous les Tmin calculés pour chacun des 100 000 évènements