

Search for the Higgs boson in the dilepton channel

Paper accepted by PRD: hep-ex/1301.1243

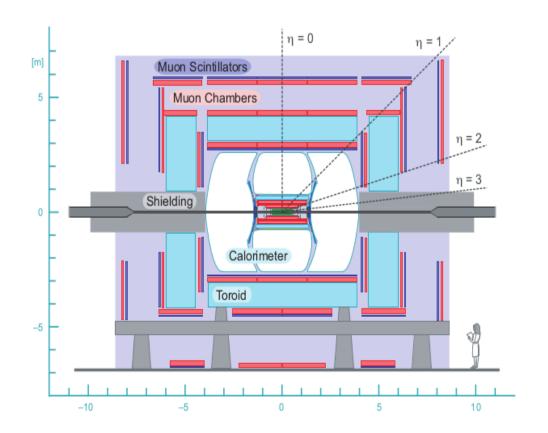
Alexandre Fauré Saclay Higgs/Top Group

July, 2nd 2013 IRFU Thesis Day

Outline

- Introduction
- Analysis Strategy
- Recent results
- WW Cross section measurements
- Conclusion

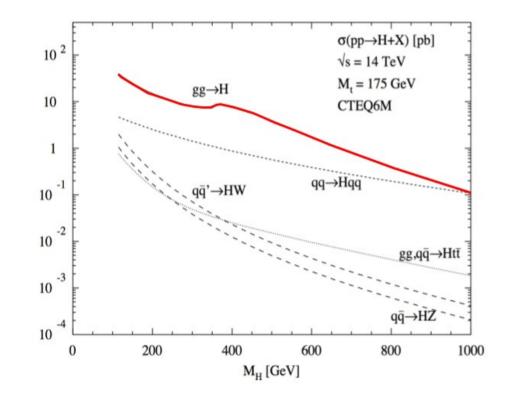
The D0 detector

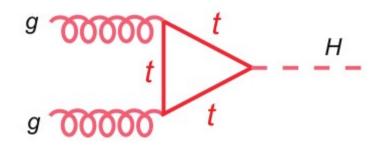


The DØ detector is one of the two experiments at the Fermilab's TeVatron, located near Chicago, IL, USA.

Run II dataset

- $p\bar{p}$ collisions
- $\sqrt{s} = 1.96 \text{ TeV}$
- Start: April 2002
- End: September 2011
- Run II full dataset for this analysis: 9.7 fb^{-1}

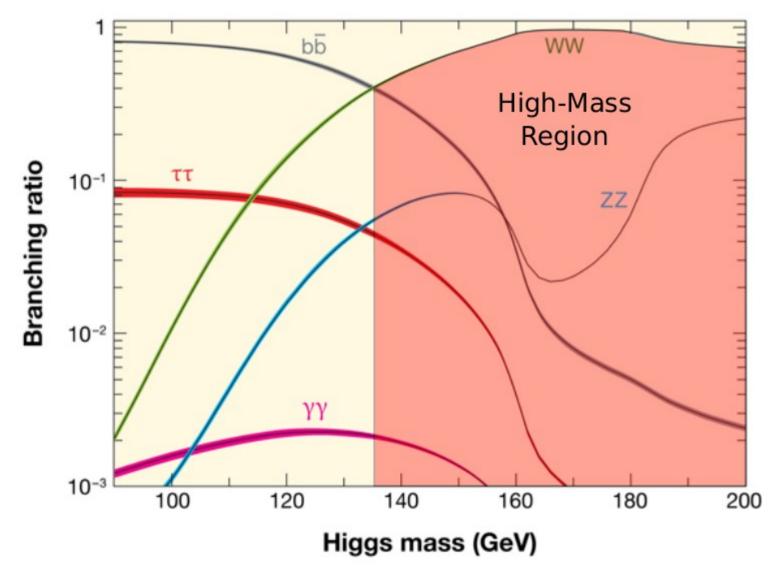



Sources of signal :

CEA

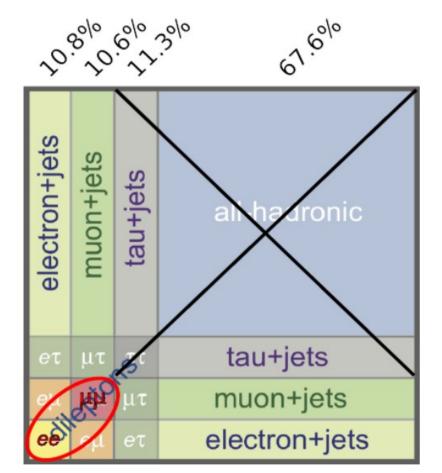
- Gluon fusion
- Associated production via HiggsStrahlung (VH)
- Vector boson fusion (VBF)

 \rightarrow The most important Higgs production process is the gluon fusion process.



Higgs Boson Decays

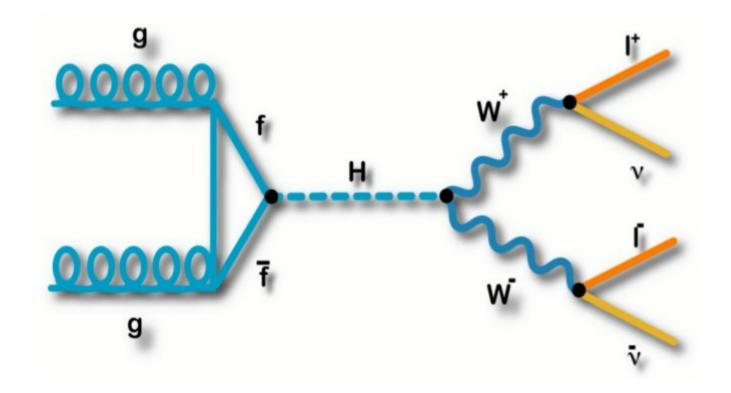
At high mass, the $H \rightarrow WW$ channel is the most sensitive one for the search of the Higgs boson at DØ.


W Boson Decays

The $H \rightarrow WW \rightarrow l\nu l\nu$ has the highest sensitivity for the high-mass region and has an impact for the lower masses as well.

Final states available :

- All hadronic: not doable at the TeVatron/LHC.
- Semi-Leptonic: high signal high background
- All Leptonic: low signal low background.
- \rightarrow Higgs part of my PhD is dedicated to $\mu\mu$ channel .



Signal Topology

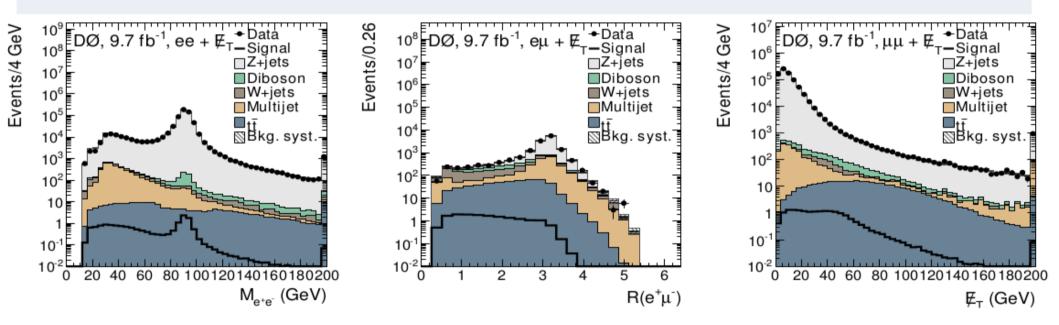
Signal Signature

- Two opposite sign leptons (e^+e^- , $e^+\mu^-$ and $\mu^+\mu^-$).
- High p_T leptons.
- Close $\Delta R(I^+I^-)$ due to the Higgs spin 0.
- Presence of Missing Transverse Energy $(\not\!\!E_T)$.

Strategy of Search

Common steps for the 3 analyses.

- 1. Preselection
- 2. Trigger Correction (for mumu channel)
- 3. Reweighting to correct the MC simulation
- 4. Signal discrimination : BDTs for rejecting backgrounds.
- 5. Derive final results



Preselection Plots

Technique

- Preselection of two opposite sign high p_T leptons.
- Data/MC Normalization in the Z peak mass window.

	Data	Total background			Signal
ee:	659570	664460	\pm	13290	16.1
$e\mu$:	14936	15142	\pm	303	16.6
$\mu\mu$:	811549	818269	\pm	16370	18.7

Reweightings

 \rightarrow During the analysis steps, we need to correct our MC simulations in order to match the data distributions.

- REWEIGHTINGS COMMON TO THREE CHANNELS [SIMULATION]: Instantaneous luminosity and primary vertex position.
- SAMPLE SPECIFIC REWEIGHTINGS [PHYSICS]: WW p_T , H p_T , WW ϕ_{II} , p_T^Z and p_T^W . One of my first task for the $\mu\mu$ analysis !

• TRIGGER CORRECTION [DETECTOR] (for $\mu\mu$ only): $\eta_{det}, \varphi, njets$ and p_T distributions.

- INCLUSIVE JETS REWEIGHTINGS [DETECTOR]: for eµ and ee : electron-ID variable. for μµ: η_{det}
- JET MULTIPLICITY DEPENDENT Z + jets REWEIGHTINGS [PHYSICS]: for ee and $\mu\mu$: $\Delta R(j_1j_2)$, p_T^Z and jet η .
- W+JETS/ γ [PHYSICS] (FOR $e\mu$ AND ee): normalization and shape correction are applied.

Trigger Correction

- The aim is to maximize the acceptance in the analysis so no explicit trigger is required.
- No simulation of the inclusive trigger (INCL) is available. Need to compute dedicated modeling.

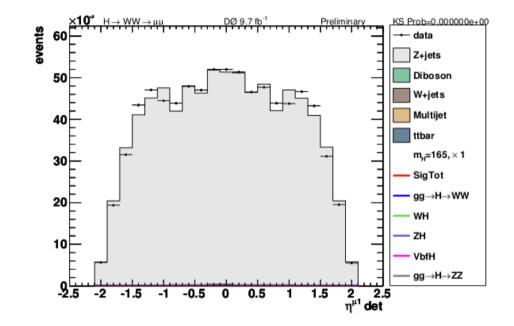
How to determine correction?

1. « Single Muon » trigger (SMOR) efficiency is measured in data and is included in MC (efficiency = 80%).

2. I derived from data the difference of shape and normalization between INCL trigger and SMOR trigger (correction = 15%). Variables : η_{det} , ϕ , njets and p_{τ} distributions.

3. I finally correct for the residual pT dependence due to the trigger turn-on. Derived by comparing the SMOR data to SMOR MC.

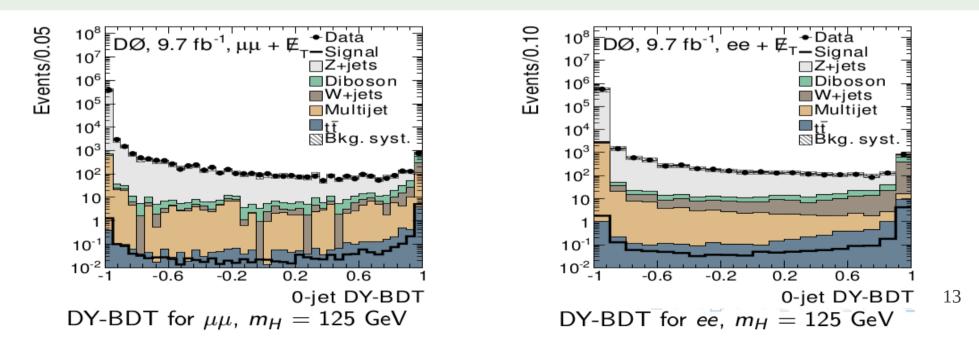
4. Overall inclusive trigger efficiency = 92 %.



Trigger Correction

 η_{det1} before Trigger Correction

 η_{det1} after Trigger Correction

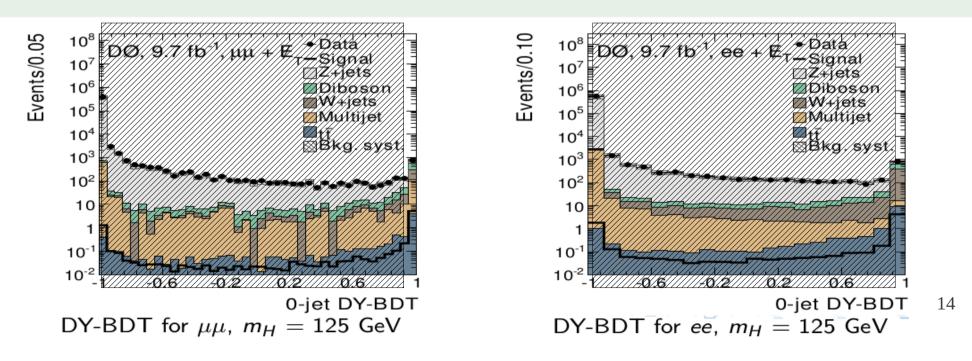


First Step

A first BDT is trained to reject most of the Drell-Yan (Z/γ* process) background in *ee* and μμ channel. We used the combination of the most discriminating variables like Δφ(I+I⁻), 𝔼.
→ It is performed separately for all sub-channels (0, 1 and ≥ 2 jets), for all the

 \rightarrow it is performed separately for all sub-channels (0, 1 and ≥ 2 jets), for all tr Higgs mass range.

2 How to choose the DY-BDT cut $? \rightarrow$ Get a balanced mixture of the different backgrounds, after selection.

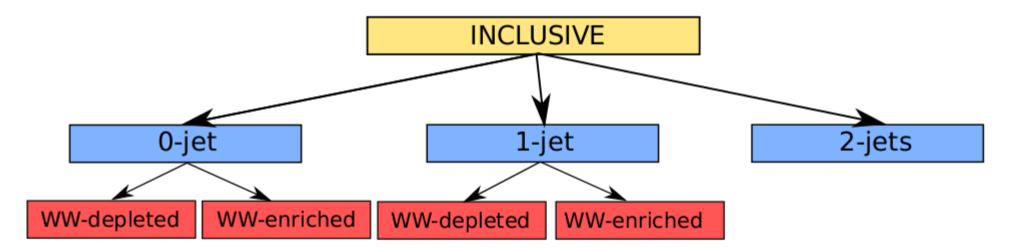


First Step

A first BDT is trained to reject most of the Drell-Yan (Z/γ* process) background in *ee* and μμ channel. We used the combination of the most discriminating variables like Δφ(I+I⁻), 𝔼.
→ It is performed separately for all sub-channels (0, 1 and ≥ 2 jets), for all the

Higgs mass range. \rightarrow It is performed separately for all sub-channels (0, 1 and ≥ 2 jets), for a

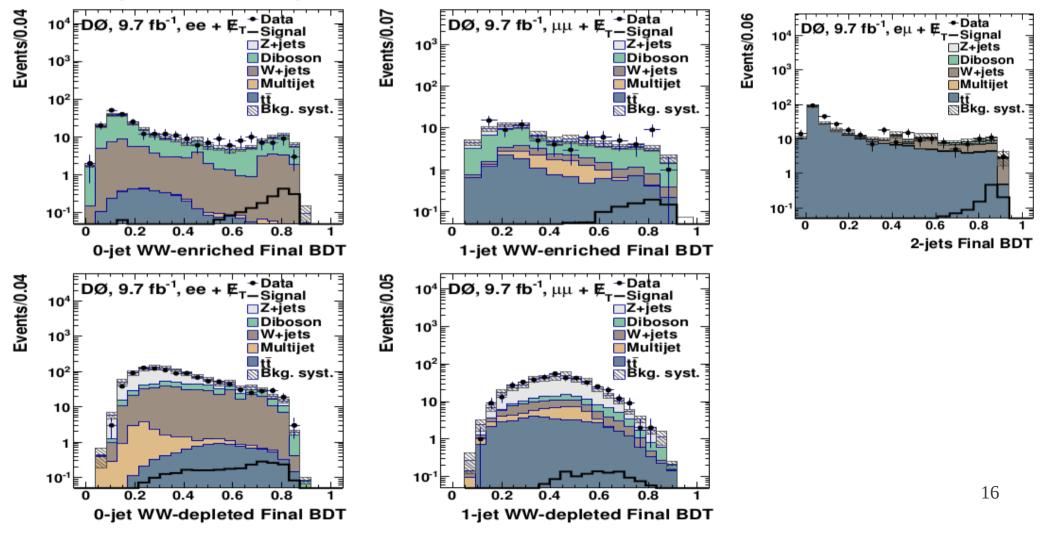
2 How to choose the DY-BDT cut $? \rightarrow$ Get a balanced mixture of the different backgrounds, after selection.


BDTs: 2. Split

Second Step

After the DY-BDT cut, split the 0-jet and 1-jet channel in **WW background** enriched/depleted samples according to :

- dedicated WW-BDT for *ee* and $\mu\mu$ channels (0-jet and 1-jet).
- lepton quality for $e\mu$ channel (0-jet).



Third Step

A final FD-BDT is trained to reject all remaining backgrounds It is performed separately for all sub-channels (0-, 1- and \geq 2-jets) depending on WW background enriched/depleted and lepton quality regions = 4-5 sub-channels.

BDTs : 3. Reject other backgrounds

- ee and μμ (0-1-jet channels) : Use the WW discriminant to separate WW background from the others.
- eµ (0-jet channel) : Use the lepton quality variable in LowLikelihood and HighLikelihood regions.

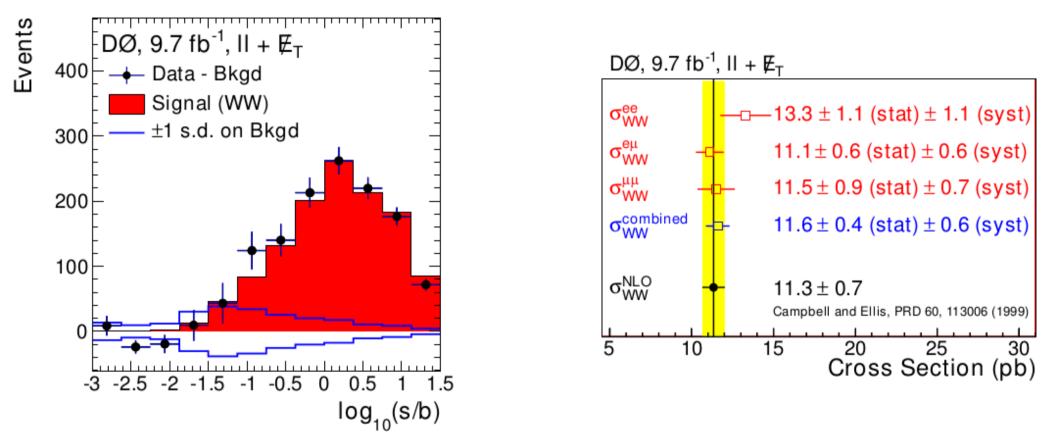
Systematics

- FLAT: Which only affects normalization of both signals and backgrounds (e.g. cross section uncertainty).
- SHAPE: Wich affect the shape of distributions, for both signals and backgrounds (e.g. Jet Energy Scale).

Source	Uncertainty (%)
Overall normalization	4.0
W+jets normalization	10.0 - 30.0
Diboson cross section	6.0
t cross section	7.0
Multijet normalization	30.0
Z +jets jet-bin normalization	2.0-15.0
$gg \rightarrow H$ cross section (PDF)	7.6 - 13.8 - 29.7
VH cross section	6.0
qqH cross section	5.0
Jet energy scale	4.0
Jet resolution	0.5
Jet primary vertex association	2.0
b-tagging discriminant	<2.0
$gg \rightarrow H$ cross section (scale)	20.0 - 40.0 - 8 inc + cov. matrix

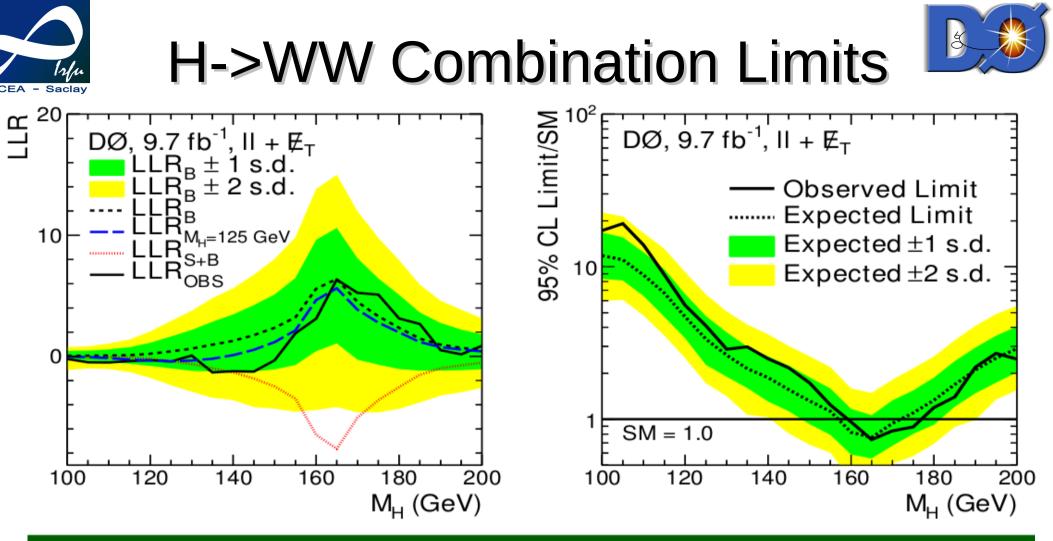
WW Xsection measurements

The WW cross-section measurement is a way to validate our analysis techniques used in the Higgs search. The signal is now : $p\bar{p} \rightarrow WW$.


The same treatment is made from the preselection criteria up to the multi-variate techniques. Only some points are different from our regular Higgs search.

Measurement strategy

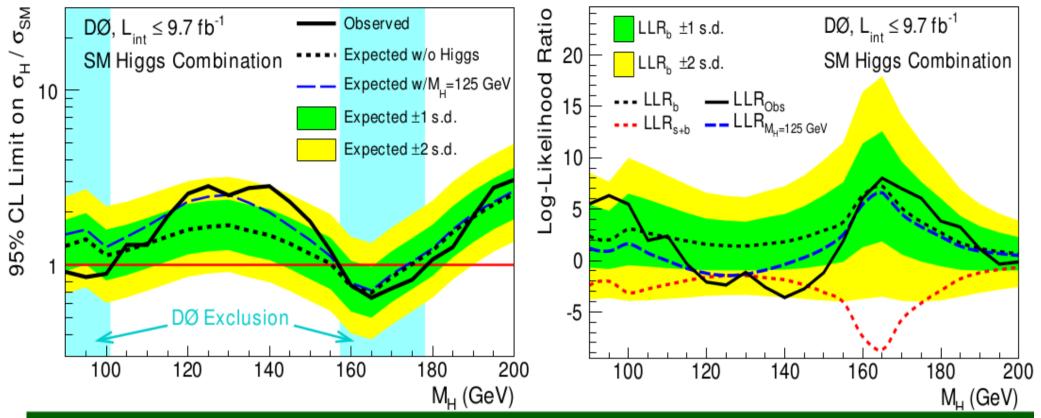
- The DY-BDT is the same used as the Higgs search analysis (Topology difference between SM di-boson production and SM H → WW is the dilepton angular distribution).
- ② All channels do not use the ≥2-jets channel due to the extremely low WW contribution.
- **3** The FD-BDT is re-trained using only WW as signal.



The background-subtracted data distribution for the final discriminant for the final WW cross section measurement and the summary of cross-section measurements.

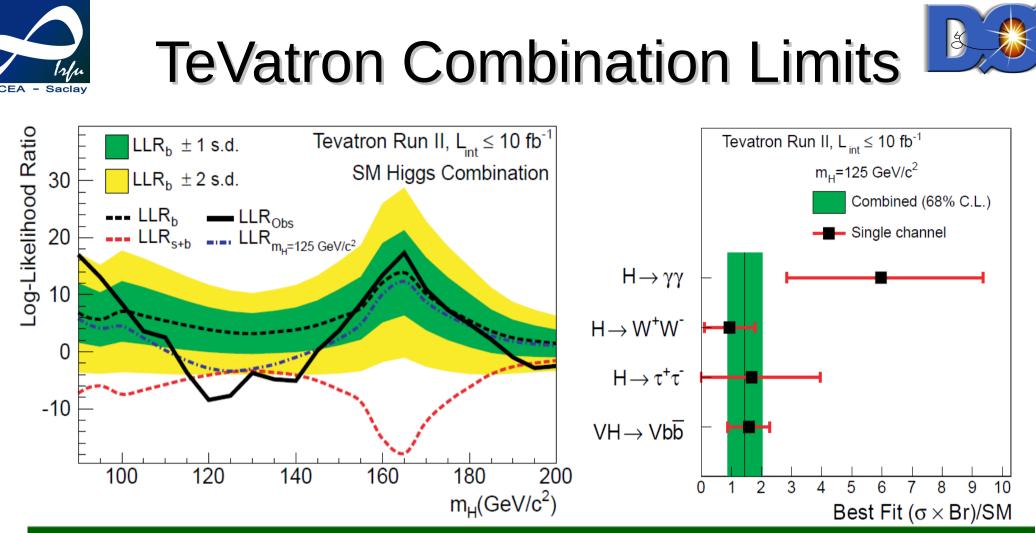
Result

The measured value of $11.6\pm0.7~pb$ is in good agreement with the SM prediction of $11.3\pm0.7~pb.$


Result

We exclude at 95% C.L. 159 $< m_H < 176$ GeV (expected exclusion sensitivity is $156 < m_H < 172$ GeV).

 \rightarrow For $m_H = 125$ GeV, we exclude **4.1** $\times \sigma_H^{SM}$ (expected sensitivity is 3.4). Slight excess in $110 < m_H < 150$ GeV (compatible with a SM Higgs boson of 125 GeV).


D0 Combination Limits

Result

D0 excludes at 95 % C.L. 157<m_ $_{\rm H}{<}178$ GeV (expected exclusion is 155<m_ $_{\rm H}{<}175$ GeV).

→ For m_{H} =125 GeV, D0 excludes 2.86 x σ^{SM} (expected sensitivity is 1.68). Slight excess in 120< m_{H} <145 GeV (compatible with a 125 SM Higgs). Accepted by PRD, hep-ex/1303.0823

Result

TeVatron excludes at 95 % C.L. 149<m_<182 GeV (expected exclusion is 140<m_<184 GeV).

- Best fit overall signal strength : R = 1.4 + 0.6 for $m_{\mu} = 125$ GeV.
- Best fit H->WW signal strength : R = 0.9 + 0.8 for $m_{\mu} = 125$ GeV.

Submitted to PRD, hep-ex/1303.6346

Summary

With the H-> WW channel, we contribute to the final answer that the TeVatron gives for the search of a SM Higgs boson.

Higgs Search

With only the H->WW channel, we are able to exclude at 95 % C.L. The region 159<mH<176 GeV.

About the Higgs boson at 125 GeV found by ATLAS and CMS :

- H->WW channel has a non-negligible sensitivity for mH=125 GeV and we have a slight excess.
- The combined D0 result shows a slight excess (< 2 s.d.) compatible with a 125 GeV Higgs boson.
- Combined TeVatron results shows 3.0 s.d. Excess for m_{μ} =125 GeV.

After the Higgs ?

I finished to work on the Higgs since the end of 2012.

Started to work on the Top Quark Asymmetry in the dilepton channel with Slava Sharyy and Boris Tuchming.