Towards a new model of atmospheric tides: from Venus to super-Earths

Pierre Auclair-Desrotour

DDays – Journées des thésards, July 3rd and 4th

Phd advisors: Jacques Laskar (IMCCE/Observatoire de Paris), Stéphane Mathis (AIM/CEA)

Introduction

- Auclair-Desrotour Pierre
- University course:
 - Ecole des Ponts et Chaussées, ParisTech, Department of Mechanical Engineering
 - Master of Astronomy & Astrophysics of Observatoire de Paris, specialty Gravitational
 Systems Dynamics
 - Contact: Master's thesis
- Motivations:
 - Interdisciplinary topic valorizing knowledge acquired in engineering school and master
 - > solid and fluid mechanics, celestial mechanics, astrophysics culture, scientific computing
 - Theoretical physics problem
 - Dynamic teams
 - Research training

Introduction

Modeling tidal dissipation in super-Earths

Solid core (solid layer)

Internal velocity field

Tidal quality factor Q α 1/Dissipation

Atmosphere (fluid layer)

Towards a new model of atmospheric tides

«Vector sphere» par I, Cronholm144

The revolution of exoplanets

Orbital dynamics:

- Semi-major axis
- Eccentricity
- Orbital inclination
- Rotational dynamics:
 - Obliquity
 - Rotation (magnetic dynamo)
 - Internal heating (evolution)

Affected by tidal effects

Tidal interactions must be understood and quantified!

State of the art

A defined observational roadmap

CHEOPS (2017)

TESS (2017)

PLATO (2024)

Tidal dissipation little understood and poorly quantified!

Recent important theoretical progresses:

 \rightarrow Fluid layers

e.g. Remus, Mathis & Zahn (2012); Ogilvie & Lin (2004); Ogilvie (2009 - 2013) \rightarrow Rocky/icy layers

e.g. Correia, Levrard, Laskar (2008), Efroimsky (2012); Remus, ..., Lainey (2012,

2015)

\rightarrow super-Earths atmospheres

e.g. Forget & Leconte (2014)

Tidal effects in super-Earths

 δ_{a}

δ

Solid core (solid layer)

Insolation

Tidal gravitational potential

Atmosphere (fluid layer)

Equilibrium states: a torques balance

Spin equation:

Need for a realistic physical modeling of atmospheric tides!

A global analytical model for thin atmospheres

Insolation

Tidal gravitational potential

H << R

Atmosphere

Towards a new model of atmospheric tides

Solid core

Tidal waves properties

Atmospheric tides dynamics

Inertia frequency

$$\frac{\partial V_{\theta}}{\partial t} - 2\Omega V_{\varphi} \cos \theta = -\frac{1}{r} \frac{\partial}{\partial \theta} \left(\frac{\delta p}{\rho_{0}} + U \right)$$
Gravitational forcing

$$\frac{\partial V_{\varphi}}{\partial t} + 2\Omega \cos \theta V_{\theta} = -\frac{1}{r \sin \theta} \frac{\partial}{\partial \varphi} \left(\frac{\delta p}{\rho_{0}} + U \right),$$
Navier Stokes

$$\rho_{0} \frac{\partial V_{r}}{\partial t} = -\frac{\partial \delta p}{\partial r} - g \delta p - \rho_{0} \frac{\partial U}{\partial r}$$
Mavier Stokes

$$\frac{\partial \delta \rho}{\partial t} + \frac{1}{r^{2}} \frac{\partial}{\partial r} \left(r^{2} \rho_{0} V_{r} \right) + \frac{\rho_{0}}{r \sin \theta} \left[\frac{\partial}{\partial \theta} (\sin \theta V_{\theta}) + \frac{\partial V_{\varphi}}{\partial \varphi} \right] = 0$$
Thermal forcing

$$\frac{1}{\Gamma_{1} p_{0}} \left(\frac{\partial \delta p}{\partial t} + \Gamma_{1} \sigma_{0} \delta p \right) + \frac{N^{2}}{g} \frac{\partial \xi_{r}}{\partial t} = \frac{\kappa \rho_{0}}{p_{0}} U + \frac{1}{\rho_{0}} \left(\frac{\partial \delta \rho}{\partial t} + \frac{\sigma_{0} \delta \rho}{\rho_{0}} \right)$$
Heat transport
Brunt-Väisälä frequency
Thermal frequency
Maded terms

Horizontal structure

Vertical structure

Frequency regimes: comparison with Chapman & Lindzen

Spatial distribution of perturbed quantities

In good agreement with the GCM simulations of Leconte, Wu, Menou, Murray (2015)

Comparison with measures

δp (mbar)

Thermal forcings

Conclusions and prospects

- Earth's semi-diurnal tide explained by the analytical model
- Identification of tidal regimes
- Dependence of the tidal torque on the tidal frequency
- Exploration of the domain of parameters
- Application to Venus and typical super-Earths
- Coupling with solid tides models (cf. Remus & al. 2012)

Publication A&A in preparation

Publication 1 (Master's thesis) - Impact of the frequency dependence of tidal Q on the evolution of planetary systems

Publication 2 - Understanding tidal dissipation in stars and fluid planetary regions I – Rotation, stratification & thermal diffusivity

Publication 3 - Atmospheric tides in Earth-like exoplanets

