Towards a new model of atmospheric tides: from Venus to super-Earths

Pierre Auclair-Desrotour

DDays - Journées des thésards, July $3^{\text {rd }}$ and $4^{\text {th }}$

Introduction

- Auclair-Desrotour Pierre
- University course:
- Ecole des Ponts et Chaussées, ParisTech, Department of Mechanical Engineering
- Master of Astronomy \& Astrophysics of Observatoire de Paris, specialty Gravitational Systems Dynamics
- Contact: Master's thesis
- Motivations:
- Interdisciplinary topic valorizing knowledge acquired in engineering school and master
> solid and fluid mechanics, celestial mechanics, astrophysics culture, scientific computing
- Theoretical physics problem
- Dynamic teams
- Research training

Introduction

Modeling tidal dissipation in super-Earths

The revolution of exoplanets

- Orbital dynamics:
- Semi-major axis
- Eccentricity
- Orbital inclination
- Rotational dynamics:

Affected by tidal effects

- Obliquity
- Rotation (magnetic dynamo)
- Internal heating (evolution)

Tidal interactions must be understood and quantified!

State of the art

A defined observational roadmap

CoRoT (2006)

Kepler (2009)

CHEOPS (2017) TESS (2017)

Tidal dissipation little understood and poorly quantified!

Recent important theoretical progresses:

\rightarrow Fluid layers
e.g: Remus, Mathis \& Zahn (2012) ; Ogilvie \& Lin (2004) ; Ogilvie (2009 - 2013)
\rightarrow Rocky/icy layers
e.g. Correia, Levrard, Laskar (2008), Efroimsky (2012) ; Remus, ..., Lainey (2012, 2015)
\rightarrow super-Earths atmospheres
e.g. Forget \& Leconte (2014)

Tidal effects in super-Earths

Equilibrium states: a torques balance

Need for a realistic physical modeling of atmospheric tides!

A global analytical model for thin atmospheres

Tidal waves properties

Atmospheric tides dynamics

Inertia frequency
Reference model:
$\left.\frac{\partial V_{\theta}}{\partial t}-2 \Omega\right)_{\varphi} \cos \theta=-\frac{1}{r} \frac{\partial}{\partial \theta}(\frac{\delta p}{\rho_{0}}+\underbrace{\text { U }}_{\text {Gravitational forcing }}$
$\frac{\partial \dot{V}_{\varphi}}{\partial t}+2 \Omega \cos \theta V_{\theta}=-\frac{1}{r \sin \theta} \frac{\partial}{\partial \varphi}\left(\frac{\delta p}{\rho_{0}}+U\right)$,
$\rho_{0} \frac{\partial V_{r}}{\partial t}=-\frac{\partial \delta p}{\partial r}-g \delta \rho-\rho_{0} \frac{\partial U}{\partial r}$.
$\frac{\partial \delta \rho}{\partial t}+\frac{1}{r^{2}} \frac{\partial}{\partial r}\left(r^{2} \rho_{0} V_{r}\right)+\frac{\rho_{0}}{r \sin \theta}\left[\frac{\partial}{\partial \theta}\left(\sin \theta V_{\theta}\right)+\frac{\partial V_{\varphi}}{\partial \varphi}\right]=0$
Thermal forcing
$\frac{1}{\Gamma_{1} p_{0}}\left(\frac{\partial \delta p}{\partial t}+\Gamma_{1} \sigma_{0} \delta p\right)+N_{g}^{2} \frac{\partial \xi_{r}}{\partial t}=\frac{\kappa \rho_{0}}{p_{0}} J+\frac{1}{\rho_{0}}\left(\frac{\partial \delta \rho}{\partial t}+\sigma_{0} \delta \rho\right)$
Brunt-Väisälä frequency

Chapman \& Lindzen (1970)

Navier Stokes

Conservation of mass

Heat transport

Added terms

Horizontal structure

$$
\begin{array}{r}
\delta p=\sum_{\sigma, s} \delta p^{\sigma, s}(\theta, x) e^{i(\sigma t+s \varphi)} \\
\Rightarrow \delta p^{\sigma, s}=\sum_{n} \delta p_{n}(x) \Theta_{n}(\theta) \\
\text { Radial profiles Hough functions }
\end{array}
$$

Expansion in Fourier series

Expansion in Hough functions

Laplace's tidal equation

$$
\left[\frac{1}{\sin \theta} \frac{\partial}{\partial \theta}\left(\frac{\nu^{2} \sin \theta}{1-\nu^{2} \cos ^{2} \theta} \frac{\partial}{\partial \theta}\right)-\frac{\nu^{2}}{1-\nu^{2} \cos ^{2} \theta}\left(s \nu \frac{1+\nu^{2} \cos ^{2} \theta}{1-\nu^{2} \cos ^{2} \theta}+\frac{s^{2}}{\sin ^{2} \theta}\right)\right] \Theta_{n}=-\Lambda_{n} \Theta_{n}
$$

Vertical structure

Frequency regimes: comparison with Chapman \& Lindzen

Spatiai वistrinution of perturned auantities

In good agreement with the GCM simulations of Leconte, Wu, Menou, Murray (2015)

Comparison with measures

Thermal forcings

SUN

Heating by the incident flux

Conclusions and prospects

- Earth's semi-diurnal tide explained by the analytical model
- Identification of tidal regimes
- Dependence of the tidal torque on the tidal frequency
- Exploration of the domain of parameters
- Application to Venus and typical super-Earths
- Coupling with solid tides models (cf. Remus \& al. 2012)
\Rightarrow Publication A\&A in preparation

Publication 1 (Master's thesis) - Impact of the frequency

 dependence of tidal O on the evolution of planetary systemsAuclair-Desrotour, Le Poncin-Lafitte, Mathis

Letter A\&A (2014)

Astronomy

 AstrophysicsImpact of the frequency dependence of tidal Q on the evolution of planetary systems

Received 2 Ocoboce 2013 / Accepped 19 November 2013 ABSTRACT

Publication 2 - Understanding tidal dissipation in stars and fluid planetary regions
I-Rotation, stratification \& thermal diffusivity

Article A\&A (in press) Auclair-Desrotour, Mathis, Le Poncin-Lafitte (2015)

Publication 3 - Atmospheric tides in Earth-like exoplanets

