Mesure de l'angle de mélange θ_{13} avec les deux détecteurs de Double Chooz

Valérian Sibille

encadré par David Lhuillier

IRFU/SPhN

2 juillet 2015

Les neutrinos	L'expérience	Le bruit de fond cosmogénique	Autres contributions	Conclusion
Outline				

Le neutrino, une particule singulière Oscillations

L'expérience

Un site avec deux détecteurs Détection Les bruits de fond

3 Le bruit de fond cosmogénique

Base de spectres Outil de covariance Sélection d'évènements dans les données Sensibilité à l'⁸He

Autres contributions

Mesure de pesée Evolution du combustible réacteur

Les neutrinos	L'expérience	Le bruit de fond cosmogénique	Autres contributions	Conclusion
0				
Le neutrino,	une particule	singulière		

- Masse faible mais non nulle
 - \Rightarrow Oscillations e, μ, τ

• États de saveur u_e , u_μ , $u_ au$ pas états propres de masse u_1 , u_2 , u_3

$$U_{PMNS} = \begin{pmatrix} 1 & 0 & 0 \\ 0 & c_{23} & s_{23} \\ 0 & s_{23} & c_{23} \end{pmatrix} \begin{pmatrix} c_{13} & 0 & s_{13} e^{-i\delta} \\ 0 & 1 & 0 \\ -s_{13} e^{i\delta} & 0 & c_{13} \end{pmatrix} \begin{pmatrix} c_{12} & s_{12} & 0 \\ -s_{12} & c_{12} & 0 \\ 0 & 0 & 1 \end{pmatrix}$$

• Survie de $\overline{\nu_e}$ produit à $E_{\overline{\nu_e}}$ et détecté à L de la source

$$P_{\overline{\nu_e} \to \overline{\nu_e}}\left(L, E_{\overline{\nu_e}}\right) \simeq 1 - \sin^2\left(2\theta_{13}\right) \sin^2\left(\frac{\Delta m_{31}^2 L}{4E_{\overline{\nu_e}}}\right)$$

• $\theta_{13} \neq 0$: distorsion dans le spectre détecté à $L^0 = 1 \mathrm{km}$

	L'expérience	Le bruit de fond cosmogénique	Autres contributions	Conclusion
Outline				

Le neutrino, une particule singulière Oscillations

2 L'expérience

Un site avec deux détecteurs Détection Les bruits de fond

3 Le bruit de fond cosmogénique

Base de spectres Outil de covariance Sélection d'évènements dans les données Sensibilité à l'⁸He

Autres contributions

Mesure de pesée Evolution du combustible réacteur

CO		Le bruit de fond cosmogenique	Autres cont	Conclusion
Une expérie	nce de neutri	nos de réacteurs		
• Etu	dier la survie des	$\overline{ u_e}$ pour évaluer $ heta_{13}$		
			FAR DETECTOR	

	L'expérience	Le bruit de fond cosmogénique	Conclusion
	0000000		
Le détecte	ur proche		

	L'expérience	Le bruit de fond cosmogénique	Conclusion
	00000000		
Vers une me	esure différent	ielle	

- Évaluation de la distorsion du spectre induite par $heta_{13}$
 - \Rightarrow Bonne connaissance du spectre centrale nécessaire
 - \Rightarrow S'affranchir de cette connaissance par un détecteur proche

• Oscillation
$$L \to P_{\overline{\nu_e} \to \overline{\nu_e}} \left(L, E_{\overline{\nu_e}}^0 \right)$$
 avec $E_{\overline{\nu_e}}^0 = 3 \text{MeV}$

	L'expérience	Le bruit de fond cosmogénique	Conclusion
	0000000		
Potentiel of	de l'analyse		

• Précision comparable à Daya Bay avec deux détecteurs

000000000000000000000000000000000000000		000000	000	
Les neutrinos L experience Le bruit de fond cosmogenique Autres contributions Cond	Les neutrinos	Le bruit de fond cosmogenique	Autres contributions	Conclusion

• Par courants chargés

- Liquide scintillant signale les dépôts d'énergie
- Signal retardé discriminant
 - $\checkmark~$ énergie totale de $\sim 8 MeV$ sous forme de quelques γ
 - \checkmark corrélation temporelle avec le "prompt" (31.1 $\mu s)$
 - $\checkmark\,$ corrélation spatiale avec le "prompt" ($\leq 1 {\rm m})$

- ✓ 15cm d'acier [5]
- ✓ OV [3] meilleure précision sur les μ (et voisinage)

~ 7m

[9]

(10)

Résultats avec un seul détecteur						
00	00000000	000000	000			
	L'expérience	Le bruit de fond cosmogénique		Conclusion		

• Troisième publication (Gd-III) (JHEP 10 (2014) 086)

• Précision à 3- σ pour 467.9 jours : $\sin^2(2\theta_{13}) = 0.090^{+0.032}_{-0.029}$

 \Rightarrow Maîtrise des bruits de fond

	L'expérience	Le bruit de fond cosmogénique	Autres contributions	Conclusion
	0000000			
The section of the sector				

Les bruits de fond dans Double Chooz

 Accidentel : évènements non reliés par un processus physique passant les coupures

- Corrélé : évènements reliés par un processus physique
 - \checkmark neutrons rapides
 - ✓ muons s'arrêtant
 - ✓ noyaux cosmogéniques (⁹Li et ⁸He) : voie βn

	L'expérience	Le bruit de fond cosmogénique	Autres contributions	Conclusion
Outline				

Le neutrino, une particule singulière Oscillations

L'expérience

Un site avec deux détecteurs Détection Les bruits de fond

3 Le bruit de fond cosmogénique

Base de spectres Outil de covariance Sélection d'évènements dans les données Sensibilité à l'⁸He

Autres contributions

Mesure de pesée Evolution du combustible réacteur

Aperçu du travail à réaliser : exemple du ⁹Li

- Prédire l'énergie de toutes les particules intervenant
- Modéliser les largeurs de désintégration
- Traiter les branchements inconnus (9 pour ⁸He et 24 pour ⁹Li)

• Le Spectrum Generator produit un spectre brut par branchement inconnu

- ✓ Traitement relativiste complet
- ✓ Désintégration à n- corps par récurrence
- ✓ Largeurs gaussiennes
- Le Covariance Tool estime
 - ✓ L'effet des branchements inconnus
 - ✓ L'impact du magnétisme faible

	L'expérience	Le bruit de fond cosmogénique	Conclusion
		000000	
Mélange de la	base de donné	ées	

• Après simulation du détecteur à Lyon

- ⇒ Reconstruire un arbre de désintégration (XML)
- \Rightarrow Estimer l'impact des paramètres inconnus sur l'arbre moyen

L'expérience	Le bruit de fond cosmogénique	Autres contributions	Conclusion
	000000		

Matrices de covariance et de corrélation

- Calculer le spectre pour chaque jeu de paramètres (itération n+1)
- Mettre à jour la matrice avec le vecteur de contenu $\mathbf{X_{n+1}}$ de chaque nouveau spectre

$$\widehat{Var}_{n+1}(\mathbf{X}) = \frac{1}{n} \sum_{k=1}^{n+1} \left(\mathbf{X}_k - \overline{\mathbf{X}}_{n+1} \right)^{t} \left(\mathbf{X}_k - \overline{\mathbf{X}}_{n+1} \right)$$

• Arrêt lorsque les \widehat{Var}_{n+k} avec k>0 sont proches de \widehat{Var}_n (~ Cauchy)

	L'expérience	Le bruit de fond cosmogénique	Conclusion
		000000	
Comparaiso	n avec les don	inées	

• Spectre moyen issue de l'outil de covariance et données (publication Gd-III)

- Sélection des données avec une fonction de vraisemblance
 - Distance candidat μ
 - Nombres de captures neutroniques après μ

• Observation de la fraction d' ⁸He dans les données

• S'il y a plus de $\sim 10\%$ d'⁸He on devrait l'observer en 2016 (3- σ)

	L'expérience	Le bruit de fond cosmogénique	Autres contributions	Conclusion
Outline				

Le neutrino, une particule singulière Oscillations

L'expérience

Un site avec deux détecteurs Détection Les bruits de fond

3 Le bruit de fond cosmogénique

Base de spectres Outil de covariance Sélection d'évènements dans les données Sensibilité à l'⁸He

Autres contributions

Mesure de pesée Evolution du combustible réacteur

	L'expérience	Le bruit de fond cosmogénique	Autres contributions	Conclusion
			000	
Mesure de j	pesée			

- Connaissance du nombre de ¹H cibles primordiale
 - \Rightarrow Masse à 0.2% près

$$\Rightarrow$$
 Première mesure $M_0 = 10638 \, \mathrm{kg}$

	L'expérience	Le bruit de fond cosmogénique	Autres contributions	Conclusion
			000	
Système après	s remplissage			

- Thermalisation
- Prise en compte de la masse d'azote
- Prise en compte des tubes
- Dérive des capteurs

 \Rightarrow Corrections sur $M_1 = 2334 \, \mathrm{kg}$ faites pour remplir le cahier

Evolution	du comhustible	réacteur		
			000	
	L'expérience	Le bruit de fond cosmogénique	Autres contributions	Conclusion

• Fraction α_{Pu} effective pour les deux réacteurs obtenue par simulation

 \Rightarrow Le taux de $\overline{\nu_e}$ est bien corrélé à α_{Pu}

 \Rightarrow A renforcer avec les spectres et le détecteur proche

	L'expérience	Le bruit de fond cosmogénique	Autres contributions	Conclusion
Outline				

Le neutrino, une particule singulière Oscillations

L'expérience

Un site avec deux détecteurs Détection Les bruits de fond

3 Le bruit de fond cosmogénique

Base de spectres Outil de covariance Sélection d'évènements dans les données Sensibilité à l'⁸He

Autres contributions

Mesure de pesée Evolution du combustible réacteur

	L'expérience	Le bruit de fond cosmogénique	Autres contributions	Conclusion
Conclusion et	perspectives			

- ✓ Générateur de spectres cosmogéniques
- ✓ Outil pour estimer les corrélations au sein des spectres simulés
 - \Rightarrow Article sur les spectres des cosmogéniques (en rédaction)
- ✓ Etude de sensibilité à l'⁸He
- \checkmark Détermination du nombre de ¹H dans la cible du second détecteur
- ✓ Sensibilité à la quantité de ²³⁹Pu
- ✓ Enseignement (Optique, Plasmas, Quantique)
- Exploitation des données du détecteur proche
- $\hfill\square$ Analyse en forme pour $^{239}{\rm Pu}$

	L'expérience	Le bruit de fond cosmogénique	Autres contributions	Conclusion
Merci				

Merci pour votre attention

Background	Rate (d^{-1})	Gd-III/Gd-II
⁹ Li+ ⁸ He	$0.97^{+0.41}_{-0.16}$	0.78
$Fast-n + stop-\mu$	0.604 ± 0.051	0.52
Accidental	0.070 ± 0.003	0.27
13 C($lpha$, n) 16 O reaction	< 0.1	not reported in Gd-II
^{12}B	< 0.03	not reported in Gd-II

Source	Uncertainty (%)	Gd-III/Gd-II
Reactor flux	1.7	1.0
Detection efficiency	0.6	0.6
9 Li $+$ 8 He BG	+1.1 / -0.4	0.5
Fast-n and stop- μ BG	0.1	0.2
Statistics	0.8	0.7
Total	+2.3 / -2.0	0.8

Reactor Rate Modulation

Comparaison avec les autres expériences

Ingrédients pour chaque désintégration

• Moment e^- avec BESTIOLE : génération de cartes (T_e, Q_β)

 \Rightarrow variation de l'énergie disponible Q_{β}

• Toutes les autres particules avec une cinématique relativiste

