

Machet Martina (Advisor: Fabrice Couderc)

```
Université Paris-Sud – ED 517 PNC - SPP
```

Thesis announcement found on the web (INSPIRE-HEP)

Motivations:

- Master thesis at CERN in the CMS experiment, with the Higgs boson as a subject
- A PhD in the same experiment and on the same subject was a natural continuation
- At CEA-Irfu, for the good reputation of the Institute

Journées des thésards- 1 et 2 juillet 2015

- Thesis subject: Photon identification and properties of the Higgs boson in the VBF production mode using the H→γγ decay channel in the CMS experiment
- CMS photon identification Higgs boson vector boson fusion – pseudoscalar – HVV couplings

The Higgs boson and its decay in two photons

The Higgs boson

- In 1970s: unification between weak and electromagnetic interactions
 → electroweak interaction
- Unified theory → massless interaction-mediator bosons.
 Experimentally: W and Z bosons massive (short range interaction)
 - W/Z mass = 80/91 GeV, m_{proton} = 1 GeV
- Problem solved by the Higgs mechanism:
 - $^{\scriptscriptstyle >}$ Spontaneous symmetry breaking of electroweak interaction $\rightarrow~W$ and Z mass
 - > There must exist a new spin 0 particle, called Higgs boson, footprint of the mechanism
 - Higgs boson discovered at the LHC, mass = 125 GeV
 - > Next: study properties of the new particle

SM: particles mass proportional to their coupling strength to the Higgs boson

SM: particles mass proportional to their coupling strength to the Higgs boson

Decay	BR @125 GeV
bb	57%
WW	21%
ττ	6.4%
ZZ	2.6%
уу	0.2%

Higgs decay in 2 photons: low branching ratio but clear experimental signature thanks to excellent diphoton mass resolution The CMS detector and the electromagnetic calorimeter

The CMS detector and the electromagnetic calorimeter

DE LA RECHERCHE À L'INDUSTRIE

The CMS detector and the electromagnetic calorimeter

DE LA RECHERCHE À L'INDUSTR

Photons reconstruction in CMS

prompt photon: directly emitted in the hard scatter vertex (as opposed to photons emitted in jets hadronization)

compact shower

fake photon: mostly jets (e.g. $\pi^0 \rightarrow \gamma \gamma$)

broader shower

Photon identification studies at 13 TeV

Photon identification: discriminate between prompt and fake photons :

- Prompt photons = signal (hard scatter vertex)
- Fake photons = background (jets)

How to do this?

Using variables describing well the shower and energy deposits features:

- > Electromagnetic Shower Shape Variables
- Isolation Variables

Some examples of interesting variables:

• **R9**: ratio of the energy in the 3x3 crystals matrix to the total energy of the shower

 Isolation: energy sum of all charged and neutral particles around the considered photon.
 Isolated photon = small value of this sum

All photon identification variables combined in a unique variable using MVA technique:

- MVA: util that allow to classify events belonging to different categories
- MVA trained on simulated samples of prompt and fake photons

Need to optimize selection for 13 TeV analysis

Old selection = 7/8 TeV analysis

New selection = optimization for 13 TeV analysis

For a signal efficiency of ~90% the background efficiency is ~20%

Probing the HVV couplings in VBF production at 8 TeV

3 amplitudes contribute to VBF production:

$$\mathcal{A}$$
 (HVV) ~ $a_1 m_v^2 \mathcal{A}_{scalarSM} + a_2 \mathcal{A}_{scalar anomalous} + a_3 \mathcal{A}_{pseudo-scalar}$

- a_i: all possible HVV couplings
 - > In SM: $a_1 = 1$, $a_2 = a_3 = 0$
- Want to measure the fraction of :
 - > pseudo scalar production (related to a3)
 - anomualous scalar production (related to a2)
- For now concentrate on pseudo-scalar production

Physics processes and analysis strategy

Goal: constrain the pseudoscalar contribution

Physics processes and analysis strategy

Goal: constrain the pseudoscalar contribution

Goal: constrain the pseudoscalar contribution

Classifying Higgs boson production processes

DE LA RECHERCHE À L'INDUSTRI

MELA discriminants, 1D histograms

MELA discriminants, 2D maps

0.18

0.1

0.08

0.06

.04

0.02

- Involved in the preparation of the 13TeV data analysis
 - photon identification
 - development of analysis framework
 - in charge of $H \rightarrow \gamma \gamma$ simulated samples production
- First analysis of 13 TeV data for Higgs rediscovery

• HVV coupling analysis in VBF production using $H \rightarrow \gamma \gamma$ decay channel to be finalized (first with run 1 data)

Thanks for the attention !

Backup

 $H \rightarrow ZZ$ sensibility:

$$f_{a3} \cos(\Phi_{a3}) = 0.00^{+0.33}_{-0.33}$$

Expected sensibility for the VBF \rightarrow H \rightarrow $\gamma\gamma$ analysis:

~ a factor 2 less sensible

But important for the combination with other channels and for the new approach