DDays:01/07/2015

COSMIC HOMOGENEITY : A 28 GPC³ STUDY WITH THE BOSS QSO SAMPLE

Pierre Laurent, advisor : Jean-Marc Le Goff

Homogeneity and cosmological principle

The BOSS survey

Defining observables and their estimators

Is the Universe homogeneous ?

The need for a cosmological principle

The cosmological principle

Cosmological models rely on 2 assumptions :

The cosmological principle

Cosmological models rely on 2 assumptions :

General Relativity

The cosmological principle

Cosmological models rely on 2 assumptions :

General Relativity

Cosmological Principle

Universe is isotropic and homogeneous

The universe is <u>statistically</u> homogeneous and isotropic

The universe is <u>statistically</u> homogeneous and isotropic

The universe is <u>statistically</u> homogeneous and isotropic

How can we test it ?

Isotropy well tested :

How can we test it ?

□ Isotropy well tested :

- Copernican principle : we do not occupy a peculiar place in the universe.
- □ Isotropy + Copernican principle \rightarrow Homogeneity ...

How can we test it ?

Isotropy well tested :

- Copernican principle : we do not occupy a peculiar place in the universe.
- □ Isotropy + Copernican principle \rightarrow Homogeneity ...
- □ ... but not true fractal universe, and CP is a principle → need a direct test for homogeneity !
- Need 3D-survey with huge volume to have access to scales of interest (> 100 Mpc/h) !

SDSS and the BOSS QSO sample

The Baryon Oscillation Sky Survey

Spectroscopic survey at the 2.5-meter Sloan telescope (APO, New Mexico)

The Baryon Oscillation Sky Survey

- Spectroscopic survey at the 2.5-meter Sloan telescope (APO, New Mexico)
- \square Roughly 150,000 QSOs (z > 2.2)

Observables and estimators

 N(< r) : counts-in-sphere, average number of QSOs in a sphere of radius r around a given QSO

 N(< r) : counts-in-sphere, average number of QSOs in a sphere of radius r around a given QSO

$$\square D_2(r) \equiv \frac{d \ln N(< r)}{d \ln r}$$
: fractal correlation dimension

 N(< r) : counts-in-sphere, average number of QSOs in a sphere of radius r around a given QSO

$$\square D_2(r) \equiv \frac{d \ln N(< r)}{d \ln r}$$
: fractal correlation dimension

When homogeneity is reached :

$$N(\langle r) \propto r^3$$
 $D_2(r) = 3$

BOSS North Galactic Cap (NGC) footprint

 We generate a random distribution to account for geometrical defects

 We generate a random distribution to account for geometrical defects

$$N(< r) \to \mathcal{N}(< r) = \frac{N_{QSO}(< r)}{N_{randoms}(< r)}$$
$$D_2(r) = \frac{d \ln \mathcal{N}(< r)}{d \ln r} + 3$$

 We generate a random distribution to account for geometrical defects

$$N(< r) \to \mathcal{N}(< r) = \frac{N_{QSO}(< r)}{N_{randoms}(< r)}$$
$$D_2(r) = \frac{d \ln \mathcal{N}(< r)}{d \ln r} + 3$$

When homogeneity is reached :

$$\mathcal{N}(< r) = 1 \qquad \qquad D_2(r) = 3$$

1) Establishing homogeneity

$$\mathcal{N}(< r) = \frac{\int_0^r DD(s)ds}{A \cdot \int_0^r RR(s)ds}$$

 \square Uncertainty on $\langle \rho \rangle$ -> uncertainty on A

When homogeneity is reached :

$$\mathcal{N}(< r) = cste$$

$$D_2(r) = 3$$

2) More quantitative test

Optimal estimator ('Landy-Szalay'-like), but needs a well-defined mean density.

Less variance than the previous estimator

The results

Is the Universe homogeneous ? Consistency test with Λ CDM

Results with simple estimator

1) $\mathcal{N}(< r)$ compatible with power law at small scales and remains constant at from 200 Mpc.h⁻¹ until 1500 Mpc.h⁻¹ 2) $D_2(r)$ compatible with 3 at large scales Homogeneity is established up to 1500 Mpc.h⁻¹ with this estimator Homogeneity of matter distribution and comparison to Λ CDM

Check agreement with ΛCDM, with parameter from PLANCK 2015

$$\square \mathcal{N}_{QSO}(< r) - 1 = b^2 (\mathcal{N}_{DM}(< r) - 1)$$

Quantify homogeneity for dark matter distribution

Comparison with Λ CDM

1) Good Agreement between data and $\Lambda {\rm CDM}$ 2) b^2 compatible with former studies : $b=3.89\pm0.12$

Quantitative limit on homogeneity

3) Fractal universes rejected :

 $D_2(r) - 3 = (-1.8 \pm 1.9) \times 10^{-5} (1\sigma)$

Conclusion

\square Universe is homogeneous : $\rho=cste$

But are we really testing homogeneity ?

□ Universe is homogeneous : $\rho = cste$

- Redshift of random distribution taken from data → cannot exclude ρ = ρ(r)
 Safer conclusions :
 - Universe statistically isotropic in each redshift layer
 Universe is non-fractal : D₂(r) - 3 = (-1.8 ± 1.9) × 10⁻⁵(1σ)

500 Mpc/h

QUESTIONS ?

Statistical uncertainties

Correlation matrices are obtained from bootstrap resampling :

1st estimator (independent on homogeneity)

2nd estimator (less variance and correlation)

Systematic effects

Different sources of systematic effects:

I) Errors on the QSO position
 Error on angular position and redshift negligible

2) Inhomogeneity from target selection (TS)
 Dependence of TS with angular position → cuts and correction applied to mitigate systematic effects

Correction for TS inhomogeneity

- How to mitigate variation in TS angular completeness
 - 1) Restrain the analysis to homogeneous target selection : removal of the 1st year.

s. ξ (s) after first year removal

Correction for TS inhomogeneity

- How to mitigate variation in TS angular completeness
 - 1) Restrain the analysis to homogeneous target selection : removal of the 1st year.
 - 2) Apply an apparent magnitude cut on data, because fainter QSOs are more likely to be inhomogeneously selected.

s. ξ (s) after apparent magnitude cut

Correction for TS inhomogeneity

- How to mitigate variation in TS angular completeness
 - 1) Restrain the analysis to homogeneous target selection : removal of the 1st year.
 - 2) Apply an apparent magnitude cut on data, because fainter QSOs are more likely to be inhomogeneously selected.
 - 3) Depth of photometric survey used for TS is angular dependent
 we apply a weight to each QSOs to correct for this effect.

s. ξ (s) after apparent magnitude cut and weighting