Modeling the link between AGN and star
formation in primeval galaxies
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Cosmic crimes : who killed the galaxy ?

Some galaxies suddenly stop forming stars (they
get "quenched” and then they “die”) : why ?

Ideal culprit : central supermassive black hole

SMBH mass related to bulge mass -> co-evolution ?

Energy generated by SMBHs in active phases (AGNSs)
theoretically able to blow away all gas of the host
AGNs needed to reproduce observed number of stars in

simulations
=> Link between AGN feedback and SF quenching ?



A typlcal nearby d|sk galaxy

To turn the Earth into a  black hole, you
would need to squeeze it into a
9mm raEllus sphere T

Halo
(gas and
globular

clusters) ' ,
Disk '

(gas, stars,
dust, ...)

Supermassive black hole:
10”9 solar masses
‘Radius 13 x10Mg km™

The Sombrero Galaxy (VLT ANTU + FORS1) +% N

ESO PR Photo 07a/00 (22 February 2000) © European Southern Observatory ¥



A typical heair_b.ydiskg.alaxy |




GALAXY EVOLUTION a
CONTINUES...

FIRST STARS

400,000,000 YEARS
AFTER BIG BANG

Now
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FORMATION OF

THE SOLAR SYSTEM

8,700,000,000 YEARS
AFTER BIG BANG



Simulated high-redshift disk galaxies

Local disk

-

alaxies look like spirals...

Clumpy, gas-rich high-redshift disk-galaxies
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H band z-H zband H band z-H

Typical star-forming galaxies at z ~ 2. (Guo et al 2012)
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(Schematic)
Structure of
an AGN :

Active
Galactic
Nucleus

Narrow Line
Region

Broad Line
Region

Accretion
Disk

Unified AGN Model :

BLR (<31y)

NLR (> 300 ly)

Radio jets (>>3 kly) /
Emission cone Obscuring ®
Torus ®

From Urry & Padovani Non-illuminated® @
1995, modified neutral clumps




Observations of AGN

Core of Galaxy NGC 426l
Hubble Space Telescope

Wida Fiald / Planatary Camears
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Progress bar++

Primeval/high-redshift galaxies (/]
AGN O

AGN feedback

Link with star formation

HPC

To kill or not to kill ?

Stellar feedback



AGN feedback

A clump of gas falls onto the AGN...
Thermal feedback: in the simulation
HEATING

AGN absorbs energy due to accretion and re-emits
fraction of it, heating central region

Creation of a hot and diffuse outflow of gas
Radiative feedback:
IONIZATION added a posteriori

Energy of photons emitted by AGN is so high that
encountered gas is ionized



Structure of
an AGN :

Active
Galactic
Nucleus

Unified AGN Model:
BLR (<3 ly)
NLR (> 300 ly)
Radio jets (>>3 kly)
Emission cone

From Urry & Padovani

1995, modified
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AGN feedback vs star formation:

Stars form into cold and dense clumps of gas...

WHEREAS
AGN feedback dilutes and heats gas...

Is there an impact on star formation ?



Wake up... Awesome things coming!
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The Curie super-computer @
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Let’s investigate
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Do AGN (outflows) quench SF ?

Gas temperature Log(T/K)

7.9

Max. resolution : 6 pc
GMCs are resolved.

High-velocity
AGN-driven outflows

Mass outflow rates :
~ 10 - 100 % of SFR
(~ 30 M_sun/yr).

1 snapshot =1 moment
in the simulation

Gabor & Bournaud 2014



Do AGN (outflows) quench SF ?

Log(T/K)
151.5 Myr

AGN outflows do |
not quench star
formation.

... but:
Do AGNs
quench SF?

AGN
photoionization

Gabor & Bournaud 2014



Does AGN radiation quench SF ?

Gas density map of the disk seen edge-on

(cannot probe positive feedback)

3 Kpc 100 pc

mmm  Galacticdisk edge-on]  wmm Zoom in

Simulation with standard thermal AGN feedback (Gabor & Bournaud 2013)
+ RT post-processing (Roos et al. 2015 ApJ 800 19)
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Even at a QSO luminosity, the galactic disk remains completely neutral !
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b & A b ©

KN
o

N
N

B B B o O
NN N O 1 3|
~“kpc™]

=
o o

log Fraction of neutral H

log Final r ggg [Mg yr

Edge-on view L_AGN = 10"44.5 erg/s



Is the impact of AGN feedback luminosity-dependent ?

With a higher AGN luminosity :

- Regions ionized by AGN enlarged

- Most heated gas is in the gaseous halo

- Galactic disk remains neutral even for QSO luminosity

—Let's focus on the central region : 600 x 600 pc
(face-on view)
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Even at a QSO luminosity, the bulk of the star forming clumps is not affected !

super-powerful AGN
Face-on view —zoom in L_AGN = 10"44.5 erg/s



Does AGN radiation quench SF ?

- Diffuse star-forming regions are prevented from forming stars
- The stronger the AGN, the more efficiently gas is heated/ionized

- But dense star-forming clumps shield themselves

| u

1 1 1
(o) »

=
o

1 1 1
= (o] o
o

M. vrtkpc?d

=
N

=
N
log Final r <o

log Initial r e [Mg yr* kpc™]

'_\
N
1
B R
o b

e R
© o

-> Major contributors to the total SFR are not affected.

Roos et al. 2015 ApJ 800 19
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Instantaneous reduction of the total SFR
due to AGN photo-ionization

SFR reduction is not significant

Density of affected gas is small
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Almost there'!
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The POGO project
Physical Origins of Galactic Outflows

Do AGN+stellar outflows
quench star formation ?

in z~2 star-forming galaxies

Work in progress !

11 Mh of computation time, very high resolution (1.5 pc),
AGN feedback + stellar feedback, suite of 7 simulations



Qualitative properties of outflows

* Stars-driven outflows :
* High mass outflow rate
* Limited velocity (100 - 5oo km/s)
* Multiple SNe and young stars per galaxy
Bournaud et al. 2014, ...

 AGN-driven outflows:
* Low outflow density
* Highvelocity (3 000 - 30 000 km/s)
* 1 AGN inthe center of the galaxy (usually)
Gabor & Bournaud 2014, ...




Outflows in simulations

Example:

Outflows generated by :

- Supernovae (kin. energy)
- Young stars (rad. pressure)
- Both

(no AGN)



Non-linear coupling of stellar feedback models
(at dx > 1.5 pc)

Three runs with different feedback processes, all evolved for 8o Myr.

Supernovae OB stars SNe + OB stars

10 kpc M*=3.5x10%°

Outflow rates

2.6

Outflows from SNe + OB stars >> Qutflows from SNe +
Qutflows from OB stars

See also Hopkins+14 Gas density of simulated disk seen edge-on



Non-linear coupling of stellar feedback models

(at dx > 1.5 pc)

Three runs with different feedback processes, all evolved for 8o Myr.

Supernovae OB stars SNe + OB stars

e Accurate modeling of stellar feedback is crucial
for the outflow parameters !!

K —
-
¥ o - ~
= x5 - E

Outflow rates

2.6

Outflows from SNe + OB stars >> Qutflows from SNe +

Outflows from OB stars
See also Hopkins+14 Gas density of simulated disk seen edge-on



Can we model the multiple sources

of winds accurately ?

* Thermal energy injection from AGN
* lonization from AGN

* Thermal energy injection from SNe
» Kinetic energy injection from SNe
* Radiative pressure from OB stars

* High space and mass resolution:
probe GMCs and avoid numerical coupling
* + half resolution : check convergence



What if AGN+stellar FB also couple non-linearly ?

Supernovae OB stars SNe + OB stars Thermal AGN feedback

10 kpc M*=3.5x10%°

Outflow rates

(a) \ / (b)
First time ever. Let’s POGO !

Combined effect of all feedback models may lead to very
powerful and fast winds with high mass loading.

M1 : Mgas= 15 1Eg9 Msun
M2 : Mgas = 49 1E9 Msun M3 : AGN + stellar FB
M3 : Mgas =115 1Eg Msun M1, M2 : AGN; stellar FB ; AGN + stellar FB
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How do AGN + stellar outflows couple ?
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How do AGN + stellar outflows couple ?

9.0

8.0

Beginning | Stellar outflows ACi'Ng. stellar outflows
.
e 1 With M2 and M2:

| » Study outflow
| characteristics as a
function of time
| * Identify outflow pattern
for AGN FB only and
stellar FB only

* Study outflow pattern
| for AGN + stellar FB :
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| * Nature of expelled gas :
impact on SF ?

Y
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What is the main outflow driver ?

Study 3 galaxy masses :

< Outflow rate >
Very ,
high

*_-dominated ? AGN-dominated ?

Ma M2 M3

Mass loading compatible with observed IGM density ?
Miissing baryons problem...



What if AGN+stellar FB also couple non-linearly ?

* |f such dense UFQOs are produced:
* Evolve until steady state is reached
* Study mass loading, expelled gas, ...
* Impact on star formation ?
* ImpactonIGM?

UFO = ultra-fast outflow



What if they DON'T ?

* |fsuch dense UFOs are NOT produced :
* What other wind sources could produce
UFOs ?
* What kills them ?
* What other non-linear effects are we

missing ?



You're done'!
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SUMMARY : For further details, see Roos et al. 2015 ApJ 800 19.

AGNs do not kill galaxies

Would this conclusion change with accurate modeling of stellar and

AGN winds ?
Stay tuned for the POGO project!



Thank you for your attention.



Thermal and radiative AGN feedback in high-z galaxies..
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.. and have very little impact on the star-forming phase of the ISM.

Diffuse and extended star-forming regions around the AGN are

- 0
Reduction of SFR< 4 Yo suppressed, but major contributors to the SFR are left unaffecte

Orianne Roos, with S. Juneau, F. Bournaud and J. Gabor see Roos et al. 2015
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Simulation of a high-redshift disk galaxy

Typical density profile of a LOP in the disk
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CLOUDY

Large-scale spectral synthesis code : Ferland et al,
2013

Computes radiative transfer and molecular
chemistry

along 1D lines

Divides each line into thin zones

Balances recombination and ionization processes
Input : ionization source and density profile
Output : ionization fraction, temperature, line
emission ...



AGN SEDs I\/Iean Observed SEDs

10.0000 3 X-'rays uv optical | FIR

SEDs2 for varlous AGN models and observatlons
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Emission cone: NGC 5728

Hubble Space Telescope
Wide Field / Planetary Camera

Ground View HST View

From STScl, modified by G. Rieke

Mean half-opening angle : ~30° at low-z (Miller-Sanchez+2011)



