# Etude de la source radioactive du projet CeSOX

Mathieu DURERO mathieu.durero@cea.fr

CEA-Saclay, IRFU,SPP

Journées des doctorants IRFU, 01/07/2015









- Introduction
- 2 Neutrinos
- CeSOX en bref
- Caractériser la source
- Conclusion

#### Présentation

Introduction

#### Mathieu Durero

#### Cursus :

- Ingénieur de l'Institut d'Optique Théorique et Appliquée
- Master Engineering Physics du KTH (Stockholm)

#### Comment je suis arrivé là ?

En cherchant un sujet sur la physique du neutrino, en Île-de-France, en 2013, avec un enjeu sympathique.

Et avec un téléphone.

Le sujet : Recherche de neutrinos stériles à l'aide d'un générateur d'antineutrinos électroniques.

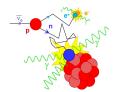
## Glossaire

Introduction

Neutrino : lepton neutre interagissant faiblement  $(\nu)$ .

Générateur d' $\bar{\nu}_e$ : source radioactive  $\beta^-$  (144Ce et 144Pr)

Neutrino stérile : particule hypothétique, non sensible aux trois


interactions, qui oscille avec les neutrinos.

Oscillation: Un neutrino de saveur donné à un instant t peut être

mesuré neutrino d'une saveur différente à t+1.

IBD : Réaction utilisée pour la détection des  $\bar{\nu}_e$  :

$$p + \bar{\nu}_e \rightarrow n + e^+$$





Recherche: travail de fourmi.

But : Tester l'hypothèse du neutrino stérile léger ( $\approx$  eV).

Expérience : Mesurer précisément le flux émis d'une source connue.

CeSOX en bref

Moyens : Un grand détecteur à liquide scintillant (Borexino).

Une source sur mesure.

Beaucoup de préparation : caractérisation de la

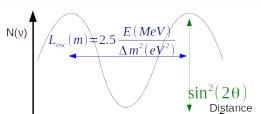
source, logistique, ajustement du détecteur...

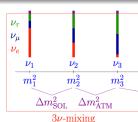
Quotidien Spectrométrie bêta et mesures d'activité.

- Postulé en 1930 par Pauli suite à l'observation des désintégrations bêta.  ${}_{N}^{A}X \rightarrow_{N} {}_{1}^{A}X + e^{-} + \bar{\nu}_{e}$
- Mis en évidence en 1956 par Reines et Cowan ( $\bar{\nu}_e$  à partir d'un réacteur nucléaire).
- Trois saveurs associées à  $e, \mu, \tau$ .
- De masse (presque) nulle.
- Des sections efficaces d'interaction faibles.
- To-do list : masses absolues, hiérarchie de masse, violation de CP, mécanisme générant des masses non-nulles, observation du CNB.

### Oscillations entre saveurs

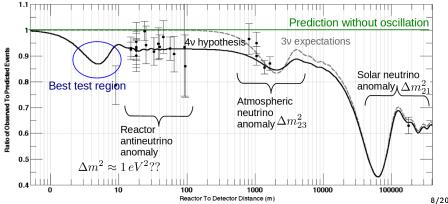
#### Problème


Le flux solaire observé représente une fraction du flux prédit.


## Hypothèse

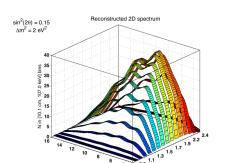
Oscillations des neutrinos entre les trois saveurs.

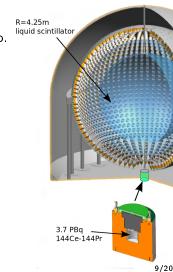
#### Confirmation


En 1998 Super-Kamiokande observe les oscillations entre  $\nu_{\mu}$  et  $\nu_{\tau}$  sur le flux de neutrinos atmosphériques.






### Anomalie des antineutrinos de réacteur


- Les anomalies Solaires et atmosphériques ont conduit à la découverte des oscillations.
- Une fois encore la prédiction d'un flux de neutrinos n'est pas en accord avec l'expérience.
- Hypothèse d'une nouvelle oscillation?



# Chercher des oscillations à courte distance avec un détecteur à bas bruit de fond

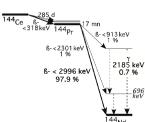
- Detection par IBD
- Une source à 8.25 mètre du centre de Borexino.
- Signature des oscillations en distance et en énergie.
- Analyse aussi prévue en taux d'événements.





## Attraits du couple $^{144}\mathrm{Ce}/^{144}\mathrm{Pr}$

ullet Une source de  $ar{
u}$  au delà du seuil IBD ( $Q_{eta}=3\,\mathrm{MeV}>1.8$ ).


CeSOX en bref

- Une demi-vie longue (285 jours)
- Un matériau relativement simple à obtenir

La chaîne de désintégration émet des  $\gamma$  à 2.2 MeV et 0.7% d'intensité.

#### Les besoins de CeSOX

- Activité nécessaire : > 3,7 PBq
- Limite de dose à proximité 500  $\mu \mathrm{Sv/an}$ .
- Une intensité  $\gamma$  réduite par  $10^{12}$
- Pouvoir entrer dans le tunnel de Borexino.



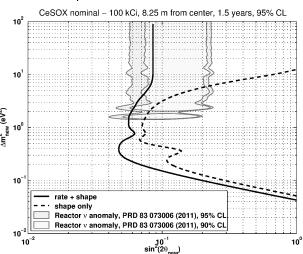
CeSOX en bref

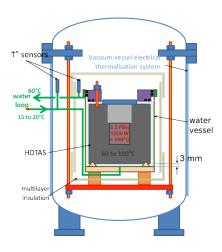
0000

## Blindage et transport



Introduction


## Blindage en alliage de tungstène (Fe, Ni, W)


- Haute densité  $\approx 18 \, \mathrm{g/cm^3}$ .
- 2.2 tonnes pour 60 par 54 cm.



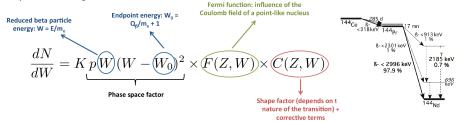
Transport dans un conteneur de 23 tonnes pour combustible usagé. Mayak→St-Petersbourg  $\rightarrow$ Le Havre $\rightarrow$ LNGS Livraison septembre 2016.

#### Sensibilité pour 1 an et demi de fonctionnement





## Principe


- Circuit d'eau fermé.
- Sous atmosphère de vapeur.
- Chaleur transféré au film d'eau autour du blindage.
- Débit massique connu et régulé.
- Mesurer l'écart de température entrée-sortie.

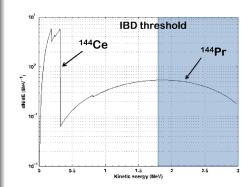
## Sources d'erreurs

- Étalonnage des capteurs (température et courant).
- ullet Conversion Bg o W.

## Comprendre les spectres bêta

#### Spectre de Fermi pour une branche :



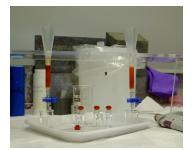

| l     | Transition type                      | Q <sub>β</sub> (keV) | Branching ratio |
|-------|--------------------------------------|----------------------|-----------------|
|       | 1 <sup>d</sup> non-unique forbidden  | 318.7                | 76.5 %          |
| 144Ce | 1st non-unique forbidden             | 238.6                | 3.9 %           |
|       | 1 <sup>st</sup> non-unique forbidden | 185.2                | 19.6 %          |
|       |                                      |                      |                 |
|       | 1st non-unique forbidden             | 2997.5               | 97.9%           |
| 144Pr | 1st unique forbidden                 | 2301.0               | 1.04%           |
|       | Allowed                              | 818.8                | 1.05%           |

Les transitions non-uniques ne sont que superficiellement connues.

Plusieurs mesures sont prévues sur des échantillons (CeNO<sub>3</sub>).

## Pourquoi est-ce essentiel?

- La mesure d'activité dépend de l'énergie moyenne d'une désintégration.
- L'erreur sur le nombre d'événements attendu dépend :
  - ullet de l'incertitude sur  $\mathrm{Q}_{eta}$ .
  - de la forme du spectre.
  - des intensités des branches.
- Détecter des impuretés émettrices d'électrons comme le <sup>90</sup><sub>38</sub>Sr.




#### Contraintes

Introduction

- Mélange de deux spectres  $\rightarrow$  séparation chimique.
- ullet Vie du  $^{144}{
  m Pr}$  : pprox 17min, pour préparer une source et mesurer.
- Précision <0.5 % pour la sensibilité en taux d'interactions.
- Intérêt pour  $E_{\beta}$ <100 keV à cause du seuil IBD.

Plusieurs mesures croisées (Collaborations LNHB et TUM).



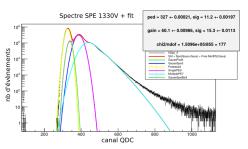
- Plastique scintillant avec veto  $\gamma$ .
- Cristal de silicium (bas seuil en énergie)
- Plastique et liquide scintillant à haute efficacité.

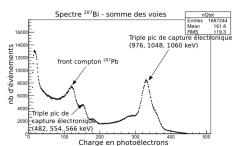
## SaBS Saclay Beta Spectrometer



## Géométrie envisagée :

- Source solide scellé dans le plastique
- Cavité comblée de liquide scintillant et source diluée.


- En construction au bât. 602.
- 2 photomultiplicateurs.
- Un cylindre de plastique.
- Dépôt radioactif au centre de la zone sensible.




# Études et étalonnage

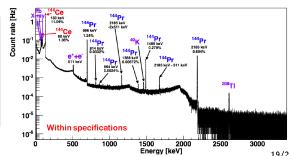
#### Travaux en cours

- Étalonner finement les photomultiplicateurs.
  - Mesure du gain sur photoélectron unique.
- Valider et étalonner la chaîne d'acquisition.
  - Amplification et intégrateur de charges
- Déterminer la géométrie finale optimale.





## Spectrométrie $\gamma$ et de masse : les impuretés


 $\rightarrow$  Sonder la présence d'émetteurs  $\gamma$  et neutron susceptibles de créer des bruits de fond.

## Spectrométrie de masse

- Collaboration DEN-LASE.
- Mesure des rapports isotopiques du cérium.
- Quantifier les impuretés à vie longue (pour le stockage).

## Spectrométrie gamma

- Compteur Germanium au bât. 538.
- Bons résultats des premiers échantillons  $(< 10^{-3} Bq/Bq)$ .



- CeSOX recherche neutrino stérile léger.
- L'expérience est en phase de construction.
- Elle repose sur la conception et la connaissance de sa source.
- L'analyse d'échantillons validera la fabrication tout au long du processus.
- Le flux de particules émis doit être précisément connu.
- La mise au point des instruments nécessaires à ces études est en cours.
- Le déploiement pourrait avoir lieu fin 2016.