Measurement of the W-mass with the ATLAS detector

Oleh Kivernyk

 $\mathsf{CEA}/\mathsf{Irfu}/\mathsf{SPP}$

July 1, 2015

Oleh Kivernyk (CEA/Irfu/SPP) Measurement of the W-mass with the ATLAS

July 1, 2015 1 / 21

Motivation

Relation between M_W and α_{EM} , G_F , $\sin^2\theta$ $M_W^2 = \frac{\pi \alpha_{EM}}{\sqrt{2}G_F(1-M_W^2/M_Z^2)(1-\Delta r)}$ (a) Today the Δr is known up to $\delta M_{W}^{SM, theory} = 4 MeV$ • Precise knowledge of M_W , m_t and M_H provides a test of the SM • Comparison of measured and predicted M_W provides sensitivity to the new physics [GeV] mkin Tevatron avera Measurement ₹ 80.45

world average ± 1a 80.4 80.35 80.3 80.25 fitter . 140 150 160 170 180 190 200 m, [GeV]

Radiative corrections Δr depend on m_t as $\sim m_t^2$ and on M_H as $\sim \log M_H$

Corrections from squark loops can increase the predicted M_W by 100 - 200 MeV

World average: $M_W = 80.385 \pm 0.015 MeV$ Most precise measurement at the Tevatron A = A = A = A = A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

Strategy of W-mass measurement

- W leptonic decay is used W
 ightarrow I
 u, $I=e,\mu$
- Basic objects: lepton(I) and hadronic recoil(u)
- Goal: Select events with 1 lepton of high p^I_T and small hadronic recoil → minimize Bkgs
- In presence of a neutrino we cannot compute invariant mass M_W of W → lν(cannot estimate longitudinal p^ν_z)

Measure the **Jacobian peak** of transverse distribution Use observables sensitive to M_W : template fit method

Transvese mass

Lepton transverse momentum

$$m_T^W = \sqrt{2p_T^l p_T^\nu (1 - \cos \Delta \phi_{l\nu})}$$

Neutrino transverse momentum $E_T^{
u} = |\vec{p_T^{
u}}|, \vec{p_T^{
u}} = -(\vec{p_T^{
u}} + \vec{u})$

- $Z \to II$ used for the calibration: $M_{II} = M_Z, \vec{u} = -p_T^{II}$
- Apply the same strategy for M_Z extraction \rightarrow \rightarrow verify calibration

 $p_{T}^{\mu}: \text{ Inner Detector} \\ p_{T}^{e}: \text{ EM calorimeter+ID} \\ u = \sum_{cluster} E: \text{ calo} \\ \underbrace{\sum_{cluster} E: calo}_{[Z \to U]}$

July 1, 2015

3 / 21

Template fit method

- The p_T^l, m_T^W and E_T^{miss} distributions are computed with MC for different M_W • Each template is compared to data
- The value which maximizes binned likelihood agreement is prefered M_W

• Sharper the Jacobian peak \rightarrow better precision of M_W : Expected stat. sensitivity: $\delta M_W \sim 7 MeV(p_T^l)$, $\delta M_W \sim 12 MeV(m_T^W)$

W-mass at the LHC

Main differences between Tevatron and LHC:

Higher pile-up → recoil calibration *pp* instead of *pp* → larger theor. unc.
Assymetric production of W⁺ and W⁻ → → charge dependent analysis
W⁺ from ud + us + ub + ...
W⁻ from du + dc + su + ...

Different polarization $\rightarrow p_T^l$ spectra

- Higher statistics at the LHC: $W \rightarrow e\nu$ 6M events
 - $W
 ightarrow \mu
 u$ 8.7M events
 - $Z
 ightarrow \mu \mu$ 1.5M events
 - $Z \rightarrow ee \ 0.6M$ events

Source	at CDF	Expected at	Measurement which
	(MeV)	LHC(MeV)	provides constraints
Lepton calibration	7	8	Z ightarrow II invariant mass peak
Recoil calibration	6	7	$p_T^Z, \sum E_T$ in $Z o \mu \mu$
Statistics	12	7	Template fit method
Backgrounds	3	~ 5	Multijet background
Total experimental	10	~ 10	
Physics	12	TBD	Z-rapidity, W-asymmetry,W-polarization
Total	19	TBD	

Lepton Calibration

7.5MeV for p_{T}^{μ} , 7.8MeV for m_{T}^{W}

- Precise lepton calibration is needed for precise M_W measurement • Muon momentum calibration performed on $J/\psi \rightarrow \mu\mu$ and $Z \rightarrow \mu\mu$ resonance peaks from data
- Electron momentum calibration performed on $Z \rightarrow ee$ decays Systematics to M_W :

9MeV for p_T^e , 9.2MeV for m_T^W

Recoil Calibration

- Recoil u = vector sum of all calo clusters excluding cones around the signal lepton and replaced by another cone (same $|\eta|$, different ϕ)
- Recoil is affected by emission of quarks or gluons(ISR) or photons(ISR/FSR) $Z \rightarrow \mu\mu$ is used to model the recoil
- E_T^{miss} and m_T^W are derived quantities
- Correction performed for W^+, W^- for different pile-up bins

Recoil calibration:

- 1) Equalize Pile-up in Data and MC 2) MC to Data correction of $\sum E_T$
- 3) Residual correction to the hadronic recoil in $(\sum E_T^{cor}, p_T^V)$ plane

Systematics $\sim 7 MeV$

Recoil Calibration: control plots

Oleh Kivernyk (CEA/Irfu/SPP)

Measurement of the W-mass with the ATLAS

Z-mass fits

- W-like transverse mass m_T^{l+} :
 - Reconstructed from recoil and I+
 - Similarly defined m_T^{l-}
- Calibration is verified with M_Z template fit method of p_T^l and m_T^l
 - $ightarrow M_Z$ value compatible within 1σ with the PDG value

Channel	$\delta m_Z : p_T^{l+} [MeV]$	$\delta m_Z : p_T^{l-} [MeV]$	δm_Z : $p_T^{l\pm}$ [MeV]
Electron	7 ± 29	-34 ± 29	-13 ± 20
Muon	33 ± 21	-18 ± 21	8 ± 14
Combined	24 ± 17	-23 ± 17	(1 ± 12)

Channel	$\delta m_Z : m_T^{l+} [MeV]$	δm_Z : m_T^{l-} [MeV]	δm_Z : $m_T^{l\pm}$ [MeV]
Electron	-86 ± 35	1 ± 35	-33 ± 23
Muon	22 ± 23	36 ± 23	29 ± 15
Combined	-11 ± 19	25 ± 19	7±13

Backgrounds in muon channel

• The following backgrounds are fully simulated with MC: $W \rightarrow \tau \nu$, $Z \rightarrow \mu \mu$, $Z \rightarrow \tau \tau$, top and dibosons decays

Cut	Data	$W \rightarrow \mu \nu$	W o au u	$Z ightarrow \mu \mu$	Z ightarrow au au	top	WW/WZ/ZZ
muon $p_T \ge 30$	17934318	14247881	280069	891687	61987	95393	21994
$E_{\rm T}^{\rm miss} > 30$	11839751	10263803	154917	584214	21894	75329	15397
$p_T^{\hat{W}} < 30$	8765602	8043867	90066	454102	10134	8674	5627
$m_T^W > 60$	8713786	≥ 8000214	88255	451536	9914	8613	5591

Another background comes from jets. Sources:

- 1) b/c-quarks decay semileptonically
- 2) punch-trough hadrons
- 3) pions and kaons decaying in flight within tracking system
- Difficult to get good prediction of multijet background from MC
- Data-driven techniques are used
- The main goal: estimate the multijet fraction and shape of the distribution

 $\rightarrow \! \mathsf{Needed}$ for W-mass template fit method

Method

Method uses 4 regions in phase space:

- Signal Region(described above) and corresponding Jet Control Region 1

- Fit Region and corresponding Jet Control Region 2
- Find Fit Region with isolated electrons where jet fraction is big
- Respective jet control regions: same cuts but anti-isolated electrons

• Determine Jet bkg shape (subtract EW)

• Fit Jets+EW to Data and find $T_{Jets}^{CR \rightarrow FR}$. $T_{Jets}^{CR \rightarrow FR}$ is normalization of Jet bkg

 Scale Jet bkg distribution from CR1 with *T*^{CR→FR}_{Jets}. Recalculate jet fraction in SR as *N*_{Jets}/*N*_{Data}

Muon isolation $\sum p_T^{tracks}/p_T^{muon}$ in cone ≤ 0

- $\textit{Iso} < 0.1 \rightarrow$ signal dominated events
- 0.2 < /so < 0.4 \rightarrow Jets enriched events

Method example for m_T^W

• Fit Region: p_T^W relaxed, $0 GeV \le m_T^W \le 60 GeV$

- Determine jet background distribution in respective Multijet Control Region 2.
- Subtract predicted EW contamination (according to cross-sections)
- Amount of EW contamination: pprox 1%
- Apply pure jet distribution H_{Jets} to Fit Region assuming their shape is the same
- Fit $H_{Data} = T_{Jets}^{CR \to FR} H_{Jets} + K_{EW} H_{EW}$ using **RooFit** and find $T_{Jets}^{CR \to FR} = 0.51$
- Plot corresponds to m_T^W , p_T^W relaxed. Here EW distribution additionally scaled by $\frac{N_{Data} N_{Jets}}{N_{EW}}$

Measurement of the W-mass with the ATLAS

July 1, 2015 12 / 21

Method example for m_T^W

• Signal Region: $p_T^W < 30 \, GeV$, $m_T^W > 60 \, GeV$

- Determine jet background distribution in respective Multijet Control Region 1.
- Subtract predicted EW contamination (according to cross-sections)

ullet Amount of EW contamination: pprox 11%

Scale pure jet distribution by T^{CR→FR}_{Jets} = 0.51
 Jet fraction in Signal Region is

$$frac = \frac{N_{J_{ets}}}{N_{Data}} = \frac{T_{J_{ets}}^{CR \to FR} N_{Jac}^{Data}}{N_{SR}^{Data}} = 0.33\%$$

 Control Plot m^W_T in Signal Region with 0.33% of data driven Jet bkg

Jets $JSO \rightarrow ISO$ 2D correction of m_T^W

- Jet bkg distribution in JSO can differ from real Jet distribution in ISO region
- Correct Jet bkg shape:
 - \rightarrow Plot (Iso,m_T^W) in 0.2 < Iso < 0.4 region
 - \rightarrow Fit each slice of m_T^W by line
 - ightarrow Extrapolate the line from JSO to ISO
 - \rightarrow Produce ($\textit{Iso},\textit{m}_{T}^{W}$) in Iso < 0.1 according to extrapolated lines

Jets $JSO \rightarrow ISO$ 2D correction of m_T^W

- Corrected Jet bkg shape provides better agreement in Jet+EW to Data fit
- Method works for different kinematical distributions

Oleh Kivernyk (CEA/Irfu/SPP)

Measurement of the W-mass with the ATLAS

Other discriminative distributions

- Muons coming from b/c quark decays are non-prompt → d₀ tails Jets dominated
 Peak at 0.5 of *ptl/mtw* corresponds to φ(*l*, ν) = π. Angle between *l* and ν can be any for Jet events
- Jet misidentified as lepton+mismeasurement of jet $p_T \rightarrow E_T^{miss}$ peaked at lower value

Jet bkg fit of m_T^W : e/μ comparison $(m_T^W$ and p_T^W relaxed)

The following variables and corresponding Fit Regions are used:

Variables	Fit Regions
• m_T^W	• p_T^W relaxed, fit $0 < m_T^W < 60 { m GeV}$
• p_T^W	• m_T^W relaxed, fit $30 < p_T^W < 100$ GeV
• p_T^{μ}/m_T^W	$ullet$ m $_T^W$ and p $_T^W$ relaxed, fit $1 < p_T^\mu/m_T^W < 3$
• <i>d</i> ₀	• $m_{\mathcal{T}}^W$ and $p_{\mathcal{T}}^W$ relaxed, fit $ d_0 > 0.12$ mm
• $ d_0/\sigma(d_0) $	• $m^W_{\mathcal{T}}$ and $p^W_{\mathcal{T}}$ relaxed, fit $ d_0/\sigma(d_0) >4$
• d ₀	• fit $ d_0 > 0.12$ mm in Signal Region
• $ d_0/\sigma(d_0) $	• fit $ d_0/\sigma(d_0) > 4$ in Signal Region

Results

variable	W^+	W^-	W	$W(\text{combined } p_T^l \text{ bins})$
d ₀ (signal region)	0.25	0.33	0.27	0.30
$d_0/\sigma(d_0)$ (signal region)	0.33	0.42	0.37	0.36
m_T^W (relaxed selection)	0.29	0.39	0.33	0.36
p_T^W (relaxed selection)	0.31	0.41	0.35	0.36
d_0 (relaxed selection)	0.26	0.35	0.30	0.30
$d_0/\sigma(d_0)$ (relaxed selection)	0.28	0.37	0.32	0.330
	$\textbf{0.29}\pm\textbf{0.04}$	0.38 ± 0.05	$\bigcirc 0.32 \pm 0.05 \bigcirc$	$\textbf{0.33}\pm\textbf{0.03}$

Amount of jet background in Signal Region is found to be between 0.27% and 0.37%

$ \eta $ range	0 - 0.8	0.8 - 2.0	2.0 - 2.4	Inclusive
W^{\pm}	0.37 ± 0.12	0.3 ± 0.03	0.31 ± 0.05	0.32 ± 0.05
W^+	0.37 ± 0.07	0.27 ± 0.04	0.27 ± 0.05	0.29 ± 0.04
W^-	0.42 ± 0.13	0.34 ± 0.04	0.39 ± 0.08	0.38 ± 0.05

Table: Measured multijet background fraction as a function of muon pseudorapidity (coarse binning).

MW uncertainty from multijet fraction

Simplified table. Numbers below apply to p_T^l fit and are preliminary

Channel	Statistics	Calibration	Efficiencies	Recoil	Background	Total exp.
Electron	$\sim 7 MeV$	$\sim 8 MeV$	$\sim 9 MeV$	$\sim 7 MeV$	$\sim 5 MeV$	$\sim 16 MeV$
Muon	$\sim 7 MeV$	$\sim 8 MeV$	$\sim 2 MeV$	\sim 7 MeV	$\sim 5 MeV$	$\sim 14 MeV$
Combined						$\sim 10.5 MeV$

• We are finalizing the background uncertainty and PDF uncertainty estimates which are the last steps before a complete result