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History | Antiquity – 2D Charting of the Sky

First Quantitative Models of the Sky

All primitive cultures studied the night sky.
Ancient Greece → first to provide quantitative & accurate models,
thanks to the development of trigonometry.

Aristarchus of Samos (≃ 310 – 230 BC) → heliocentric model.
Hipparchus (≃ 190 – 120 BC):

predicting eclipses;
equinox precession;
stellar catalog → ranking stars depending of their
magnitude: 1 (bright) → 6 (faint).

Hipparchus ( )

Origin of the Modern Magnitude System
In honor of Hipparchus, we quantify stellar fluxes using their apparent magnitudes:

m ≡ −2.5× log10

(Fobs

F0

)
.
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History | The Ptolemaic System – Back to a Geocentric Model

Complexification without Progress
From the end of Antiquity to Middle
Age → prevalence of Ptolemaic
system:

Geocentric model;
Combination of epicycles;
Quite accurate but wrong.

Claudius PTOLEMY
(100 – 170)

F. Galliano (DAp) The Course (BEST ENSTA) April 11, 2024 6 / 66



History | The Ptolemaic System – Back to a Geocentric Model

Complexification without Progress
From the end of Antiquity to Middle
Age → prevalence of Ptolemaic
system:

Geocentric model;
Combination of epicycles;
Quite accurate but wrong.

Claudius PTOLEMY
(100 – 170)

F. Galliano (DAp) The Course (BEST ENSTA) April 11, 2024 6 / 66



History | The Ptolemaic System – Back to a Geocentric Model

Complexification without Progress
From the end of Antiquity to Middle
Age → prevalence of Ptolemaic
system:

Geocentric model;
Combination of epicycles;
Quite accurate but wrong.

Claudius PTOLEMY
(100 – 170)

F. Galliano (DAp) The Course (BEST ENSTA) April 11, 2024 6 / 66



History | The Ptolemaic System – Back to a Geocentric Model

Complexification without Progress
From the end of Antiquity to Middle
Age → prevalence of Ptolemaic
system:

Geocentric model;
Combination of epicycles;
Quite accurate but wrong.

Claudius PTOLEMY
(100 – 170)

F. Galliano (DAp) The Course (BEST ENSTA) April 11, 2024 6 / 66



History | The Ptolemaic System – Back to a Geocentric Model

Complexification without Progress
From the end of Antiquity to Middle
Age → prevalence of Ptolemaic
system:

Geocentric model;

Combination of epicycles;
Quite accurate but wrong.

Claudius PTOLEMY
(100 – 170)

F. Galliano (DAp) The Course (BEST ENSTA) April 11, 2024 6 / 66



History | The Ptolemaic System – Back to a Geocentric Model

Complexification without Progress
From the end of Antiquity to Middle
Age → prevalence of Ptolemaic
system:

Geocentric model;
Combination of epicycles;

Quite accurate but wrong.

Claudius PTOLEMY
(100 – 170)

F. Galliano (DAp) The Course (BEST ENSTA) April 11, 2024 6 / 66



History | The Ptolemaic System – Back to a Geocentric Model

Complexification without Progress
From the end of Antiquity to Middle
Age → prevalence of Ptolemaic
system:

Geocentric model;
Combination of epicycles;
Quite accurate but wrong.

Claudius PTOLEMY
(100 – 170)

F. Galliano (DAp) The Course (BEST ENSTA) April 11, 2024 6 / 66



History | First Telescopes – Accurate Planetary Motions

The Progress of the Renaissance

Return to Heliocentrism: Nicolaus COPERNICUS (1473 – 1543; ).
Telescope pointed at the sky: Galileo GALILEI (1564 – 1642; ).

Accurate Planet Trajectories

Tycho BRAHE
(1546 – 1601)

⇒ Unprecendentedly accurate
astronomical observations.

Johannes KEPLER
(1571 – 1630)

⇒ Elliptical planet
trajectories.

Isaac NEWTON
(1642 – 1727)

⇒ Gravitation law → celestial
mechanics.
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History | Parallaxes – Measures Beyond the Solar System

Measuring Parallaxes

Friedrich Wilhelm BESSEL
(1784 – 1846)

⇒ First stellar parallax by Bessel.

Most Used Distance Units

1 a.u. ≡ ⟨⊙ −⊕⟩
≃ 1.5× 1011 m

1 parsec ≡
(
|α− β| = 1′′

)
≃ 3.1× 1016 m
≃ 3.3 light-years
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History | Making Astronomy a Reproducible Science

The Industrial Age

1822: Invention of photography (Nicéphore
NIÉPCE; ) → reproducible
measures.

1860: Silvering of glass mirrors (Léon
Foucault; ).

1890: First deep-sky picture (Henry
DRAPER; ).

1908: 1.5 m telescope at Mount Wilson
( ).

General Relativity

Accurate measures;
Problem of the perihelion of Mercury;
Need for new physics → general relativity
(1915)

Albert EINSTEIN
(1879 – 1955)
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History | Spectroscopy – From Astronomy to Astrophysics (1/3)

The Advent of Spectroscopy

1672: (Isacc NEWTON; ) decomposition of white light.
1800: (William HERSCHEL; ) decomposition of the light from the Sun (measure

with thermometers) → discovery of the infrared radiation.
1814: (Joseph VON FRAUNHOFER; ) first spectrum of the Sun

→ presence of
dark stripes → absorption lines.
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History | Spectroscopy – From Astronomy to Astrophysics (2/3)

Velocity of Distant Objects

Long expositions → some
nebulae can be resolved in stars
⇒ extragalactic nebulae (i.e.
galaxies).
Doppler shift → radial velocity.
Radial velocity ↗ w/ distance
⇒ expansion of the Universe.

Edwin HUBBLE
(1889 – 1953)

(Hubble, 1929; based on uncredited data by Vesto
SLIPHER)
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History | Spectroscopy – From Astronomy to Astrophysics (3/3)

Quantum Physics – Probing Distant Matter
Understanding the underlying physics of absorption and emission
lines opened the door:

Identifying atoms & molecules in distant objects (e.g.
buckminsterfullerene);
Measuring their abundance, temperature, density, charge +
kinematics, magnetic field, etc.
Confirming the universality of the laws of physics.

(Cami et al., 2010; using the Spitzer space telescope)
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History | Contemporary Astrophysics – The Space Age

Modern Technology

Detectors: (i) sensitivity; (ii) adapted to ̸= electromagnetic domains.
Telescopes: (i) large collecting area; (ii) interferometry;

Satellites: possibility to avoid the nuisance of the atmosphere.

(Launch of the JWST,
december 2021; source

ESA)
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History | The Universe Known Today – The Solar System

Kuiper Belt:
Ring constituted of small bodies beyond the
planets.

Oort Cloud:

Sphere constituted of comets (icy) at the
extreme edge of the Solar system.
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History | The Universe Known Today – The Heliopause & The ISM
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History | The Universe Known Today – The Solar Neighborhood
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History | The Universe Known Today – The Milky Way

Our Galaxy, the Milky Way:

Diameter: ≃ 30 kpc ≃ 100 000 light-years.
Stars: ≃ 5× 1010 M⊙ ≃ 200 billion stars.

Gas: ≃ 7× 109 M⊙.
Rotation: ≃ 250 Myr.

Halo vs. disk ⇒ formation history of
galaxies (Eggen, Lynden-Bell &
Sandage, 1962).
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History | The Universe Known Today – The Local Galaxy Group
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History | The Universe Known Today – The Virgo Galaxy Cluster
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History | The Universe Known Today – The Laniakea Supercluster
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History | The Universe Known Today – The Large-Scale Structures

Box of ≃ 600 Mpc (CRK-HACC simulation)→

≃ 600 Mpc (Sloan Digital Sky Survey) ↑
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Methods | The Most Distant Man-Made Artefacts

Voyager 1 & 2

1977: launch. 2012: leaving heliosphere.
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Methods | Exploration of the Sun & the Solar Wind

In situ Observations:

Observations across the
electromagnetic spectrum;
In situ measure of the
magnetic field;
Flux of charged particles →
Solar wind ;
Detailed line studies →
asteroseismology ;

⇒ Since 1960 → 22 probes.

(Solar Orbiter; 2021)
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Methods | Exploration of Planets & their Satellites

Main objectives:

Cartography, remote study of atmosphere
& surface → conditions for life?
Landing & rover exploration;
Analysis of samples (Moon → return);
Study of the internal structure.

(Curiosity; 2012-)

(Cassini; 2004-2017)

Flybys & Landings (Successes/Attempts):

Mercury: 5/5 since 1974.
Venus: 34/81 since 1961.
Moon: 101/160 since 1959.
Mars: 43/69 since 1960.

Jupiter: 12/12 since 1973.
Saturn: 4/4 since 1979.
Titan: 1/1 since 2005.

Uranus: 1/1 since 1986.
Neptune 1/1 since 1989.

Pluto: 1/1 since 2015.
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Methods | Exploration of Asteroids & Comets

Objectives:

Surface analysis, cratering;
Composition ⇒ origin of the
Solar system.

Flybys & Landings:

Visits: 18 flybys & 4
landings.

Sample return: 4: (i) comet Wild
2; (ii) asteroids
Itokawa, Ryugu &
Bennu.

Meteorites
Some meteorites found on Earth
come from other planets:

the Moon;
Mars;
Vesta (large asteroid).

(Churyumov-Gerasimenko; Rosetta, 2015)
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Methods | Interplanetary Dust Particles

Possibility to Study Interstellar grains

Collect in space: spacecrafts with an aerogel matrix → traps interplanetary & interstellar grains
→ composition + trajectory.

Inclusions in meteorites: some interstellar grains were locked in meteorites when they formed.
Collect in Antartica: possibility to find interplanetary grains in the ice.
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Methods | Beyond the Solar System – The Vectors of Information

Beyond the Solar system → no direct information ⇒ we need to rely on vectors of information:

Photons: observed first by eye, lately with detectors:

Visible: since Antiquity;
Infrared: since 1800;

X-rays: since 1920;
Radio: since 1933.

Cosmic rays: energetic particles (i.e. relativistic protons & nuclei), since 1912.
Neutrinos: since 1967, from the Sun & supernovae.

Gravitational waves: space-time perturbations originating in cataclysmic events, detected since
2015.
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Methods | The Electromagnetic Spectrum of a Typical Galaxy

Spectral Energy Distribution (SED):
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Methods | The Problem of the Atmosphere
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Methods | Airborne Observatories

Getting Above The Troposhere

Most of the water vapor is within the troposphere (≲ 10 km)

Airplanes can fly up to 15 km → they can carry on telescopes (since 1974).
Balloons can go up to 25 km (since 1966). Landing can be disastrous.
Rockets can carry on instruments in a single sub-orbital flights (since 1967).

(SOFIA, 2013-2022; far-IR observatory) (PILOT, 2016; submm balloon)
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Methods | Space Observatories

Advantages of Satellites

No atmosphere at all ⇒ best
conditions. Used also in the
visible range → avoid speckles
(e.g. HST).
No need to land. Can be
serviced if Earth orbit.
Otherwise, L2.

Problems with Space

Problem of radiations, particles,
cosmic rays, cold / hot.
Telescope size and weight
limited by shuttle capacity.

(Hubble Space Telescope, 1990-)
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Methods | Cosmic Rays

Origin of Cosmic Rays

Probably linked to supernova explosions
→ acceleration of charged particle
spiraling in the magnetic field.
Can be as energetic as 3× 1020 eV.

Detection

First evidence in 1912 → variation of
ionizing rate with altitude.
Detected through the air shower they
cause in the upper atmosphere.

(Pierre Auger Observatory; 2005-)
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Methods | Neutrinos

Origin

Most of them are produced by
nuclear reactions in the core of the
Sun.
99 % of the energy of a
core-collapse supernova (SN) is
radiated as neutrinos (e.g.
SN1987A).

Detection

First detection of astrophysical
neutrino in 1965.
Neutrino are weakly interactive →
detection underwater.

(SN1987A in the Large Magellanic Cloud)
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Methods | Gravitational Waves

Detecting Cataclysmic Events

Collision of neutron stars, black holes, etc.
First detection in 2015.

(Virgo, 1994-)
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Methods | Distance Measurements

The Distance Ladder (Non Exhaustive)

Radar echoes can be used to measure the distance of Solar system objects.
Parallax measures have to be used outside the Solar system → accurate only in the Milky

Way (a few kpc).
Cepheid stars: pulsating stars w/ known period-luminosity relation ⇒ period + apparent

luminosity → distance. Commonly used in nearby galaxies.
Type Ia supernovae (binary system with a white dwarf) → well calibrated luminosity-light-curve

relation. Can be used up to ≃ 100 Mpc
Redshift of galaxy → depends on the value of the cosmological parameters.

⇒ all these tracers are intercalibrated.
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Methods | The Problem of Confusion

All sky Uranography:

⇒ needs complex decomposition methods.
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Methods | The Sociology of Contemporary Astrophysics

Theory & Simulations

Analytical theory &
numerical simulations.

Models
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HII regions
Neutral ISM
Total

Accurate comparison of
theory & observations.

Observations

Planning, performing &
analyzing observations.

Laboratory Experiments

Isolating & measuring
astrophysical processes.

Instrumentation

Designing, building &
commissioning instruments.

≃ 80 new publications per
week day.
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1 INTRODUCTION

2 AN HISTORICAL PERSPECTIVE
The first observations of the sky
Astronomy: celestial mechanics
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Hot Topics | Space Weather (1/3)

The “Carrington Event”

1859 Richard CARRINGTON (amateur astronomer) recorded the observation of a
large Coronal Mass Ejection (CME).

1 day later Largest geomagnetic storm in History:
⇒ spectacular auroras seen around the World;
⇒ major damages to the telegraphic network.
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Hot Topics | Space Weather (2/3)

Modelling the Sun & Its Interaction with the Earth

In 1859, the CME hit the Earth frontally.
In 2023, similar CME, but missed the Earth.

Nowadays, modern technology is even more sensitive to such events ⇒ potentially billions
of euros of damages:

satellites;
air traffic;
ground communications;
electricity network.

⇒ Can we understand & anticipate these events?

(Solar Orbiter, 2021-)
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Hot Topics | Space Weather (3/3)

The 11 year Solar Cycle:
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Hot Topics | Origin of the Solar System (1/2)

Understanding the Formation of the Planets

Composition of the surface and core of Solar system planets ⇒ key to understanding their
formation.
Geology & cratering → surface activity.
Atmosphere existence & composition?
Presence of water & ices?

Mercury flybys
(BepiColombo, 2018-)
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Hot Topics | Origin of the Solar System (2/2)

Studying Primitive Asteroids

Study of comets & primitive asteroids →
direct evidence of the molecular content
of the proto-Solar nebula.
Example of Ryugu & Benu returned
samples: carbonate grains ⇒ possible
signs of aqueous alterations.

Laboratory study of returned samples from
Ryugu (Loizeau et al., 2023)
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Hot Topics | Conditions for the Apparition of Life (1/2)

(Titan seen by Cassini)

Habitability of “Ocean Worlds”

Satellites of Saturn: Titan.
Satellites of Jupiter: Europe,

Enceladus, Callisto,
Ganymede.

Goals: finding organic
molecules, presence
of liquid water +
understanding the
chemical evolution
of these
environments.
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Hot Topics | Conditions for the Apparition of Life (2/2)

JUICE, launched in 2023

Exploration of icy Jupiter moons: Europe,
Ganymede & Callisto.
Study of the underground oceans of
Ganymede & Callisto.
Look for potential habitability.

(The Earth seen from JUICE, 2023)
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Hot Topics | Stellar Evolution 101
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Hot Topics | Stellar Evolution 102
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Hot Topics | Extrasolar Planetary Systems (1/2)

Detecting Planets Around Main-Sequence Stars

1995: First detection using line oscillations of the star.
So far: > 5 000 confirmed, including rocky planets, atmosphere composition.

Methods to detect exoplanets:

1 Doppler shift of lines from the star ← perturbations by the planet.
2 Transit in front of the star → light curve.
3 Gravitational microlensing → general relativity effect.
4 Direct imaging ⇒ difficult (faint + high contrast).
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Hot Topics | Extrasolar Planetary Systems (2/2)

(WASP 107b, warm Neptune; JWST; Dyrek et al., 2023)
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Hot Topics | Asteroseismology – A Key to the Internal Structure

(Smallest oscillations detected; Campante et al., 2024)
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(NGC 628; PHANGS JWST project)
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(Carina nebula; JWST)

F. Galliano (DAp) The Course (BEST ENSTA) April 11, 2024 54 / 66



Hot Topics | The Multiscale Puzzle of Star Formation (3/4)

(Carina nebula; JWST)

F. Galliano (DAp) The Course (BEST ENSTA) April 11, 2024 54 / 66



Hot Topics | The Multiscale Puzzle of Star Formation (4/4)

(L1527, protostar, JWST) (HLτ , protoplanetary disk, ALMA)
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Hot Topics | Galaxy Evolution (1/2)

(Madau & Dickinson, 2014)

F. Galliano (DAp) The Course (BEST ENSTA) April 11, 2024 56 / 66



Hot Topics | Galaxy Evolution (1/2)

(Madau & Dickinson, 2014)
F. Galliano (DAp) The Course (BEST ENSTA) April 11, 2024 56 / 66



Hot Topics | Galaxy Evolution (2/2)

The Most Distant Spectroscopically-Confirmed Galaxy To Date

Photometric redshift, based on the shape of the SED → useful but potentially degenerate.
Spectroscopic redshift are more difficult to obtain, but more accurate.

⇒ demonstrates that the laws of physics are identical ≃ 300 Myr after the Big
Bang.

(D’Eugenio et al., 2023)
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Hot Topics | Cosmology – Dark Matter ̸= Dark Energy

Two Enigmatic Cosmological Quantities

Dark Matter: invisible, non-collisional, hypothetical matter (Weakly Interactive Massive
Particles; WIMP).

First inferred in 1930.
Responsible for the flattening of the rotation curves of galaxies → dark
matter halos.
It is opposed to baryonic matter (i.e. made of nucleons & electrons).
Potentially accounts for ≃ 85 % of the total mass.
Several alternative hypothesis: MOdified Newtonina Dynamics (MOND),
primordial black holes, etc.

Dark Energy: large-scale energy.

First inferred in 1980.
Responsible for the acceleration of the expansion of the Universe.
Equivalent to a negative pressure field.
Corresponds to the Cosmological constant in Einstein’s equation, Λ (if it is
indeed constant).
Represents ≃ 68 % of the total energy of the present Universe.

⇒ 2 very different quantities.
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Several alternative hypothesis: MOdified Newtonina Dynamics (MOND),
primordial black holes, etc.

Dark Energy: large-scale energy.
First inferred in 1980.
Responsible for the acceleration of the expansion of the Universe.
Equivalent to a negative pressure field.
Corresponds to the Cosmological constant in Einstein’s equation, Λ (if it is
indeed constant).
Represents ≃ 68 % of the total energy of the present Universe.

⇒ 2 very different quantities.
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Hot Topics | Gravitational Lensing

Euclid Satellite (2023-)

Measuring the shape & redshift of millions of galaxies;
→ probe cluster mass;
⇒ constrain cosmological parameters.
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Hot Topics | Cosmology – CMB Fluctuations

(Cosmological Microwave Background, CMB; WMAP, 2012)

⇒ Baryonic Acoustic Oscillations → constrain dark energy.
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Hot Topics | Damped Lyman-α Absorbers
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Hot Topics | Gamma-Ray Bursts

GRB: Explosion of a massive star (hypernova) ⇒ γ-ray flash + all other wavelengths.
October 9, 2022: The Gamma-Ray Burst of the Millenium → duration of the γ flash ≃ 600 s.
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Summary & Conclusion

Historical Perspective

Trigonometry → 2D charting, predicting eclipses.
Gravitation → 3D celestial mechanics.
Quantum physics → spectroscopy (diagnostics, motions).
Neutrino, gravitational waves, cosmic rays → new physics.

The Way Astrophysicists Explore Space, Nowadays

In situ exploration → possible for the Solar system (also Voyager entered the ISM).
Vectors of information: (i) Photons; (ii) cosmic rays; (iii) neutrinos; (iv) gravitational waves.
The atmosphere is transparent only at the visible and radio frequencies ⇒ necessity of airborne

& space observatories.

Contemporary Open Questions

1 How does the Solar system work? How did it form?
2 What is the origin of stars & planet, and how do they evolve?
3 How do galaxies form, and how does the Universe evolve?
4 Do we understand extreme conditions in the Universe?
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Reminder: Slide Download Link

https://irfu.cea.fr/Pisp/frederic.galliano/Research/talk_ENSTA2024.pdf
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