Dust for Dummies

Maud Galametz ESO Fellow, Garching (Room 5.1.5)

"Visible matter"

Interstellar Matter (~15%)

"Visible matter"

We want to know how stars are born

Visible light

Very difficult to see through the dust!

Visible matter

The magic of Infrared light

Visible light

Infrared light

→ Dust reveals the birth place of stars

Visible light

Infrared light

→ Dust is a very efficient matchmaker

Especially the molecular hydrogen

Role of the dust:

- Formation
- Survival

We are made of stardust

Telescopes & Antennas

What do we see from the ground?

Various Infrared telescopes / facilities

1983

IRAS

- Full sky survey
- Mirror diameter: 0.57m
- Mission of 10 months
- Looking at 12 to 100 μm

2003

1983

Space Shuttle Columbia disaster

Diameter: 0.85m

Looking at 3.6 to 160 µm

Warm-Spitzer phase

> 1 billion \$

Herschel

- Diameter: 3.5m!

- Looking at 70 to 500 μm

- Mission: 3 years

1983 2003 2009

ALMA

- International consortium
- > 60 antennas of 12m + 7m antennas
- Beyond the infrared wavelength

Now

ALMA

- Adjustable resolution
 - > great details on the structure

On the Chajnantor plateau

Variation of luminosity

with color

That is what we are going to dissect together now

Ingredients + recipe

Using the energy distribution to learn more about the dust properties

Ingredients + recipe

- Size
- Temperature
- Composition

Ingredients + recipe

- Size
- Temperature
- Composition

Dust comes in all shapes and sizes

Dust particles collected from the stratosphere

Dust comes in all shapes and sizes

Dust particles collected from the stratosphere

and react differently to the radiation

time (s)

(Very) small grains

Large grains

Ingredients + recipe

- Size
- Temperature
- Composition

The Wien's law

$$\lambda_{peak}T = 2.898 \cdot 10^{-3} \, m \cdot K$$

The peak
wavelength
gives
a measure
of temperature

Variations in temperatures

Variations in temperatures Warm Hot Cold 24 μm \rightarrow 100μm \rightarrow 250μm

Ingredients + recipe

- Size
- Temperature
- Composition

The cycle of life of dust

The dust composition

Products synthesized in stars:

- Carbon
- Oxygen
- Nitrogen & Sulfur
- Mg, Fe, Si, Ni, Cr & Mn
- Rarer elements

→ are the direct components of our dust grains

Grains are then transformed ...

What now?

What now?

Ingredients

A little bit of this, a little bit of that ...

Take away messages

- → Major progress due to Infrared astronomy
- → The emission of a dust grain depends on:

Its composition

Its size

Its temperature

Other telescopes

- From 1989 to now
- Full mapping missions

COBE / WMAP / Planck

