Global simulations of accretion onto magnetized stars: results of 3D MHD simulations and 3D radiative transfer

Marina M. Romanova1, Ryuichi Kurosawa2, Min Long3, Alisa A. Blinova1 and Richard V. E. Lovelace1

1Cornell University, Ithaca, NY 14853, USA
2Max-Planck-Institut f"ur Radioastronomie, Auf dem Hügel 69, D-53121 Bonn, Germany
3Flash Center for computational science, Chicago, IL 60637, USA

Spectro-polarimetric observations of several young classical T Tauri stars (CTTSs) show that the magnetic field of stars may be complex, and can be represented as a superposition of different multipoles \cite{1}. We use a “Cubed Sphere” code to perform global 3D MHD simulations of disk accretion onto stars with complex magnetic fields, and investigate matter flow around these stars \cite{2, 3}. We observe that at large distances from the star, the dipole component often dominates and determines the disk-magnetosphere interaction. However, closer to the star, the higher-order multipoles dominate and determine the shapes of hot spots at the surface of the star. The model has been applied to a young star V 2129 Oph. To compare the results of our simulations with observation, we calculate hydrogen spectral lines from the magnetospheric flow, using the three-dimensional radiative transfer code TORUS \cite{4}. The results of 3D MHD and 3D radiative transfer models are in good agreement with the observations \cite{5}. In another set of 3D MHD simulations and 3D radiative transfer analysis, we investigate accretion onto a star with a dipole field in either stable or unstable regimes. We investigate the boundary between these two regimes \cite{6}, and calculate the photometric and spectral properties of modeled stars \cite{7}. We found that in the stable regime, the light-curves and spectral lines vary orderly in time with one or two peaks per period, while in the unstable regime, a stochastic light curve and stochastic spectral variability are observed, with several peaks per period.

Figure 1: An example of accretion onto a star with a predominantly octupolar field. Magnetic field lines and a slice of the density distribution are shown (from \cite{8}).

\cite{5} S.H.P. Alencar et al., Astron. & Astrophys., 541, 1 (2012).
\cite{6} A.A. Blinova, M.M. Romanova, R.V.E. Lovelace, in prep. (2013).