Radiation Magnetohydrodynamics Simulations of Star Formation

Matthew Bate University of Exeter

> Daniel Price Monash University .

Stellar Properties

- Initial mass function
 - Observed to be relatively independent of initial conditions, at least in our Galaxy
- Star formation rate and efficiency
 - Observed to be 3-6% of gas mass per free-fall time (Evans et al. 2009)
- Multiplicity
 - Observed to be an increasing function of primary mass
 - Separations, mass ratios, eccentricities
 - High order systems (triples, quadruples)
- Protoplanetary discs
 - Masses, sizes, density distributions

EXETER

UK Astrophysical

Multiplicity as a Function of Primary Mass

- Multiplicity fraction = (B+T+Q) / (S+B+T+Q)
 - Observations: Close et al. 2003; Basri & Reiners 2006; Fisher & Marcy 1992; Duquennoy & Mayor 1991; Preibisch et al. 1999; Mason et al. 1998

ETER

Stellar Mass Distribution

UK Astrophysical

- Competitive accretion/ejection gives
 - Salpeter-type slope at high-mass end igodol
 - Low-mass turn over
- ~4 times as many brown dwarfs as a typical star-forming region
 - Not due to sink particle approximation results almost identical for different sink parameters ullet

Additional Physics

• Radiative transfer

- Developed a method for implicit two-temperature grey flux-limited diffusion within SPH (Whitehouse, Bate & Monaghan 2005; Whitehouse & Bate 2006)
- Star cluster simulations: Bate 2009b
- Magnetic fields
 - Developed by: Price & Monaghan 2005; Price & Rosswog 2006; Rosswog & Price 2007
 - Use Euler potentials: $\mathbf{B} =
 abla lpha imes
 abla eta$
 - Star formation simulations: Price & Bate 2007; Price & Bate 2008
- Radiation magnetohydrodynamics
 - Star cluster simulations: Price & Bate 2009

EXETER

UK Astrophysical

Star Cluster Formation with Radiative Feedback

- Repeat Bate, Bonnell & Bromm 2003, Bate & Bonnell 2005
 - 50 M_☉ molecular clouds, Decaying `turbulence' P(k)∝k⁻⁴
 - Diameters 0.4 pc and 0.2 pc, Mean thermal Jeans masses 1 M_{\odot} and 1/3 M_{\odot}
 - 3,500,000 SPH particles
- Sink particles
 - Original calculations: Sink Radii 5 AU, gravity softened within 4 AU
 - Radiative transfer calculations: Sink Radii 0.5 AU, no gravitational softening
- Radiative transfer
 - No feedback from protostars
 - Intrinsic protostellar luminosity unimportant
 - Accretion luminosity underestimated (energy liberated from 0.5 AU to stellar surface)
 - Gives a lower limit on the effects of radiative feedback

BBB2003, but with Radiative Transfer

Impact of Radiative Feedback

• Bate, Bonnell & Bromm (2003)

• "Typical" density 50 M_☉ molecular cloud (~10⁴ cm⁻³)

	Stars	Brown Dwarfs	Total
Barotropic Equation of State	23	27	50 (1.40t _{ff})
Radiative Transfer	П	2	13 (1.40t _{ff})

• Bate & Bonnell (2005)

• Denser 50 M_☉ cloud (~10⁵ cm⁻³)

	Stars	Brown Dwarfs	Total
Barotropic Equation of State	19	60	79 (1.40t _{ff})
Radiative Transfer	14	3	17 (1.40t _{ff})

Radiative Feedback and the IMF

- Radiative feedback brings the star to brown dwarf ratio in line with observations
 - Observations suggest a ratio of 5 ± 2
 - Chabrier 2003; Greissl et al. 2007; Luhman 2007; Andersen et al. 2008
 - Simulations: 25:5 ~ 5
- Furthermore, dependence of the IMF on cloud density is removed
 - K-S test on the two IMFs with radiative feedback shows them to be indistinguishable
- Bate 2009b
 - Heating of the gas surrounding a protostar increases the effective Jeans length and mass
 - Can show that this effective Jeans mass depends very weakly on cloud density

ie. fragmentation)

Magnetic Fields and Binary Formation: B_z

B _z =0µG	t _{rf} =0.99	Β _z =40μG	t _{ff} =0.99	B _z =80µG	t _{ff} =0.99	- 2.5	sity [g/cm ²]
							column den
						2	pol
100 AU					-	- 1.5	
В ₂ =110µG	t _{ff} =0.99	Β _z =160μG	t _{ff} =0.99	В ₂ =200µG	t _{ff} =0.99	-	
					-	- 1	
					-	-	
					-	- 0.5	
					-		

Daniel Price and Matthew Bate, University of Exeter, UK

Magnetic Fields and Binary Formation: B_x

[g/cm ²]	column density	pol					
	2.5	2	1.5		1	0.5	
					 	· ·	
t _{ff} =0.999				t _{ff} =0.999			
B _x =80µG				В _х =200µG			
t _{ff} =0.999				t _{ff} =0.999			
Β _x =40μG				Β _x =160μG			
t _{ff} =0.999				t _{ff} =0.999			
			100 AU				
B _x =0µG				B _x =110µG			

Daniel Price and Matthew Bate, University of Exeter, UK

EXETER

UK Astrophysical

Density Striations Aligned with Field

- Column density striations seen in simulations and observations
 - ¹²CO striations aligned with magnetic field in Taurus (Goldsmith et al. 2005, 2008)

Radiation Magnetohydrodynamical Simulations

Price & Bate (2009)

Hydrodynamical M

Mass-to-flux ratio: 10

Mass-to-flux ratio: 5

Mass-to-flux ratio: 3

Upper panels: Without radiative feedback

Lower panels: With radiative feedback

Star Formation Rate

Star formation rate decreases monotically with

- Increasing magnetic field strength
- Radiative feedback
- Observationally
 - Evans et al. 2009
 - Spitzer c2d survey, 5 clouds
 - ~3-6% SFR/t_{ff}
- Numerical results
 - 10-32% SFR/t_{ff}
- Strongest field, with radiative feedback
 - ~I0% SFR/t_{ff}

Conclusions

UK Astrophys

UK Astrophysical

- Hydrodynamical/sink particle simulations
 - Statistics now good enough that meaningful comparison can be made with observations
 - Reasonable multiplicity, separation distributions \bullet
 - Too many brown dwarfs, too few unequal mass stellar binaries
- Radiative feedback has a huge effect even for low-mass star formation
 - Number of objects reduced by factor ~4 \bullet
 - Fewer dynamical ejections, potentially solving the brown dwarf problem igodol
 - Without RT: more brown dwarfs than stars
 - With RT: \sim 4:1 stars:brown dwarfs
 - Radiative feedback also weakens the dependence of the IMF on the cloud's mean leans mass
- The effects of magnetic fields are complicated
 - Magnetic pressure can be more important than magnetic tension in inhibiting fragmentation
 - Although magnetic tension is responsible for magnetic braking, it can aid binary formation
 - Strong magnetic fields (plasma beta <1)
 - Decrease the star formation efficiency, bringing it into line with observational estimates
 - Do not seem to alter stellar masses much; rather decrease rate at which objects form
 - Can produce large-scale voids and magnetic structures in the gas

• The Future:

- Self-gravitating radiation magnetohydrodynamical simulations
- Statistics as good or better than observational surveys

- This work was conducted as part of the EURYI scheme award. See <u>www.esf.org/euryi</u>
- It was also partially funded by a 2003 Philip Leverhulme Prize
- The calculations were performed on the UK Astrophysical Fluids Facility (UKAFF) and the University of Exeter Supercomputer