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Observations

The quiet Sun:

Below: Convective motions and small-scale magnetic flux in the quiet Sun. Bright
regions correspond to localised mixed parity magnetic flux concentrations.

Left: G-Band (430nm); Right: Ca Il H (397nm) (Hinode SOT)

(http://solarb.msfc.nasa.gov/news/movies.html)




The origin of quiet Sun magnetic fields

Key guestion: Is a significant fraction of the quiet Sun magnetic flux
generated near the surface by the small-scale convective motions?

Previous studies:

* Boussinesq (incompressible) convection: non-rotating (Cattaneo 1999); rotating
(Cattaneo & Hughes 2006)

(Taken from Cattaneo 1999)



The origin of quiet Sun magnetic fields (cont.)

* Dynamo action in compressible convection (less well understood):

LES simulations (Vdgler & Schissler 2007); Weakly-superadiabatically
stratified convection (Brummell & collaborators, unpublished)
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(Taken from Vogler & Schussler 2007)

Our approach: DNS of dynamo action in three-dimensional compressible
convection at comparatively modest Reynolds numbers (no radiative transfer etc...)




Model Setup
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A horizontally-periodic Cartesian domain of depth, d (A typically 4 or 8)

Upper and lower boundaries: Impermeable, stress-free, vertical field, fixed T




Numerical Methods

Although this model is an idealised representation of the solar
photosphere, we still need to solve the equations of 3-dimensional
compressible magnetoconvection - Large-scale numerical
simulations

Numerical method

» Mixed finite-difference/pseudo-spectral scheme, explicit 3" order
Adams-Bashforth time-stepping

» Horizontal derivatives evaluated in Fourier space

» Fourth order finite differences (either upwinded or centred) are
used to calculate vertical derivatives

» Depending upon the domain size, computational resolution is
either 256x256x160 or 512x512x160

» Code parallelised using MPI

Many of these simulations were carried out using the UKMHD Cluster




Numerical results

Right: Statistically-steady hydrodynamic
convection (Reynolds number, Re ~ 150)

We insert a seed magnetic field:
B = ecos(2nx/\) cos(2ny/N)z

U rms.d
Ji

Crucial parameter: Rm =

This magnetic Reynolds number must be
large enough that inductive effects due to

the flow outweigh magnetic diffusion. For a

given flow, can vary Rm by varying 7.....

Right: A decaying dynamo at Rm=60
(magnetic energy vs. time on a log-
linear scale)
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The kKinematic regime

Focus initially upon the kinematic regime - no Lorentz feedback upon the flow.

Right: Magnetic energy growth
rate as a function of Rm

Rmm.z-t ~ 329

R
Growth rate =~ 0.21 log (m
Merit

Logarithmic fit for the growth rate
similar a result of Rogachevski &

Kleeorin (1997) for forced
turbulence
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* We have not yet reached a “fast” regime in which the growth rate is

independent of Rm.,

* Like Boussinesq calculations, growth rate (at higher values of Rm) is
comparable to the convective turnover time
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The kinematic regime (cont.)

Effect of increasing the box size: What happens to these kinematic dynamos
if we increase the aspect ratio from A=4 to A=87

» Higher growth rates

e Lower RMyrit

D2

0.0

This suggests that the eigenfunction
with the highest growth rate cannot be
- R o . | accommodated in the narrower

’ - on - “ | computational domain




The nonlinear regime

All the results so far are for kinematic dynamos - what about the nonlinear case?

Maognetic Energy (dimensionless units)

A=4 Rm~520 Re~ 150

Numerical resolution: 512 x 512 x 160

Magnetic Energy vs Time
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Below left: Magnetic energy

against time

Below right: Minimum density

against time
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The nonlinear regime (cont.)

Physical explanation for partial evacuation:

» Surface magnetic flux accumulates in the convective downflows, which drain
fluid away from the surface

» Strong magnetic pressure gradient inhibits converging convective flows
- Imbalance between incoming and outgoing mass fluxes

—> Partial evacuation of the surface regions
Numerical consequences:

Bo " e
Alfvén speed: Va4 ~ /p  Coefficient of thermal diffusion:  ~—

Both of these become large in the partially-evacuated region
—>Shorter timescales for Alfvenic disturbances and thermal diffusion

—>Smaller critical time-step for stability of this explicit scheme

—> Significantly increased runtime




The nonlinear regime (cont.)

A “Solution”:

In order to run these simulations on a reasonable time-scale, we artificially impose
a “floor” on the density

A marginal dynamo calculation should also limit the levels of partial evacuation

B,

Rm~350~1.1Rm

crit

Numerical resolution:

256 x 256 x 160 1




The nonlinear regime (cont.)

Below: A plot of magnetic energy against time. The straight line shows
the estimated rate of growth from the kinematic calculations

Magnetic Energy vs Time: Rm=350

* The dynamo is probably still
growing, but well into the
nonlinear phase

_ TN * Global magnetic energy
£ o100 VAR approximately 1% of the total
v Kinetic energy

Magnetic Encrey (dimensic

* Dynamo efficiency already
comparable to that of Vogler &
Schissler (2007), despite the

s W0 3% modest magnetic Reynolds
number



The nonlinear regime (cont.)

Below: Probability density functions for the vertical component of the

magnetic field at the upper surface (Left) and at the mid-plane (Right)
(i Tie-averaged probability density function: Rm=350 (i Time-averaged probability density function: Rm=350
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* These pdfs are qualitatively similar to those obtained by Vogler and
Schussler (2007), although more stretched at the extreme edges of the
distribution




Summary

« Kinematic simulations indicate that convection can act as a small-
scale dynamo, at least at moderate values of the Reynolds number.

» Apparent logarithmic dependence of growth rate upon the magnetic
Reynolds number (at least in this range of values for Rm...)

e Marginal nonlinear dynamo appears to be nearing saturation. The
magnetic energy is about 1% of the global kinetic energy. Comparable
efficiency to LES simulations of Vdgler & Schussler (2007), despite
modest Rm

Open questions:

 How well does this dynamo process actually work in the solar
photosphere?

* How do the idealised boundary conditions influence the results?

* |s it possible to write a code that can handle these calculations in a
more efficient manner?
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