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Observations
The quiet Sun:

Below: Convective motions and small-scale magnetic flux in the quiet Sun. Bright 
regions correspond to localised mixed parity magnetic flux concentrations. 

Left: G-Band (430nm); Right: Ca II H (397nm) (Hinode SOT)

(http://solarb.msfc.nasa.gov/news/movies.html)



The origin of quiet Sun magnetic fields

Key question: Is a significant fraction of the quiet Sun magnetic flux 
generated near the surface by the small-scale convective motions?

Previous studies:

• Boussinesq (incompressible) convection: non-rotating (Cattaneo 1999); rotating 
(Cattaneo & Hughes 2006)

(Taken from Cattaneo 1999)



• Dynamo action in compressible convection (less well understood):

LES simulations (Vögler & Schüssler 2007); Weakly-superadiabatically 
stratified convection (Brummell & collaborators, unpublished)

The origin of quiet Sun magnetic fields (cont.)

(Taken from Vögler & Schüssler 2007)

Our approach: DNS of dynamo action in three-dimensional compressible 
convection at comparatively modest Reynolds numbers (no radiative transfer etc…) 
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Initially:

Hydrostatic equilibrium – a convectively 
unstable polytropic layer heated from below 
(polytropic index=1; ratio of specific heats, 
γ=5/3)

Density and temperature vary by an order of 
magnitude across the layer. 

A horizontally-periodic Cartesian domain of depth, d (λ
 

typically 4 or 8)

Upper and lower boundaries: Impermeable, stress-free, vertical field, fixed T

Model Setup



Numerical Methods

Although this model is an idealised representation of the solar 
photosphere, we still need to solve the equations of 3-dimensional 
compressible magnetoconvection  Large-scale numerical 
simulations

Numerical method

• Mixed finite-difference/pseudo-spectral scheme, explicit 3rd order 
Adams-Bashforth time-stepping

• Horizontal derivatives evaluated in Fourier space

• Fourth order finite differences (either upwinded or centred) are 
used to calculate vertical derivatives

• Depending upon the domain size, computational resolution is 
either 256x256x160 or 512x512x160

• Code parallelised using MPI

Many of these simulations were carried out using the UKMHD Cluster



Numerical results
Right: Statistically-steady hydrodynamic 
convection (Reynolds number, Re ~ 150)

We insert a seed magnetic field:

This magnetic Reynolds number must be 
large enough that inductive effects due to 
the flow outweigh magnetic diffusion. For a 
given flow, can vary Rm by varying …..

Right: A decaying dynamo at Rm=60 
(magnetic energy vs. time on a log- 
linear scale)

Crucial parameter:


dURm rms



Right: Magnetic energy growth 
rate as a function of Rm

Focus initially upon the kinematic regime - no Lorentz feedback upon the flow.

Growth rate 

Logarithmic fit for the growth rate 
similar a result of Rogachevski & 
Kleeorin (1997) for forced 
turbulence

The kinematic regime 

• We have not yet reached a “fast” regime in which the growth rate is 
independent of Rm. 

• Like Boussinesq calculations, growth rate (at higher values of Rm) is 
comparable to the convective turnover time 



Effect of increasing the box size: What happens to these kinematic dynamos 
if we increase the aspect ratio from =4 to =8?

• Higher growth rates

• Lower 

This suggests that the eigenfunction 
with the highest growth rate cannot be 
accommodated in the narrower 
computational domain

The kinematic regime (cont.)



All the results so far are for kinematic dynamos - what about the nonlinear case? 

Numerical resolution:

Below left: Magnetic energy 
against time

Below right: Minimum density 
against time

The nonlinear regime



The nonlinear regime (cont.)

Physical explanation for partial evacuation:

• Surface magnetic flux accumulates in the convective downflows, which drain 
fluid away from the surface

• Strong magnetic pressure gradient inhibits converging convective flows

 Imbalance between incoming and outgoing mass fluxes

 Partial evacuation of the surface regions 

Numerical consequences:

Alfvén speed: Coefficient of thermal diffusion:

K~

Both of these become large in the partially-evacuated region

Shorter timescales for Alfvenic disturbances and thermal diffusion

Smaller critical time-step for stability of this explicit scheme

Significantly increased runtime



A “Solution”:
In order to run these simulations on a reasonable time-scale, we artificially impose 
a “floor” on the density

A marginal dynamo calculation should also limit the levels of partial evacuation

critRmRm 1.1~350~

Numerical resolution:

The nonlinear regime (cont.)



Below: A plot of magnetic energy against time. The straight line shows 
the estimated rate of growth from the kinematic calculations

• The dynamo is probably still 
growing, but well into the 
nonlinear phase

• Global magnetic energy 
approximately 1% of the total 
kinetic energy

• Dynamo efficiency already 
comparable to that of Vögler & 
Schüssler (2007), despite the 
modest magnetic Reynolds 
number 

The nonlinear regime (cont.)



Below: Probability density functions for the vertical component of the 
magnetic field at the upper surface (Left) and at the mid-plane (Right)

• These pdfs are qualitatively similar to those obtained by Vögler and 
Schüssler (2007), although more stretched at the extreme edges of the 
distribution

The nonlinear regime (cont.)



Summary

• Kinematic simulations indicate that convection can act as a small- 
scale dynamo, at least at moderate values of the Reynolds number. 

• Apparent logarithmic dependence of growth rate upon the magnetic 
Reynolds number (at least in this range of values for Rm…)

• Marginal nonlinear dynamo appears to be nearing saturation. The 
magnetic energy is about 1% of the global kinetic energy. Comparable 
efficiency to LES simulations of Vögler & Schüssler (2007), despite 
modest Rm

Open questions:

• How well does this dynamo process actually work in the solar 
photosphere?

• How do the idealised boundary conditions influence the results?

• Is it possible to write a code that can handle these calculations in a 
more efficient manner?
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