i r f u
(Numerical) study of the collapse and of the
fragmentation of prestellar dense core

saclay

Benoît Commerçon Supervisors: E. Audit, G. Chabrier and P. Hennebelle Collaborator: R. Teyssier (3D - AMR) CEA/DSM/IRFU/SAp CRAL, ENS Lyon

Outline

1. Context - Model

2. Radiative transfer for star formation calculation

- → Flux Limited Diffusion Approximation
- → Radiation Hydrodynamics equations solver

3. AMR vs SPH

→ Fragmentation study

4. 3D AMR RMHD with FLD and ideal MHD

- → 3D RHD collapse calculations
- → 3D RMHD collapse calculations

2 main numerical methods:

- Grid based : Hennebelle ,Fromang & - SPH: Bate et al. (RMHD), Stamatellos et Teyssier 08 (MHD), Krumholz et al 07 al 08 (RHD), etc... (RHD), Banerjee & Pudritz 06 (MHD), etc...

Debate on the accuracy of both methods:

=> Are these methods appropriate to study structure formation? Are they converging?

RAMSES code (*Teyssier 2002*)
 Finite volume, 2nd order Godunov scheme
 Ideal MHD solver (*Fromang et al. 2006*)
 MPI parallelized

DRAGON code from Cardiff University Star Formation Group (eg. Goodwin et al 2004) Standard version, OpenMP & parallel Tree

Model: isolated dense core of 1 M_{\odot} in solid body rotation

- 1/ Small scales
- 2/ Fragmentation
- Fragmentation : IMF, disk stability
- Solution → Azimuthal density perturbation ==> spiral arms
 - Perturbation *m*=2, amplitude *A*=0.1

 $ho =
ho_0 [1 + Acos(m heta)]$

- → 2 parameters to set the system
 - Thermal support: α = 0.5
 - Rotational support: $\beta = 0.04$ (E_{rot}/E_{grav})
 - Tsuribe & Inutsuka (1999): α < 0.55 0.65 β

(pc)

 (E_{th}/E_{grav})

- Continuity
- Linear momentum conservation
- Total energy conservation

- Closure relation:
$$P = (\gamma - 1)\rho \left(e - \frac{1}{2}u^2\right)$$

• Jeans length $\lambda_J = C_s \sqrt{\frac{\pi}{\rho_0 \gamma}}$

• Barotropic EOS to mimic the thermal behaviour of the gas

$$\frac{P}{\rho} = C_s^2 = C_0^2 \left[1 + \left(\frac{\rho}{\rho_c}\right)^{2/3} \right] \quad \begin{cases} -\gamma = 1 & \text{si } \rho <<\rho_c \rightarrow \text{ISOTHERMAL} \\ -\gamma = 5/3 & \text{si } \rho >>\rho_c \rightarrow \text{ADIABATIC} \end{cases}$$

1

Radiation HydroDynamics & Star formation

• Why must we model radiative transfer ?

- Interaction gas-dust during the collapse ==> opacities
- More realistic
- Radiative pressure effect for high mass star formation (> 20 M_{\odot})
- With FLD (*Bate 09*), number of object/5 in giant molecular clouds!
- Comparison with observations (L_{acc} 1st core...)
- Holy grail : Have access and control the entropy level of the protostar...

\Rightarrow The radiative transfer equation:

$$\left(\frac{1}{c}\frac{\partial}{\partial t} + \mathbf{n} \cdot \nabla\right)I(\mathbf{x}, t; \mathbf{n}, \nu) = \eta(\mathbf{x}, t; \mathbf{n}, \nu) - \chi(\mathbf{x}, t; \mathbf{n}, \nu)I(\mathbf{x}, t; \mathbf{n}, \nu)$$

TOO HEAVY for multi-D dynamic calculations!...

Approximations with grey opacities

\Rightarrow Grey Flux Limited Diffusion

Optically thick (mean free path <<L_{sys}) ==> diffusion approximation: $P_r=1/3 E_r$, $\partial_t F_r = 0$ ==> Solve a diffusion equation on the radiative energy:

$$\frac{\partial E_{\rm r}}{\partial t} - \nabla \cdot \left(\underbrace{\partial}_{\rho \kappa_{\rm R}} \nabla E_{\rm r} \right) = \kappa_{\rm P} \rho (4\pi B - cE_{\rm r})$$

Flux limiter (e.g. *Minerbo* 78)

✓ 2 sets of recent opacity tables

- \Rightarrow Semenov et al 03 at low temperature (< ~600 K).
- \Rightarrow Fergusson et al. 05 model at high temperature

Rosseland grey opacity table

Flux Limited Diffusion in RAMSES

 \Rightarrow Linearize $(T^{n+1})^4 = 4(T^n)^3 T^{n+1} - 3(T^n)^4$

AMR vs. SPH; Fragmentation using a barotropic EOS

AIM: study the dependency of the results on numerical parameters

3D Collapse with RHD

3D Collapse with RHD: when does it fragment?

Collapse 3D with RHD

FLD modified fragmentation (number of object, time, etc..) compared to the barotropic case...

But dense core magnetized ==> Need a magnetic field that will inhibit

Collapse with magnetic field

==> independent of R, B & dilute gravity

- $(\phi/M) > (\phi/M)_{crit}$ subcritical cloud
- $(\phi/M) < (\phi/M)_{crit}$ supercritical cloud, collapse

Parameter : $\mu = (\phi/M)_{crit} / (\phi/M)$ (observations $\mu \sim 2-5$)

Protostellar outflow

Outflow, no fragmentation...

Impact on outflow structure & launching

 α = 0.37 , β = 0.045 , μ = 5

Magnetic field lines

In progress - RMHD calculations!

rotropic EOS: gas hot in optically thin region!! diation escape in the vertical direction

α = 0.37 , β = 0.045 , m=2 , A=0.1

✓ AMR vs SPH: Convergence!

✓ Radiative transfer:

- Dramatic impact on fragmentation & outflow launching
- Small scale physic very important

✓ 3D ==> several objectives (next or distant future...) :

- outflow barotrop vs FLD
- Prestellar core fragmentation with RMHD:
 - **Radiative Feedback** from protostars (sink particles)
 - Brown Dwarfs formation
 - 2nd collapse : no fragmentation of the 1st core ==> 2nd core fragmentation?
- Massive star formation :
 - Radiative pressure effect (M > 20 M_s) ==> stop collapse
 - Mass definit in calculations · Varka & Combaltar (2002) --> 12 M