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Introduction

Why is this interesting?

There are a few reasons ...

Molecular clouds appear to have longer lifetimes than expected
They require some kind of support (turbulence?)
How much power/momentum flux is needed to support the clouds?

Larson’s law suggests that turbulence is present
NB: see Heyer et al (2009)

Large-scale turbulence in molecular clouds may influence star
formation
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Introduction

Why multifluids?

Molecular clouds are weakly ionised

Charge-to-mass ratios vary widely

No a priori reason to believe single fluid approach

Traditionally approximated by ambipolar (low density) or resistive
(high density) diffusion

Wardle (2004) and subsequent papers have suggested that the
Hall effect may also be significant
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Introduction

Relevant conditions

Molecular cloud turbulence is known to be supersonic

Reasonable to approximate the system as isothermal

Scale of the system is large (so periodic boundary conditions are
not unreasonable)
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Numerical model

Numerical model

We use the scheme of O’Sullivan & Downes (2006, 2007)

Super-time-stepping for ambipolar diffusion

Hall Diffusion Scheme for Hall effect

Assume weak ionisation (e.g. Falle 2003)

Neutrals advanced using a Godunov-type method

Method of Dedner used to control ∇ · B
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Numerical model

Scaling
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Hard scaling on BG/P system in IBM Watson Research Lab (5123)
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Initial conditions

Initial Conditions

Chosen to maximise any possible influence of the Hall effect.

Lbox = 0.2 pc (periodic boundary conditions)

cs = 0.55 km s−1(crossing time is about 1.8 Myr)

B = 1
√

3
(1, 1, 1)T mG

n = 106 cm−3

Each component of v is initialised as a sum of 16 wave-vectors
with random amplitudes and phases (no driving, solenoidal, rms
Mach number of 5)

For a first step, fix our resistivities in time and space
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Results

Energy decay

Snapshots of slices of the flow at different times
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Results

Energy decay
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Results

Energy decay
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Results

B evolution
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Results

Energy decay rates

Simulation βK βB βTot

mc-5-512 1.40 1.37 1.39
ambi-5-512 1.40 1.35 1.38
hall-5-512 1.25 1.18 1.22
mhd-5-512 1.26 1.19 1.23

Exponents of energy decay fitted over interval [0.2tc, tc].
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Results

Early-time evolution
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Results

Power spectra
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Results

Power spectra
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Results

Power spectra
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Results

Power spectra

Simulation Density Velocity Magnetic field
mc-5-512 2.09a, 4.06b 1.47 2.17a, 4.96b

ambi-5-512 2.04a, 4.03b 1.49 2.21a, 4.75b

hall-5-512 1.41 1.20 1.65
mhd-5-512 1.45 1.17 1.59

a: Fitted over 4 ≤ k ≤ 10
b: Fitted over 10 ≤ k ≤ 100
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Conclusions

Conclusions

Ambipolar diffusion enhances turbulent decay

Hall effect appears to have little impact

Power spectra strongly influenced by ambipolar diffusion

Hall effect important at high k (effects more notable in B-field)
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