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Introduction

Why is this interesting?

There are a few reasons ...

@ Molecular clouds appear to have longer lifetimes than expected

@ They require some kind of support (turbulence?)
@ How much power/momentum flux is needed to support the clouds?

@ Larson’s law suggests that turbulence is present
NB: see Heyer et al (2009)

@ Large-scale turbulence in molecular clouds may influence star
formation
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Introduction

Why multifluids?

@ Molecular clouds are weakly ionised
@ Charge-to-mass ratios vary widely
@ No a priori reason to believe single fluid approach

@ Traditionally approximated by ambipolar (low density) or resistive
(high density) diffusion

@ Wardle (2004) and subsequent papers have suggested that the
Hall effect may also be significant
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Introduction

Relevant conditions

@ Molecular cloud turbulence is known to be supersonic
@ Reasonable to approximate the system as isothermal

@ Scale of the system is large (so periodic boundary conditions are
not unreasonable)
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Numerical model

Numerical model

We use the scheme of O’Sullivan & Downes (2006, 2007)
@ Super-time-stepping for ambipolar diffusion
@ Hall Diffusion Scheme for Hall effect
@ Assume weak ionisation (e.g. Falle 2003)
@ Neutrals advanced using a Godunov-type method
@ Method of Dedner used to control V - B
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Numerical model

Scaling
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Hard scaling on BG/P system in IBM Watson Research Lab (5123)
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Initial conditions

Initial Conditions

Chosen to maximise any possible influence of the Hall effect.

@ Lpox = 0.2 pc (periodic boundary conditions)

@ cs = 0.55kms~(crossing time is about 1.8 Myr)

@ B= %(1,1,1)T mG

@ n=10%°cm=3

@ Each component of v is initialised as a sum of 16 wave-vectors
with random amplitudes and phases (ho driving, solenoidal, rms
Mach number of 5)

For a first step, fix our resistivities in time and space
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Energy decay

Results

Snapshots of slices of the flow at different times
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Results

Energy decay

Normalized kinetic energy
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Kinetic energy decay for differing resolutions
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Results

Energy decay
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Kinetic energy decay for different physics
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Results

B evolution

Normalized magnetic energy
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Magnetic energy decay for the different simulations
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Energy decay rates

Results

Simulation
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Exponents of energy decay fitted over interval [0.2t, t¢].
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Results

Early-time evolution

1
mhd-5-512 kinetic energy ——
mhd-5-512 magnetic energy --------
me-5-512 kinetic energy -~~~
me-5-512 magnetic energy
01
=
3
&
B
s
2
001
0001 : .
01 1

001
Time (crossing times)

Time evolution of kinetic and magnetic energy
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Results

Power spectra
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Density power spectrum at t = t;
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Results

Power spectra
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Velocity power spectrum att = t
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Results

Power spectra

Normalized power
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Magnetic power spectrum at t = t¢
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Results

Power spectra

Simulation Density Velocity Magnetic field
mc-5-512 2.09% 4.06> 1.47 2.172 4.96°
ambi-5-512 2.04% 4.03°  1.49 2.212 4.75P
hall-5-512 1.41 1.20 1.65
mhd-5-512 1.45 1.17 1.59

& Fitted over4 <k < 10
b Fitted over 10 < k < 100
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Conclusions

Conclusions

@ Ambipolar diffusion enhances turbulent decay

@ Hall effect appears to have little impact

@ Power spectra strongly influenced by ambipolar diffusion

@ Hall effect important at high k (effects more notable in B-field)
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