

Exploiting the Extensibility of the FLASH Code Architecture for Unsplit Time Integration

A. Dubey, D. Lee, K. Olson, K. Weide, K. Antypas June 29, 2009

An Advanced Simulation & Computing (ASC) Academic Strategic Alliances Program (ASAP) Center at The University of Chicago

Active Contributors

- Dongwook Lee, Klaus Weide, Chris Daley, Anshu Dubey, Lynn Reid, Paul Rich, Paul Ricker, Dean Townsley, Cal Jordan, John Zuhone, Kevin Olson, Marcos Vanella
- Past Major Contributors:
 - Katie Antypas, Alan Calder, Jonathan Dursi, Robert Fisher, Timur Linde, Andrea Mignone, Tomek Plewa, Katherine Riley, Andrew Siegel, Dan Sheeler, Frank Timmes, Natalia Vladimirova, Greg Weirs, Mike Zingale

FLASH Capabilities Span a Broad Range...

Richtmyer-Meshkov instability

Blocks and Mesh Packages

- Mesh package can be selected at configuration time
- The basic abstraction is a block of interior cells surrounded by guard cells
- Grid unit makes sure that blocks are self contained before being given to the solvers

at concept testing stage

Uniform Grid

Oct tree based AMR

AMR with variable patch size

The Grid Unit Organization

- Hierarchy in complexity of interfaces
 - □ For single point calculation scalar input and output
 - □ For sections of a block or full block vectorized input and output
 - wrappers to vectorize and configure the data
 - returning derivative quantities if desired
- Different levels in the hierarchy give different degrees of control to the client routines
 - Most of the complexity is completely hidden from casual users
 - More sophisticated users can bypass the wrappers for greater control
- Done with elaborate machinery of masks and defined constants

- □ To implement un-split time integration
 - Alternative implementation of the Driver unit
 - □ No impact on other units in the code because of encapsulation
- Use of face centered variables and scratch variables
 - Generalized interfaces for handing guardcells can handle all datatypes
 - Hierarchical design of the Eos unit doesn't distinguish between grid data structures
- Availability of UG also made it easier to develop the solver
 - □ Isolate the complexity
 - □ Easier to create testing framework and diagnostic tools

Physics

- Ideal and non-ideal flows
 - □ Magnetic resistivity (MHD), themal conductivity, and viscosity
- EOS
 - □ Ideal gamma, multiple gamma, Helmholtz (degenerate EOS)
- Gravity
- Multiple species, particles
- □ Well tested for wide ranges of plasma flows for MHD: $10^{-6} \le \beta (\equiv p/B_p) \le 10^6$
- Implementations and algorithms
 - 2nd order MUSCL-Hancock in space and time (PPM interpolation will be available in future release)
 - Riemann solvers
 - □ Roe (default), Lax-Friedrichs, HLLE, HLLC for both, and HLLD for MHD
 - Carbuncle, even-odd instability fix for Roe solver
 - □ Strong shock-rarefaction detection algorithm (Balsara, 1998)
 - □ Various slope limiters (Minmod, MC, Van Leer, hybrid)
 - Two prolongation methods (Balsara's & direct injection) of divergence-free B fields on AMR for MHD
 - □ Use of face-centered variables, and edge-centered variable for MHD
 - □ Wide ranges of CFL limit: CFL < 1 for 1D, 2D and 3D for both solvers

Unsplit pure-Hydro solver (New in FLASH3; Lee, 2009)

- Reduced version of USM-MHD solver without magnetic and electric fields
- □ 2nd order MUSCL-Hancock in space and time
- Preserves better flow symmetries (Roe solver with Carbuncle instability fix)

CFL Stability Test

Advecting a 3D density ball in a periodic domain

The University of Chicago

Unsplit Staggered Mesh (USM) MHD solver (Lee, 2006; Lee and Deane 2009)

Flux conservations on fine-coarse boundary

- Conservation of high-order Godunov fluxes on AMR grid
- Grid_conserveFlux.F90 to get consistent flux values:

$$\mathbf{F} = \mathbf{f}_1 + \mathbf{f}_2$$

Electric field correction on fine-coarse boundary

- Use of "edge" structures in PARAMESH
- Grid_conserveField.F90 to get consistent field values:

$$E_{z,+} = e_{z,+,2}, E_{z,-} = e_{z,-,1}$$

Applications

