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Introduction UNIVERSITY OF LEEDS

Hierarchical density structure in molecular clouds

e Not homogeneous, but highly structured
e Stars embedded in dense cores

G0

Emission line maps of the Rosette Molecular Cloud (Blitz 1987)

e MCs that do not harbour any young stars are rare
e Old stellar associations (few Myr) are devoid of molecular gas
1 Cloud and core formation are entangled
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Cloud formation UNIVERSITY OF LEEDS

Compression +
Thermal processes in diffuse atomic gas:
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heating balances cooling: log p [em™]
1. Rarefied, warm gas (w; T > 6102 K) (Sanchez-Salcedo et al. 2002)

2. Dense, cold gas (c¢; T < 313 K)
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Cloud formation: flow-driven UNIVERSITY OF LEEDS

Flow-driven formation or colliding streams

Heitsch, Stone & Hartmann (2009)
Hennebelle et al. (2008)

e.g. expanding and colliding supershells

e Collision region prone to instabilities, i.e.

KH, RT, NTSI IIv

e Turbulent shocked layer
e Fragmentation into cold clumps

e Structure depends strongly on magnetic
field (both orientation and magnitude)
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Cloud formation: shock-driven UNIVERSITY OF LEEDS

Shock-driven formation
Inutsuka & Koyama (2006)
Van Loo et al. (2007) .

e.g. shocks and winds sweeping up material

0.8"

Galactic latitude

e Similar processes as flow-driven

=
+

e Can explain different cloud morphologies
e.g. filamentary, head-tail,...

135 134 134 134° 133"
Galactic longitude

1 Shock-cloud interaction W3 GMC (Bretherton 2003)
Previous work:
2D: adiabatic: MacLow et al. (1994), Nakamura et al. (2006)
radiative: Fragile et al. (2005), Van Loo et al. (2007)
3D: adiabatic: Stone & Norman (1992), Shin, Stone & Snyder (2008)
radiative: Ledo et al. (2009) (nearly isothermal)
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Numerical simulation UNIVERSITY OF LEEDS

Interaction of shock (M = 2.5) with initially warm, thermally stable cloud
(n = 0.45 cm-3, T = 6788K, R = 200pc) Which is in pressure equilibrium with
hot ionised gas (n = 0.01 cm3, T = 282500K) and = 1.

Numerics:
e Ideal MHD code with AMR (Falle 1991):
2nd order Godunov scheme with linear Riemann solver

+ divergence cleaning algorithm (Dedner et al. 2002)

e Include cooling as source function: exponentially fitted Euler method
5T — KT where A=df/dT

 improvement on stability of scheme

e Resolution: 120 cells across initial cloud radius
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Dynamical evolution: parallel UNIVERSITY OF LEEDS

Parallel shock

Geometry Phase diagram

log(p/k)

log(n)

1 Rapid condensation at boundary
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Dynamical evolution: oblique UNIVERSITY OF LEEDS

Oblique shock ~45°

Geometry Phase diagram

log(p/k)

L
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1 Condensation along equilibrium curve
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Dynamical evolution

From 2D simulation
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e Typical GMC values: n = 20cm=3 & R = 50 pc
e High-mass clumps in boundary and low-mass
clumps inside cloud = precursors of stars
e Similar to observations of e.g. W3 GMC (Bretherton 2003)
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Results of models UNIVERSITY OF LEEDS

Properties of clouds
e Large fraction of cloud magnetically dominated
e High velocity dispersions

'] Ideal conditions for the formation of dense cores by MHD waves
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Core formation UNIVERSITY OF LEEDS

Details of the formation process

Analysis of Falle & Hartquist (2002):
e Slow-mode waves produce large contrasts in low-3

plasma oV
a’B

for a«c, + pa By
5p B*

small velocity perturbation = large density contrast
o Ceases to be effective when 3 is close to unity
e Excitation of slow-mode waves by fast-mode wave
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Ambipolar resistivity UNIVERSITY OF LEEDS

Low ionisation fraction in clumps

e Plasma and magnetic field weakly coupled
= charged particles drift through neutrals
— ambipolar diffusion (Mestel & Spitzer 1956)

e Dissipation length

—6 3 -3
| ~005 pc( C, ] 107° | 10°cm
3km/s )i X, n,

= Significant effect on the observed structure
in star formation

02.07.2009 ASTRONUMO9 13



Ambipolar resistivity:model UNIVERSITY OF LEEDS

Numerical model !

e Multifluid MHD code (Falle 2003) including |\

. T [ \,\!:‘x\“ﬁ o, =5x16%, B
ambipolar and Hall resisitivity (+ AMR) NN o
. __.:\\x \\ R ::__
e Follow the evolution of a fast-mode wave _ |\ |\ | ==
e Ionisation fraction ~ 1/n, N
L -..\\‘ .k\\ \._‘?._:-:___:_T,,-md*-u 1
X, ® 104 for ny<103 cm=3 U RN N
X, = 107 for n,=5x104cm-3 - N o]
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(Ruffle et al. 1998)
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Ambipolar resistivity:simulations UNIVERSITY OF LEEDS

e Identical initial conditions, but different wavelengths

RHO
S 14.22
®10 7
1.0 "
.
Y

A=10%1,p A=1031,p
no wave dissipation
= ideal MHD

02.07.2009 ASTRONUMO9 15



Effect of ambipolar resistivity

Results:

e Dense cores associated with slow-
mode waves

e A=10%1,p (clump size): dense cores
with n, = 104 - 10> cm~3 and sizes of
order 0.1 pc

e A=10?1,p (core size): small density
contrasts + rapid decay of fast-mode
wave

1 Ambipolar diffusion suppresses core
formation

02.07.2009 ASTRONUMO9

maximum density

UNIVERSITY OF LEEDS

time (in wave periods)

16



Conclusions + future work UNIVERSITY OF LEEDS

Conclusions:

e Magnetically-dominated clouds form due to thermal instability and
compression by weak or moderately-strong shocks

e MHD waves generate dense cores with ambipolar diffusion limiting
the core size

Future work:

e Including self-gravity in the models
e The effect of multiple clouds and cloud-cloud collisions
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