Supersonic Turbulence in Shock Bound Slabs

Doris Folini and Rolf Walder, CRAL, ENS Lyon, France Visualization by Jean Favre, CSCS Manno, Switzerland

Outline

- ★ shock bound slabs: why study?
- ★ plane parallel isothermal shock bound slabs
 - boundary of slab \leftrightarrow turbulence in slab
 - self-similarity
 - \bullet structure functions, modeled $\leftrightarrow\,$ observed

★ summary / conclusions

Shock Bound Slabs: another toy model for molecular clouds?

• cloud formation?

Lyor

de

- star formation (IMF)?
- (driven) turbulence within cloud?

From observations and (3D periodic box) simulations

• molecular clouds are supersonically turbulent:

observations \rightarrow supersonic rms-velocities

• the turbulence must be driven:

if not \rightarrow decay within a sound crossing time \rightarrow higher star formation rate than observed

• the driving occurs at large scales:

observations \rightarrow large scales dominate velocity field and structure of low-density gas 3D box models \rightarrow driving wavelength sets structure size

Our focus, somewhat complementary to 3D box:

- study one possibility of a more natural forcing
- \bullet study interplay confining shocks \leftrightarrow turbulence

Model problem:

2D (3D) plan parallel isothermal colliding flows

Computations done with A-MAZE:

- ideal hydro
- AMR following evolution of growing interaction zone

2D plan parallel isothermal colliding flows

Higher upstream Mach number \Rightarrow confining shocks have more narrow, steeper wiggles with larger amplitude

Centre de Recherche Astrophysique de Lyon

scaling laws for mean quantities (like M_{rms}): dimensional analysis suggests self-similarity

Dimensional considerations:

(1)
$$\rho_{\rm m} = \eta_1 \rho_{\rm u} M_{\rm u}^{\beta_1} = \eta_1 \rho_{\rm u}$$

(2) $M_{\rm rms} = \eta_2 M_{\rm u}^{\beta_2} = \eta_1^{-1/2} M_{\rm u}$

(3)
$$\kappa_{\rm 2d} = \ell_{\rm cdl} / \tau = 2\eta_1^{-1} a M_{\rm u}$$

(4)
$$\mathcal{E}_{drv} = \rho_{u} a^{3} M_{u}^{3} (1 - \eta_{3} M_{u}^{\beta_{3}}) f_{eff}$$

(5)
$$\mathcal{E}_{\text{dis}} = \rho_{\text{u}} a^3 M_{\text{u}}^3 (1 - 2\eta_2^2 - \eta_3 M_{\text{u}}^{\beta_3}).$$

Numerical simulations confirm:

 $\beta_1 = 0 \qquad \beta_2 = 1 - \beta_1 = 1$

 $\begin{array}{ll} \mbox{Numerical simulations yield (2D):} \\ \eta_1 = 30 & \eta_2 = (1/\eta_1)^{1/2} = 0.2 \\ \beta_3 = -0.7 & \eta_3 = 3.3 \end{array}$

Numerical simulations, Mach number and density (2D):

Predicted : $M_{rms} / M_{u} = const.$

Lyon

Centre de Recherche Astrophysique de

 $\rho_m / \rho_u = const.$ (independent of M_u!)

Second order effects I: slight decrease in M_{rms}

Predicted : $M_{rms} / M_{u} = const.$

Observed : 15% decrease as $I_{cdl} \mbox{ goes from 10 to 70}$

- sub-grid scale model (MILES) not appropriate?
- time scale of turbulence decay

'non-culprits' : y-extent of domain and spatial discretization

Second order effects II: no convergence so far

finer grids (factor 2) \rightarrow smaller (15%) M_{rms}

Possible reasons?

- finer grids \rightarrow more / better resolved shocks

 \rightarrow enhanced total dissipation in shocks

- back coupling between M_{rms} and f_{eff} amplifies effect $% f_{eff}$
- sub-grid scale model (MILES) sensitive to grid spacing? [MILES, monotone integrated large eddy simulation; Boris et al. 1992; Porter et al. 1992, 1994; Garnier et al. 1999]

predicted by self-similarity & confirmed by simulations: column integrated dissipation independent from I_{cdl}

Possible explanation:

if self-similar, all length scales proportional to each other \rightarrow distance between shocks proportional to $I_{cdl} \rightarrow$ number of shocks within CDL column constant \rightarrow column integrated dissipation (by shocks) constant

Density for three different times, three different shell sizes ${\rm I}_{\rm cdl}$

→ Structure size increases with I_{cdl}

hypothesis A: wiggling of shocks \rightarrow effective driving wave-length \rightarrow scale of turbulence (Mac Low, 1999, 3d box)

hypothesis B: small scale structures decay first \rightarrow larger structures in center of CDL (Smith et al., 2000)

Structure size increases with I_{cdl}

Divergence for two different Mach numbers, same I_{cdl}

Structure size increases with decreasing upstream Mach number

Centre de

Lyo

de

Recherche Astrophysique

velocity in slab clearly anisotropic

sound speed ~ $8 \cdot 10^5$ cm/s

(Walder & Folini, 2000, ApSS, 274)

<mark>Centre de Recherch</mark>e Astrophysique de Lyon

width of density pdf levels off with large M_{rms}

2D slabs \leftrightarrow 3D slabs?

Centre de Recherche Astrophysique de Lyon

same upstream Mach number: 3D more turbulent

3D slabs: plane parallel isothermal symmetric

 $\dot{\mathcal{E}}_{\mathrm{drv}} = f_{\mathrm{eff}}(M_{\mathrm{u}})\mathcal{F}_{\mathrm{e_{kin},u}}$

velocity structure functions (3D)

longitudinal & transverse directions: no clear difference

best agreement with

- Schmidt et al. 2009

- Dubrulle 1994

	3D slabs	Schmidt et al. 09	SL94	B02	K41
p=1:	0.40 / 0.52	0.52	0.36	0.42	0.33
p=2:	0.74 / 0.82	0.83	0.70	0.74	0.67
р=3:	1	1	1	1	1
p=4:	1.10 / 1.18	1.09	1.28	1.21	1.33
p=5:	1.12 / 1.33	1.14	1.54	1.40	1.67

Centre de Recherche Astrophysique de Lyon

red diamonds:

3D slabs

black squares:

Gustafsson et al. 2006 (Orion) magenta/green circles: Hily-Blant et al. 2008 (Polaris / Taurus) blue diamonds: Schmidt et al. 2009 blue/black stars: Dubrulle 1994

	3D slabs	Schmidt et al. 09	SL94	B02	K41
p=1:	0.40 / 0.52	0.52	0.36	0.42	0.33
p=2:	0.74 / 0.82	0.83	0.70	0.74	0.67
p=3:	1	1	1	1	1
p=4:	1.10 / 1.18	1.09	1.28	1.21	1.33
p=5:	1.12 / 1.33	1.14	1.54	1.40	1.67

Centre de Recherche Astrophysique de Lyon

S3 not well represented by single power law in 3D slabs and Orion (Gustafsson et al, 2006)

Centre de Recherche Astrophysique de Lyon

Gustafsson et al., 2006

Summary / Conclusions

- \star confining shocks (driving) \leftrightarrow $\overset{M}{interior}$ turbulence
 - driving more efficient in 3D and for larger M_u
 - thicker slab / smaller $M_u \rightarrow$ larger scale interior structure
 - mean quantities: self-similar, governed by M_u
- ★ density pdf: width levels off with increasing M_{rms}
- ★ S_p: no single power law, small exponents
- ★ implications for molecular clouds?
 - velocities of colliding flows $M_u \ge 4 M_{rms}$
 - naturally obtain "non-single-power-law" structure functions