Relativistic MHD simulations of Alfvén QPOs in magnetars

José A. Font

Departamento de Astronomía y Astrofísica

Universidad de Valencia (Spain)

Collaborators: Pablo Cerdá-Durán (MPA) Nikolaos Stergioulas (AUTH)

ASTRONUM 2009 - Chamonix, France

Introduction: giant flares in SGRs Framework

- Alfvén QPO model
- Semi-analytic approach
 Numerical simulations
 Conclusions

Cerdá-Durán, Stergioulas & Font, MNRAS accepted (2009) (arXiv:0902.1472)

Giant flares in SGRs

Soft gamma repeaters: peaks of gamma-ray flare activity $(10^{44}-10^{46} \text{ erg/s in } \sim 0.2 \text{ s})$ followed by a decaying X-ray tail (~100 s)

SGRs are a class of magnetars (Duncan & Thomson 1992): neutron stars with very strong magnetic fields ($B > 10^{14}G$)

Three giant flares have been detected so far:

- SGR 0526-66 on March 5, 1979
- SGR 1900+14 on August 27, 1998
- SGR 1806-20 on December 27, 2004

How magnetar bursts happen?

Magnetic-field-driven quakes in the crust of neutron stars

HOW MAGNETAR BURSTS HAPPEN

THE MAGNETIC FIELD OF THE STAR is so strong that the rigid crust sometimes breaks and crumbles, releasing a huge surge of energy.

1 Most of the time the magnetar is quiet. But magnetic stresses are slowly building up.

2 At some point the solid crust is stressed beyond its limit. It fractures, probably into many small pieces.

3 This "starquake" creates a surging electric current, which decays and leaves behind a hot fireball.

4 The fireball cools by releasing x-rays from its surface. It evaporates in minutes or less.

Kouveliotou, Duncan & Thompson, Scientific American (2003)

QPOs in the decaying X-ray tail

High frequency variations (QPOs) discovered in the tail of the 2004 flare from SGR 1806-20 using data from RXTE and RHESSI (Israel et al. 05, Watts & Strohmayer 06, Strohmayer & Watts 06).

Similar QPOs discovered in the tail of the 1998 flare from SGR 1900+14 using RXTE data (Strohmayer & Watts 05).

Model 1: torsional modes of solid crust

The QPO frequencies are in broad good agreement with models of torsional shear modes of neutron star crusts.

- Torsional shear oscillations of the crust, fundamental frequency ~30 Hz (Schumaker & Thorne 1983)
- Free slip models (crust moves independently of the core) (Piro 2005; Samuelsson & Andersson 2007)

• Fail to explain all frequencies.

SGR 1806-20		SGR 1900+14	Torsional shear mode identification			
18 [*] 26 [*]		?				
30 [*] 92 [*]		28 53 84	n = 0, l = 2 n = 0, l = 4 n = 0, l = 6	* detected in RXTE and		
150		155	n = 0, l = 10 n = 0, l = 11	RHESSI datasets.		
625 [*] 1840			n = 1 $n = 3$			

Model 2: Alfvén QPO model

Both, global (crust-core coupling) elasto-magnetic oscillations and pure Alfvén oscillations.

Previous models:

- Simplified geometry (Glampedakis et al 2006; Sotani et al 2007)
 - Global Alfvén modes
 - Too simplified geometry
- Continuum toy model (Levin 2006; Levin 2007)
 - Continuum of Alfvén oscillations
 - QPOs at turning points and edges
- Linear simulations (Sotani et al 2008; Colaiuda et al 2009)
 - Confirmation of Levin's model
 - overtone QPOs -> frequencies at integer multiples of fundamental frequency (agreement with observed QPOs)

• Non-linear simulations (anelastic approximation) (Cerdá-Durán et al 2009)

Our Alfvén QPO model

- Self-consistent equilibrium models (Bocquet et al 1995)
- Magstar (LORENE library) www.lorene.obspm.fr
- \bullet Non-rotating 1.4 M_{\odot} NS + polytropic EOS
- Shear waves neglected + boundary condition for crust

Two complementary approaches:

1. Semi-analytical approach (short-wavelength approximation)

2. Non-linear MHD simulations

CoCoNuT code (Dimmelmeier, Font & Müller 2002, Cerdá-Durán et al 2008)

General Relativistic MHD code + dynamical spectime

www.mpa-garching.mpg.de/Hydro/COCONUT

Idea: to compute Alfvén wave travel times along individual magnetic field lines (assuming a short-wavelength approximation).

Perturbations:

- propagate along magnetic field lines
- local Alfvén speed

Path of an Alfvén wave:

$$\frac{d\mathbf{x}}{dt} = \mathbf{v}_A(\mathbf{x}) \rightarrow \mathbf{x}(t_a, \mathbf{x}_0)$$

 \mathbf{x}_0 : starting point t_a : arrival time

Open and closed magnetic field lines

Coordinates adapted to the magnetic field lines

$$\rightarrow \chi = rac{r}{r_{
m max}}$$
 Position of the magnetic field line

$$t_{
m a} ~~
ightarrow ~~ \xi = rac{t_{
m a}}{t_{
m tot}} - rac{1}{2}$$
 Location of points of the Location of points of the Location of the L

Location of points along an individual line

Displacement describing travelling waves along a specific line: $Y(\xi, \chi; t)$

 \mathbf{x}_0

$$\frac{\partial^2 Y(\xi,t)}{\partial t^2} = \sigma^2 \frac{\partial^2 Y(\xi,t)}{\partial \xi^2}$$

$$\sigma(\chi) ~=~ rac{1}{t_{
m tot}}$$
 (wave speed)

$$\left[\frac{\partial^2 Y(\xi, t)}{\partial t^2} = \sigma^2 \frac{\partial^2 Y(\xi, t)}{\partial \xi^2} \right]$$

To find a correspondence with QPOs we are interested in solutions in the form of standing waves:

BC should ensure the continuity of traction at the surface. Since no magnetosphere dynamics included, traction must vanish at the surface.

Zero-traction boundary condition at the surface (open field lines)

line

Applied to a standing-wave:

The time evolution of an initial perturbation will remain close to a standing wave solution as long as:

 $2\pi t \frac{\partial f}{\partial v} \ll 1, \quad \frac{\partial \varphi}{\partial v} \sim 0, \quad \frac{\partial a}{\partial v} \sim 0$ Standing wave damping timescale (through phase mixing)

$$\begin{aligned} &\overline{\tau_{\rm D}} = \frac{1}{2\pi} \left(\frac{\partial f}{\partial \chi}\right)^{-1} \end{aligned}$$

For timescales much smaller than the damping timescale one can define a standing wave continuum of magnetic field lines throughout the star, for each overtone:

Frequencies:
$$f(\chi) = \frac{n}{2t_{tot}(\chi)}, \ n = 1, 2, 3, 4, \cdots$$

QPO overtones appear at exact integer multiples of the corresponding fundamental frequency.

Standing-wave continuum & QPOs (M=1.4M_{sun}, R=14.2km, B_{av}=4x10¹⁵ G)

Numerical code: CoCoA/CoCoNuT

www.mpa-garching.mpg.de/Hydro/COCONUT

Developed for neutron star and gravitational core collapse studies

Spherical polar coordinates (2D, axisymmetry) + Ideal GRMHD

Godunov-type schemes for the GRMHD solver

Approximate Riemann solvers Complete: Marquina (only in hydro) Incomplete: HLLE, Kurganov-Tadmor 2nd order cell reconstruction: MC, PHM Method of lines + 2nd order Runge-Kutta CT scheme for the magnetic field

Spectral methods for the metric solver (elliptic part)

LORENE library

Brief history:

Dimmelmeier et al 2001, 2002ab (GRHD, 2D axisymmetric code) Dimmelmeier et al 2005 (GRHD, 3D, spectral metric solver;MdM) Cerdá-Durán et al 2005 (GRHD, 2D, CFC+) Ott et al 2007a b: Dimmelmeier et al 2007 (GRHD, 3D, microphysical

Ott et al 2007a,b; Dimmelmeier et al 2007 (GRHD, 3D, microphysical EOS + deleptonization)

Cerdá-Durán et al 2007a,b (GRMHD, 2D, passive magnetic field) Cerdá-Durán et al 2008 (GRMHD, 2D, active magnetic field)

General Relativistic Magneto-Hydrodynamics

Conservation of mass:
$$abla_{\mu}(
ho u^{\mu}) = 0$$

Conservation of energy and momentum: $abla_{\mu}T^{\mu\nu} = 0$

Maxwell's equations: $\nabla_{\mu} * F^{\mu\nu} = 0$ $*F^{\mu\nu} = \frac{1}{W}(u^{\mu}B^{\nu} - u^{\nu}B^{\mu})$

- Divergence-free constraint:
- Induction equation:

$$\vec{\nabla} \cdot \vec{B} = 0$$
$$\frac{1}{\sqrt{\gamma}} \frac{\partial}{\partial t} \left(\sqrt{\gamma} \vec{B} \right) = \vec{\nabla} \times \left[\left(\alpha \vec{v} - \vec{\beta} \right) \times \vec{B} \right]$$

Adding all up: first-order, flux-conservative, hyperbolic system + constraint

$$\frac{1}{\sqrt{-g}} \begin{pmatrix} \frac{\partial \sqrt{\gamma} \mathbf{U}}{\partial t} + \frac{\partial \sqrt{-g} \mathbf{F}^{i}}{\partial x^{i}} \end{pmatrix} = \mathbf{S} \qquad \frac{\partial (\sqrt{\gamma} B^{i})}{\partial x^{i}} = 0 \qquad \text{Antón et al. (2006)}$$
$$D = \rho W \qquad S_{j} = \rho h^{*} W^{2} v_{j} - \alpha b_{j} b^{0} \qquad \tau = \rho h^{*} W^{2} - p^{*} - \alpha^{2} (b^{0})^{2} - D$$
$$\mathbf{U} = \begin{bmatrix} D \\ S_{j} \\ \tau \\ B^{k} \end{bmatrix} \quad \mathbf{F}^{i} = \begin{bmatrix} D \\ S_{j} \tilde{v}^{i} + p^{*} \delta^{i}_{j} - b_{j} B^{i} / W \\ \tau \tilde{v}^{i} + p^{*} v^{i} - \alpha b^{0} B^{i} / W \\ \tilde{v}^{i} B^{k} - \tilde{v}^{k} B^{i} \end{bmatrix} \quad \mathbf{S} = \begin{bmatrix} T^{\mu\nu} \left(\frac{\partial g_{\nu j}}{\partial x^{\mu}} - \Gamma^{\delta}_{\nu\mu} g_{\delta j} \right) \\ \alpha \left(T^{\mu 0} \frac{\partial \ln \alpha}{\partial x^{\mu}} - T^{\mu\nu} \Gamma^{0}_{\nu\mu} \right) \\ 0^{k} \end{bmatrix}$$

Magnetar models and main simplifications

Model	R_e [km]	r_e [km]	r_p/r_e-1	$M [M_{\odot}]$	$B_{ m polar}$ [G]	$ ho_{ m c}[m gcm^{-3}]$	$j_0 [{ m A}{ m m}^{-2}]$	current function
MNS1	14.155	11.998	8×10^{-6}	1.40	$6.5 imes10^{14}$	7.91×10^{14}	2×10^{13}	Bocquet et al. (1995)
MNS2	14.157	11.999	$8 imes 10^{-4}$	1.40	$6.5 imes10^{15}$	$7.91 imes10^{14}$	$2 imes 10^{14}$	Bocquet et al. (1995)
MNS3	14.168	12.006	$5 imes 10^{-3}$	1.40	$1.6 imes10^{16}$	7.91×10^{14}	$5 imes 10^{14}$	Bocquet et al. (1995)
LMNS2	15.153	13.322	10^{-3}	1.20	$5.1 imes10^{15}$	$5.47 imes 10^{14}$	2×10^{14}	Bocquet et al. (1995)
HMNS2	12.444	9.941	4×10^{-4}	1.60	8.4×10^{15}	$1.37 imes 10^{15}$	$2 imes 10^{14}$	Bocquet et al. (1995)
S1	14.153	11.912	0	1.40	$4.0 imes 10^{15}$	7.91×10^{14}	N/A	Sotani et al. (2007a)

- Cowling approximation (fixed spacetime metric)
- Small-amplitude torsional perturbations
- Relativistic anelastic approximation (Bonazzola et al 2007)
- → sound waves neglected (long-term evolutions)

$$Y(t=0) = 0 \quad \dot{Y}(t=0) = \alpha v^{\varphi} = f(r) \, b(\theta)$$
$$f(r) = \sin\left(\frac{3\pi}{2} \frac{r}{R}\right)$$
$$b(\theta) = b_2 \frac{1}{3} \partial_{\theta} P_2(\cos\theta) + b_3 \frac{1}{6} \partial_{\theta} P_3(\cos\theta)$$

Only left with evolution equations for S_{φ} and B^{φ}

b₂=0 (b₃=0) symm. (antisymm.) perturbation across equator

Anelastic approximation

Main idea (Bonazzola et al 2007): eliminate sound waves to reduce the time-step restrictions of numerical codes based on time-explicit schemes. Restrictions imposed by the dependence of the eigenvalues of the hyperbolic system on the speed of sound (see Antón et al 2006).

Modified equations: pressure terms in fluxes moved to sources. Leads to no sound speed dependence in eigenvalues.

$$\begin{split} \tilde{\boldsymbol{F}}^{i} &= \left[D\hat{v}^{i}, S_{j}\hat{v}^{i} + \delta^{i}_{j}\frac{b^{2}}{2} - \frac{b_{j}B^{i}}{W}, \hat{v}^{i}B^{k} - \hat{v}^{k}B^{i} \right], \\ \tilde{\boldsymbol{S}} &= \left[0, \frac{1}{2}T^{\mu\nu}\frac{\partial g_{\mu\nu}}{\partial x^{j}} - \frac{1}{\sqrt{-g}}\frac{\partial\sqrt{-g}P}{\partial x^{i}}, 0, 0, 0 \right]. \end{split}$$

New eigenvalues: $\tilde{\lambda}^i(\gamma_{ij}, U) = \lambda^i(\gamma_{ij}, U, c_s \to 0)$

Courant condition much less restrictive (not affected by sound waves)

Caution: we can use the anelastic approximation since we deal with low-amplitude torsional oscillations of an equilibrium star. They have axial parity and couple weakly to density perturbations (density and pressure can be considered constant).

Simulations: spatial pattern of effective amplitude

Simulations: spatial pattern of effective amplitude

(but Colaiuda et al 2009 find QPOs at the edge)

Numerical simulations

Time evolution maximum amplitude

Spectrum average amplitude

Numerical vs semi-analytical approach

QPO frequencies for reference model MNS2

f (Hz)	"lower QPOs"	f (Hz)
35.1 (4.%) (*)	L_0^{\pm}	41.30 (1.0%)
72.6 (0.05%)	L_1^{\pm}	83.85 (0.6%)
110.2(1.1%)	L_2^{\pm}	126.4 (1.0%)
147.8(1.8%)	L_3^{\pm}	170.2 (2.0%)
182.8(0.7%)	L_4^{\pm}	210.3 (0.9%)
220.4(1.2%)	L_5^{\pm}	251.6 (0.6%)
256.7(1.0%)	L_6^{\pm}	295.4 (1.2%)
294.3(1.3%)	L_7^{\pm}	336.7 (0.9%)
	f (Hz) 35.1 (4.%) (*) 72.6 (0.05%) 110.2(1.1%) 147.8(1.8%) 182.8(0.7%) 220.4(1.2%) 256.7(1.0%) 294.3(1.3%)	f (Hz)"lower QPOs" $35.1 (4.\%) (*)$ L_0^{\pm} $72.6 (0.05\%)$ L_1^{\pm} $110.2(1.1\%)$ L_2^{\pm} $147.8(1.8\%)$ L_3^{\pm} $182.8(0.7\%)$ L_4^{\pm} $220.4(1.2\%)$ L_5^{\pm} $256.7(1.0\%)$ L_6^{\pm} $294.3(1.3\%)$ L_7^{\pm}

Good agreement in both number and relative difference w.r.t. **location of nodes, and frequencies (<2%)** semi-analytic approach

[(*) wavelength of standing-wave twice the size of the star (short-wavelength approx. innacurate)]

Empirical relations: magnetar asteroseismology

Our sample include models with either different central current density (MNS1 and MNS3) or central density (HMNS2 and LMNS2), wrt reference model MNS2.

Model	R_e [km]	r_e [km]	r_p/r_e-1	$M [M_{\odot}]$	$B_{ m polar}$ [G]	$ ho_{ m c}[m gcm^{-3}]$	$j_0 [{ m A}{ m m}^{-2}]$	current function
MNS1 MNS2	$14.155 \\ 14.157$	11.998 11.999	$\begin{array}{c} 8\times10^{-6}\\ 8\times10^{-4}\end{array}$	$1.40 \\ 1.40$	$6.5 imes 10^{14}$ $6.5 imes 10^{15}$	7.91×10^{14} 7.91×10^{14}	2×10^{13} 2×10^{14}	Bocquet et al. (1995) Bocquet et al. (1995)
MNS3 LMNS2 HMNS2	$14.168 \\ 15.153 \\ 12.444$	12.006 13.322 9.941	5×10^{-3} 10^{-3} 4×10^{-4}	1.40 1.20 1.60	$\begin{array}{c} 1.6 \times 10^{16} \\ 5.1 \times 10^{15} \\ 8.4 \times 10^{15} \end{array}$	$\begin{array}{c} 7.91 \times 10^{14} \\ 5.47 \times 10^{14} \\ 1.37 \times 10^{15} \end{array}$	5×10^{14} 2×10^{14} 2×10^{14}	Bocquet et al. (1995) Bocquet et al. (1995) Bocquet et al. (1995)
S1	14.153	11.912	0	1.40	4.0×10^{15}	7.91×10^{14}	N/A	Sotani et al. (2007a)

Agreement with Sotani et al (2008): our QPO frequencies change linearly with B and are consistent with their expansion in terms of the compactness (M/ R). Allows to construct empirical relations for all QPO frequencies using those of Sotani et al (2008) constructed for a large set of tabulated EOS.

$$f_{L} = 56.8(n+1) \left[1 - 4.55 \left(\frac{M}{R}\right) + 6.12 \left(\frac{M}{R}\right)^{2} \right] \times \left(\frac{B}{4 \times 10^{15} \text{G}}\right) \quad (\text{Hz})$$
$$f_{U} = 48.9(n+1) \left[1 - 4.55 \left(\frac{M}{R}\right) + 6.12 \left(\frac{M}{R}\right)^{2} \right] \times \left(\frac{B}{4 \times 10^{15} \text{G}}\right) \quad (\text{Hz})$$

We use the set of models of Sotani et al (2008) for which the compactness ratio M/R ranges from 0.14 to 0.28.

SGR 1806-20: assuming that the observed frequencies of 30, 92 and 150Hz are produced as QPOs near the magnetic poles (upper QPOs) and are odd-integer multiples of the fundamental frequency of 30Hz, then the empirical relation restricts the dipolar component of the magnetic field to be in the range of 5×10^{15} G to 1.2×10^{16} G.

SGR 1900+14: if the observed frequencies of 28, 53, 84 and 155Hz are upper QPOs and near-integer multiples of the fundamental frequency of 28Hz, then the dipolar component of the magnetic field is in the range of 4.7×10^{15} G to 1.12×10^{16} G.

Mean surface magnetic field strength $3-8\times10^{15}$ G (mean value at the surface is ~2/3 value at the pole)

Upper limit of the possible strength of the magnetic field, since the fundamental QPO frequencies could be any integer fraction of 30Hz in SGR 1806-20 or of 28Hz in SGR 1900+14.

Future extensions: crust inclusion

Work performed by M. Gabler (MPA; PhD advisor E. Müller)

Status:

- Linearized equation for the evolution of the perturbation in terms of traction and displacement derived.
- Tabulated EOS of Douchin and Haensel (2001) for the crust and density-dependent shear modulus computed following Piro (2005) and Sotani et al (2007). Pure crustal frequencies for linearized eq. computed. Broad agreement with Samuelsson and Andersson 2007.
- Boundary conditions derived: continuous traction condition at both sides of the crust (surface and crust-core interface).
- Currently comparing evolution of linearized equation with full nonlinear code for a vanishing shear modulus. Work in progress.

Summary

- Study of Alfvén oscillations in magnetars using semi-analytic approach and nonlinear MHD simulations (anelastic approximation).
- Alfvén oscillations form a continuum in the core of magnetars.
 QPOs correspond to turning points of the continuum.
- Two families of QPOs with harmonics at integer multiples of the fundamental frequency.
- Crust-core coupling induces strong damping.
- Short-wavelength approximation can be used to compute QPO frequencies without numerical simulations to high accuracy.
- Empirical relations applied to SGR 1806-20 and SGR 1900+14 yield upper limits to mean surface (dipolar) magnetic field strength 3-8x10¹⁵G.
- Inclusion of crust performed, code validation in progress.
- Magnetosphere will be incorporated next (mid-term project).