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Two Phase Turbulent Mixing: 
Unstable acceleration driven flow



 
Goals of simulations


 

Macro Observable: overall growth rate of mixing region


 

Micro Observable: molecular mixing, for example 
chemical reaction rate 



 
Classical cases: 


 

Rayleigh-Taylor and Richtmyer-Meshkov


 

Steady and impulsive acceleration



 
Simulation challenge: 


 

Sensitivity to fine scale details 


 

algorithms, physics, initial conditions


 

Problems with experimental validation
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Definitions for Turbulent Mixing



 
An observable of the flow is 


 

SENSITIVE if it shows dependence on numerical 
algorithms and/or on physical modeling 
(transport).



 
MACRO observables: eg. of mixing zones



 
MICRO observables: eg. chemical reaction 
rates
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Explanation



 
Macro observables describe the average 
mixing properties of the large scale flow



 
Micro observables describe the atomic level 
mixing properties
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Sensitive and Insensitive Observables
Macro Micro

Rayleigh-Taylor
Steady acceleration

Sensitive Sensitive

Richtmyer Meshkov
Shock acceleration

Insensitive Sensitive

RM  has a highly unstable interface, in the
absence of regularization, diverging as 1/delta x.

This divergent interface length or area causes sensitivity 
to atomic scale observables.
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Chaotic Mixing: 
A challenge to the standard view



 
Solutions are unstable on all length scales



 
Under mesh refinement, new structures 
emerge


 

In this sense there is no convergence


 

Optimistically, we hope that the large scale 
structures converge and the new small scale 
ones that emerge under mesh refinement will not 
influence the large scale ones 



 

Correct for insensitive variables only
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Failure of the standard view



 
Turbulent mixing and turbulent combustion


 

Atomic or molecular level mixing requires a new 
length scale (the molecules)



 

And a change in the laws of physics at these 
length scales or above.



 

Fluid transport: mass diffusion, viscosity, heat 
conduction:

( )tU F U D U  
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Mesh convergence for RM flow



 
A circular shock wave moves through a 
perturbed circular density discontinuity layer, 
reflects from the origin and moves outward



 
Geometry motivated by inertial confinement 
fusion



 
Macro observables converge



 
Micro observables converge with physical 
transport, subgrid scale models and tracking
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2D Chaotic Solutions: Shock implosion of 
perturbed interface with offset—4 grid levels
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Circular
RM instability
Initial (left)
and after
reshock
(right) density
plots. Upper and
lower inserts
show enlarged
details of flow.
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Chaotic dependence of interface length on 
mesh: Unregularized simulation

Surface Length/Area
vs. time

Surface Length
Area

x



12

Simplistic Error Analysis for Micro 
Observables in Chaotic Flow
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Error as results from numerical or physical modeling, e.g.
numerical mass diffusion or ideal vs. physical transport coefficients
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Comparison of FronTier and RAGE 
for 2D RM instability



 
T. Masser:


 

Macro variables not sensitive


 

Micro: Temperature is sensitive


 
Stony Brook:


 

Macro variables: not sensitive


 

Interface length divergent


 

Micro: Mixture concentrations sensitive
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Code comparison shows sensitivity for 
temperature: Difference of 50%



 

Computation and analysis of T. 
Masser and J. Grove:



 

At reshock the fingers of tin are 
heated to a much higher temperature 
in the FronTier simulation than the 
corresponding fingers in the RAGE 
simulation.



 

Mechanism responsible:


 

Thermal and Mass diffusion at the 
interface in RAGE.



 

After reshock FronTier continues to 
have a significantly higher maximum 
temperature.



 

Study led to upgrade for RAGE.
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Rayleigh-Taylor Instabilities


 

Alpha characterizes overall instability growth rate: 



 

Alpha is a sensitive variable


 

Experiment: alpha = 0.055-0.07


 

Simulation: three groups agree


 

Front Tracking: control numerical mass diffusion


 

Adler et al (particle methods):


 

Mueschke-Andrews-Schilling: control initial conditions


 

Others disagree, with each other and with 
experiment, by factors of 1.5-3.

2
bh Agt
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Comments on Role of Initial Conditions



 
Andrews et al experiments:


 

Long wave length noise at about 75% of main (random 
high wave number) initial perturbation



 
Youngs et al experiments:


 

Long wave length perturbations probably less than 10% 
of high wave number initial perturbation



 

Exceptions noted, with perhaps 20% strength


 

Even in these cases, alpha change is modest (10%)



 
Conclusion: 


 

Initial conditions only one piece of puzzle


 

Transport and surface tension another
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Comparison of simulations and experiment 
(Validation): For Rayleigh-Taylor unstable mixing

growth rate
for mixing zone

dimensionless
surface tension








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Simulation vs. Experiment 
Miscible RT: Burrows, Smeeton, Youngs

Alpha = 0.061 (sim.)
vs. 0.062 (exp.).
Miscible RT with initial
diffusion layer, mass
diffusion and viscosity

12x2 modes, 8 cells/mode
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Molecular Scale Mixing Properties


 
Molecular scale mixing properties are sensitive to 
physical modeling and to numerical methods unless 
fully resolved (direct numerical simulation = DNS)



 
Correct simulation: 


 

Use sub grid models (large eddy simulation = LES)


 

LES modify equations to compensate for physics occurring on 
small scales (below the grid size) but not present in the 
computation



 

Control numerical mass diffusion: use front tracking
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Combine two classes of methods


 
Capturing likes steep gradients, rapid time scales


 

Tracking is an extreme version of this idea


 

Often, no subgrid model and so not physically accurate 
for under resolved (LES) simulations



 
Turbulence models like smooth solutions, slow time 
scales with significant levels of physical mass 
diffusion


 

Often, too many zones to transit through a concentration 
gradient



 
Best of two ideas combined
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Subgrid models for turbulence, etc.



 
Typical equations have the form



 
Averaged equations:

( )tU F U U  

( )

( ) ( )

( ) ( ) ( )

t

SGS

U F U U

F U F U

F U F U F U

  



 

is the subgrid scale model and corrects for grid errorsSGSF
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Subgrid models for turbulent flow

     

   
 
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   
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Subgrid Scale Models (Moin et al.)


 

No free (adjustable) parameters in the SGS terms


 

Parameters are found dynamically from the simulation itself


 

After computing at level Delta x, average solution onto 
coarser mesh. On coarse mesh, the SGS terms are 
computed two ways:


 

Directly as on the fine mesh with a formula


 

Indirectly, by averaging the closure terms onto the coarse grid.


 

Identity of two determinations for SGS terms becomes an equation 
for the coefficient, otherwise missing.



 

Assume: coefficient has a known relation to delta x and otherwise is 
determined by an asymptotic coefficient. Thus on a fine LES grid the 
coefficient is known by above algorithm.
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Chemical reaction rate 
No subgrid model

/
1 2

1 2

1 2

/
1 2

 Activation Temperature
 mass fraction of species 

;  defined at fixed 

( )  probability distribution for 
( )  reaction rate
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      





26

Re = 300. Theta(T) vs. T (left); 
Pdf for T (right) 1 2

1 2

f f
f f

  

  
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Re = 3000. Theta(T) vs. T (left); 
Pdf for T (right)



28

Re = 300k. Theta(T) vs. T (left); 
Pdf for T (right)
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Convergence properties for reaction 
rate pdf for 

Conclusion: 
numerical 
convergence of 
chemical 
reaction rates, 
using LES SGS 
models for high 
Schmidt 
number flows

1 2const. exp( / )ACw f f T T

Relative errors for pdf for reaction rate 
w, compare coarse to fine, medium to 
fine and relative fluctuations in coarse 
grid
Re c to f m to f fluct. c

300 0.48 0.23 0.24

3K 0.33 0.28 0.49

300K 0.31 0.15 0.25
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Convergence of w pdf



 
Not just mean converges



 
Moments to all order, ie full distribution 
converges
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Summary


 
Molecular level and even macro observables


 

Challenge to computational science


 
Proposed resolution


 

Front tracking


 

Control numerical transport


 

Subgrid scale models


 

Convergent LES simulations



 
Comparison of transport vs initial conditions
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Thank You
Smiling Face: FronTier art simulation

Courtesy of Y.  H. Zhao
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