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Outline

1. Electric Solar Wind Sail: what is it

2. PIC simulation results: trapped electrons 
included

3. 3-D removal mechanism for trapped 
electrons

4. “Electrosphere” principle for estimating 
thrust

5. Five times higher thrust?
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Electric Solar Wind Sail
• Use solar wind for spacecraft propulsion

• Coulomb interaction between solar wind 
and long, thin, positively charged tethers 
(10-20 km, 25-50 um wire, +20-40 kV)

• Centrifugal stretching, Potentiometer 
guiding & navigation

• High-performance, relatively simple, 
general-use propellantless propulsion 
technique

• First idea Janhunen 2004

• In its present form Janhunen 2006
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Elementary process of Electric Sail
• Solar wind protons repelled by charged tether

• Proton pile-up on “dayside”, proton depletion on 
“nightside”

• Resulting electric field pushes charged tether outward 
from Sun

• (Thrust vectoring up to ~30o possible, since force always 
perpendicular to tether)

• Task: Predict electron sheath size and thrust per unit 
length on positively charged wire in flowing solar wind 
plasma
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PIC simulation of electric sail
• (Janhunen and Sandroos, 2007)

• Direct, time-dependent electrostatic particle simulation

• Includes potential ramp-up phase which creates 
population of trapped electrons

• Number of trapped electrons is independent of the 
speed at which the potential is ramped up

• Trapped electrons produce extra shielding which 
decreases E-sail thrust

• In purely 2-D case there is no apparent mechanism that 
could remove trapped electrons (except very slow, 
collisional ones)



7

PIC simulation of electric sail

• Challenges:

– High e V0/Te ratio (V0 ~ 20 kV, Te ~ 10 eV)

– Logarithmic potential ==> multiscale
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Removal mechanism for trapped electrons
• 2-D electron motion

– 3 conserved quantities: angular 
momentum (cyl. symm.), parallel 
momentum (transl. symm.), energy 
(static)

• 3-D electron motion

– 1 conserved quantity: energy (static)

• Electron spirals along tether, is 
reflected from the tip

• Periodically visits vicinity of spacecraft

• At spacecraft, angular momentum and 
parallel momentum randomised
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Removal mechanism for trapped electrons
• Finite probability that angular momentum 

becomes very small so that electron has 
change to hit tether wire and be lost

• Process is rare, but electrons are fast   
==> lifetime order of minutes only

• This mechanism removes trapped 
electrons from vicinity of electric sail 
tethers

    ==> earlier PIC simulations 
underestimated the thrust!
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“Electrosphere” principle
• Sheath around tether is empty of ions

• Assume it has some constant electron density (can be zero, 
as zeroth approximation)

• Force balance (1/2)ε0E
2 = Pdyn determines “electrosphere” 

size (assume zero ne for simplicity) and thrust per length:

V0=20 kV, V1=1 kV, Pdyn=2 nPa, R=100 m, rw=1 mm :   
    dF/dz = 500 nN/m, > 5 times higher than from PIC
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What could 500 nN/m E-sail do?
• For example, 100 tethers, 20 km each:                                  

    1 N thrust, scales as 1/r

• Propulsion system mass 100 kg: specific acceleration 10 
mm/s2 (would overcome solar gravity 6 mm/s2 at 1 AU, 25 
km/s delta-v per month)

• Impulse over 10 year lifetime corresponds to 100-ton 
chemical rocket

• 1000 times more efficient than chemical rocket, 100 times 
more efficient than contemporary ion engine ...

• Non-Keplerian orbit missions, off-Lagrange space weather 
monitoring, sample return from Mercury, mission out of 
heliosphere, easy access to asteroids ...
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What should be done next?

• Use static Vlasov-Poisson simulation methods 
developed by Choiniere, Gilchrist and others, to 
estimate thrust more quantitatively under assumption 
of no trapped electrons(?)

• Measure E-sail thrust in orbit (Estonian ESTCube-1 
nanosatellite project, planned launch 2012: LEO orbit, 
10 m tether)

• Laboratory measurement?
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Summary

• Natural mechanism for trapped electron removal was 
identified in electric sail

• Semianalytic “electrosphere” concept was introduced for 
thrust estimation, in analogy with magnetosphere

• As a result, electric sail thrust estimates have gone up 
significantly, to ~500 nN/m, ~1 N total

• The new thrust versus mass estimates are 
overwhelmingly large for transportation in the solar system
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