Frank Jenko

Gyrokinetic Turbulence in Laboratory and Astrophysical Plasmas

Max-Planck-Institut für Plasmaphysik, Garching Universität Ulm

> ASTRONUM 2009 Chamonix, France, 29 June 2009

Many thanks to...

My co-workers at Garching:

F. Merz, M.J. Püschel, T. Görler, T. Hauff, K. Reuter, D. Told, M. Schneller, A. Röder, H. Doerk-Bendig

My co-workers at Münster University:

R. Friedrich, H. Angenent, J. Hüser, M. Wilczek

Various other collaboration partners at:

Germany (Munich, Greifswald, Göttingen, Chemnitz etc.) Europe (Brussels, Lausanne, Oxford, Gothenburg etc.) USA (Princeton, Maryland, Madison, Livermore etc.) Japan (National Institute for Fusion Science etc.)

www.ipp.mpg.de/~fsj

Research topics

www.ipp.mpg.de/~fsj

Plasma astrophysics (incl. dynamo physics) Computational fluid dynamics

Computational plasma physics

Turbulence in magnetized plasmas

- Code development
- Basic physics issues
- Applications to experiments

Colloidal (dusty) plasmas

Non-Gaussian diffusion in complex systems

Approach

Computer simulations (Virtual experiments)

Analytical theories

GENE (kinetic continuum code)

DPS (molecular dynamics code)

DYNAMO (nonlinear MHD code)

TURB3D (nonlinear fluid code)

XGC-0 (kinetic PIC code)

Kinetic theory

Nonequilibrium statistics

Nonlinear dynamics

etc.

Closure theories

Experiments or observations

Fusion experiments (AUG, JET etc.)

Smaller lab experiments

Astrophysical data

etc.

etc.

Plasma turbulence

Plasma turbulence in astrophysics and in the laboratory

Key issues: Turbulent transport, Anomalous heating/dissipation

Fusion energy in the stars

This points the way to a CO_2 free energy source for the 21st century...

Fusion energy in the laboratory

Deuterium-Tritium fusion has by far the highest probability under experimentally accessible conditions.

Still, temperatures of about 100 million degrees are required! Thus, we are dealing with a fully ionized gas (plasma).

Two main approaches: Inertial fusion and magnetic fusion.

ITER and plasma turbulence

ITER is an extremely challenging scientific project, aimed at investigating burning **D-T** plasmas

It is currently being built in Cadarache

The success of ITER depends on our understanding of plasma turbulence

www.iter.org

Plasma turbulence: GENE simulations

gana@ipp.mpg.da

www.ipp.mpg.de/~fsj/gene

Key idea: Applications of insights, theories, and tools to astrophysics

Some issues under investigation:

- Role of microturbulence in astrophysics?
- How does MHD turbulence dissipate energy?
- How do fast particles interact with turbulence?

Gyrokinetic turbulence

What is gyrokinetic theory?

Dilute and/or hot plasmas are almost collisionless.

Thus, if kinetic effects (finite Larmor radius, Landau damping, magnetic trapping etc.) play a role, MHD is not applicable, and one has to use a (reduced) kinetic description!

 $\left[\frac{\partial}{\partial t}\right]$

Vlasov-Maxwell equations

$$+\mathbf{v}\cdot\frac{\partial}{\partial\mathbf{x}} + \frac{q}{m}\left(\mathbf{E} + \frac{\mathbf{v}}{c}\times\mathbf{B}\right)\cdot\frac{\partial}{\partial\mathbf{v}}\left[f(\mathbf{x},\mathbf{v},t) = \mathbf{0}\right]$$

Removing the fast gyromotion ω (gyrokinetic ordering of scales / amplitudes)

[Frieman, Chen, Lee, Hahm, Brizard et al., 1980s]

Charged rings as quasiparticles; gyrocenter coordinates; keep FLR effects

Brizard & Hahm, Rev. Mod. Phys. **79**, 421 (2007)

The nonlinear gyrokinetic equations

 $f = f(\mathbf{X}, v_{\parallel}, \mu; t)$

Advection/Conservation equation

$$\frac{\partial f}{\partial t} + \dot{\mathbf{X}} \cdot \frac{\partial f}{\partial \mathbf{X}} + \dot{v}_{\parallel} \frac{\partial f}{\partial v_{\parallel}} = 0$$

$$\dot{\mathbf{X}} = v_{\parallel} \mathbf{b} + \frac{B}{B_{\parallel}^*} \left(\frac{v_{\parallel}}{B} \bar{\mathbf{B}}_{1\perp} + \mathbf{v}_{\perp} \right)$$

X = gyrocenter position $\lor_{II} =$ parallel velocity $\mu =$ magnetic moment

Appropriate field equations

$$\frac{n_1}{n_0} = \frac{\bar{n}_1}{n_0} - \left(1 - \|I_0^2\|\right) \frac{e\phi_1}{T} + \|xI_0I_1\| \frac{B_{1\|}}{B}$$

$$\mathbf{v}_{\perp} \equiv \frac{c}{B^2} \bar{\mathbf{E}}_1 \times \mathbf{B} + \frac{\mu}{m\Omega} \mathbf{b} \times \nabla (B + \bar{B}_{1\parallel}) + \frac{v_{\parallel}}{\Omega} (\nabla \times \mathbf{b})_{\perp}$$

..2

$$\nabla_{\perp}^2 A_{1\parallel} = -\frac{4\pi}{c} \sum \bar{J_{1\parallel}}$$

$$\dot{v}_{\parallel} = \frac{\dot{\mathbf{X}}}{mv_{\parallel}} \cdot \left(e\bar{\mathbf{E}}_{1} - \mu \nabla (B + \bar{B}_{1\parallel}) \right) \qquad \qquad \frac{B_{1\parallel}}{B} = -\sum \epsilon_{\beta} \left(\frac{\bar{p}_{1\parallel}}{n_{0}T} + \|xI_{1}I_{0}\| \frac{e\phi_{1}}{T} + \|x^{2}I_{1}^{2}\| \frac{B_{1\parallel}}{B} \right)$$

Nonlinear integro-differential equations in **5 dimensions**...

Gradient-driven microinstabilities

Anisotropy of turbulent fluctuations

Strong background magnetic field causes turbulence to be quasi-2D

Possible simulation volume: flux tube, annulus, full (or fractional) torus

Turbulent mixing in a tokamak

ExB drift velocity

$$\tilde{\mathbf{v}}_E = \frac{c}{B^2} \mathbf{B} \times \nabla \tilde{\phi}$$

$$\mathbf{Q} \equiv \frac{3}{2} \langle \tilde{p} \, \tilde{\mathbf{v}}_E \rangle = -n \chi \nabla T$$

potential contours streamlines of ExB velocity **Gradient-driven instabilities** \rightarrow fluctuations \rightarrow transport

Typical heat and particle diffusivities are of the order of 1 m²/s.

Major theoretical speedups

relative to original Vlasov/pre-Maxwell system on a naïve grid, for ITER $1/\rho_* = a/\rho \sim 1000$

- Nonlinear gyrokinetic equations
 - □ eliminate plasma frequency: $\omega_{pe}/\Omega_i \sim m_i/m_e$ x10³
 - □ eliminate Debye length scale: $(\rho_i / \lambda_{De})^3 \sim (m_i / m_e)^{3/2}$ x10⁵
 - □ average over fast ion gyration: $\Omega_i / \omega \sim 1 / \rho_*$ x10³

Field-aligned coordinates

□ adapt to elongated structure of turbulent eddies: $\Delta_{\mu}/\Delta_{\perp} \sim 1/\rho_{*}$ x10³

Reduced simulation volume

- \Box reduce toroidal mode numbers (i.e., 1/15 of toroidal direction) x15
- \Box L_r ~ a/6 ~ 160 ρ ~ 10 correlation lengths x6

Total speedup

For comparison: Massively parallel computers (1984-2009) x10⁷

x10¹⁶

The simulation code GENE

- GENE is a physically comprehensive and well benchmarked code
- GENE is publicly available (<u>www.ipp.mpg.de/~fsj/gene</u>)
- various applications in fusion research (tokamaks *and* stellarators) and astrophysics; can be run as a (radially) local or global code

• the differential operators are discretized via a combination of spectral, finite difference, and finite volume methods; the time stepping is done via a (non-standard) 4th-order explicit Runge-Kutta method

- in addition, GENE can also be run as a linear eigenvalue solver
- two main goals: deeper understanding of fundamental physics issues and direct comparisons with experiments (interfaces to MHD codes)

GENE is a massively parallel code

- Parallelization due to high-dimensional domain decomposition (either pure MPI or mixed MPI/OpenMP paradigm)
- GENE runs very efficiently on a large number of parallel platforms (including IBM BlueGene, IBM Power6, Cray XT4, SGI Altix etc.)
- GENE is part of the European DEISA benchmark suite and the EU-Japanese IFERC benchmark suite

GENE on BlueGene/L (strong scaling)

measurements in co-processor mode at IBM Watson Research Center)

Role of microturbulence in astrophysics?

Broad-line regions in AGNs

Measured electromagnetic spectra from AGNs suggest the existence of...

...cold, dense clouds in a hot, dilute, magnetized medium in the central region of AGNs.

How can those cold clouds survive?

Standard model (e.g. Kuncic et al., MNRAS 1996): Cold clouds are magnetically confined and form filaments; perpendicular transport is negligible.

What if microturbulence is taken into account?

Microturbulence effects?

 $\nabla T \neq 0, \ \nabla n \neq 0$, magnetic confinement \Rightarrow evaporating clouds prone to **plasma microinstabilities**

Taking **typical parameters** (e.g., Kuncic 1996): $n_{\rm cloud} \sim 10^{17} \, {\rm cm}^{-3}$, $T_{\rm medium} \sim 10^9 \, {\rm K}$ and assuming gyrokinetic transport (ITG) levels:

$$t_{
m evap}^{
m GK} \sim 10^{9-10}~
m s$$

significantly larger than unhindered evaporation
 however: too large for the standard model?

More detailed investigations are currently underway.

How does MHD turbulence dissipate energy?

NS turbulence: Richardson cascade

Turbulence as a local cascade in wave number space...

"Big whorls have little whorls, little whorls have smaller whorls that feed on their velocity, and so on to viscosity"

The Richardson cascade is a nonlinear route to dissipation.

Solar wind turbulence: Dissipation?

High-k MHD turbulence satisfies the gyrokinetic ordering!

High-k Alfvén wave turbulence: Observations versus simulations

How do fast particles interact with turbulence?

Diffusivities and correlations

Test particle approach

- Diffusion equation: $\partial_t n(\mathbf{x},t) = D(t) \nabla^2 n(\mathbf{x},t)$
- Einstein (1905): $D_x(t) = \frac{1}{2} \frac{d}{dt} \langle \delta x^2(t) \rangle$
- Taylor (1920): $D_x(t) = \frac{1}{2} \frac{d}{dt} \langle \delta x^2(t) \rangle = \int_0^t d\xi \langle v_x(0) v_x(\xi) \rangle \equiv \int_0^t d\xi L_{v_x}(\xi)$

Validity of gyro/orbit averaging

Magnetic transport along fluctuating field lines: $v_B \equiv v_{\parallel}(\tilde{B}_r/B_0)$

Scaling laws: Diffusivities vs energy

Magnetic transport of beam ions is independent of energy!

Cosmic rays in astrophysical turbulence

Example: Solar wind

(other candidates: interstellar medium, intergalactic medium, jets etc.)

Cross-field transport:

- Gyro averaging is not valid for highly energetic particles
- Particle diffusivity may clearly exceed naïve estimates

Conclusions

Some key points of this talk

Fusion-oriented plasma physics has developed sophisticated theories / tools, some of which can be applied to astrophysics

Questions under investigation (partial list):

- Role of microturbulence in astrophysics?
- How does MHD turbulence dissipate energy?
- How do fast particles interact with turbulence?
- Kinetic effects in the magnetorotational instability?
- Heating of the solar corona?

Collaborative efforts are underway (e.g. MPI for Solar Systems Research & MPI for Plasma Physics)