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- Introduction: shocks & CRs in Astrophysics

- Key Physics of Diffusive Shock Acceleration
* Fermi 1st order acceleration process
* test-particle spectrum, f(p)  nonlinear feedback
* wave-particle interactions: injection, wave generation

- Numerical Methods to study DSA
Time-dependent Kinetic simulations using

CRASH (Cosmic Ray Acceleration Shock) code

- Self-Similar Evolution of CR modified shocks

Analytic form for time-dependent CR spectrum, f(p,t)

Outline

CR Modified Shocks
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Shocks and Cosmic Rays in Astrophysical Environments

http://www.galleryoffluidmechanics.com/shocks/mag1b.htm�


CR Modified Shocks

- Cosmic rays = relativistic charged particles 
- in Astrophysical plasmas: CRs = nonthermal particles

i.e. tail above Maxwellian distribution in p space
- suprathermal particles leak out of thermal pool into CRs

postshock

CRs

preshock

Solar wind

direct measurement at 
Earth’s bow shock
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E-2.7

E-3.1

power-law spectrum
-N(E) ~ E-2.7  below the knee

knee energy ~ 1015 eV
N(E) ~ E-3.1  below the Ankle

ankle energy ~ 1018.5 eV
- “universal” power-law
by a “universal” acceleration
mechanism working on
a wide range of scales
and environments

CR energy spectrum observed at Earth
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In quasi-parallel shocks
Alfven waves in a converging 
flow act as converging mirrors 
 particles are scattered by waves
 cross the shock many times

converging 
mirrors
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U2U1

Shock front

particle

downstreamupstream

shock rest frame

B mean field

“Fermi first order process”

crossingshock each at  
v

u-u ~ 
p
p 21∆

Every collision is head-on. 

6CR Modified Shocks



where the slope, q = 3σ/(σ-1) = 3u1/(u1-u2)
(σ = ρ2/ρ1=u1/u2 determined by the shock Mach No.)

for strong gas shock :  σ  4, q  4, 
(for γ = 5/3 adiabatic index) independent of M

So this could explain the universal power-law of f(p). 

(when non-linear feedback due to CR pressure is insignificant)

  )(prob.) escape(
v
u  , 

v
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p
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Prediction of DSA theory in test particle limit

CR Modified Shocks

But DSA is quite efficient  shock structure is modified 
by CR pressure.
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U(p) is the precursor velocity that 

particles with p sample.
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CR modified shock structure
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Spherical CR shock model for 
Supernova Remnants
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CR Modified Shocks

e.g. semi-analytic model for f(p): Berezhko & Ellison
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- waves drift upstream with 
- waves dissipate energy & heat 
the gas.
- CRs are scattered and isotropized in 
the wave frame  rather than the fluid 
frame.

Awu υ=

streaming 
CRs

generate 
waves

Aυ

U1Pc
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Particle injection, Wave generation, drift & dissipation

suprathermal particles 
leak upstream : becomes CRs  

(thermal leakage injection)
 self-generation of waves by   

wave-particle interactions &
Amplification of B fields

particle spectra in  Solar wind
(Mewaldt et al 2001)

CR Modified Shocks
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U2U1

Fermi 1st

order particle

downstreamupstream

shock rest frame

B mean field

U1
U2

upstream
downstream

thermal 
leakage 
injection

Shock front

streaming 
particles

generation of 
waves

Key Physics of DSA

Amplification of B fields
 Higher Pmax

-Scattering of particles
-Dissipation of waves
U kBohm Diffusion: κ(p)

11CR Modified Shocks



CR Modified Shocks

Following individual  particle trajectories and evolution 
of fields are impractical. 

Complex wave-particle interactions are simplified.

diffusion approximation (assuming isotropy of velocity

distribution in local wave frame)

Solve for Diffusion-Convection EQ for 

f(p) = isotropic part of particle distribution function
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- Full & Hybrid plasma simulations: 3D is required

- follow individual particles and magnetic fields
- provide the most complete picture,  but computationally very expensive
(e.g. Bell & Lucek,  Giacalone & Jokipii)

- Monte Carlo Simulations with a scattering model:

- scattered with a prescribed scattering model, 
- assume a steady-state shock structure with FEB
(e.g. Ellison & Jones, Baring) 

- Semi-analytic Method:
- assume a steady-state shock structure with a fixed pmax

- find the self-consistent shock structure
(e.g. Malkov & Voelk,  Blasi & Amato)

Numerical Methods to study DSA-1
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e.g. Semi-analytic model: Amato & Blasi 2005, 2006
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M0 =
f(p)p4

slope=q(p)

p max=105 mc 
(upper momentum boundary)

Solve DC equation for f(x,p) along with gasdynamic equations 
in the steady state limit
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CR Modified Shocks

pd
fdpq

ln
ln)( =



Hyesung Kang

- Kinetic Simulations : for quasi-parallel shocks
diffusion approximation based on isotropy of particle distribution

follow time dependent evolution of f(x,p) + gasdynamics EQs
* Berezkho, Voelk, & collaborators: 

- 1D spherical geometry, piston driven shock , applied to SNRs, 
- renormalization of space variables with diffusion length
- successful in predicting nonthermal radiation from SNRs

* Kang & Jones : CRASH (Cosmic Ray Acceleration SHock code)
- 1D plane-parallel and spherical grid comoving with a shock
- shock-tracking and AMR techniques are adopted 
- numerical models for  thermal leakage injection & wave drift
are implemented.
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Numerical Methods to study DSA-2

CR Modified Shocks
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ele. synch.

RXJ1713

CR spectrum at RXJ1713 
 nonthermal radiation

CR e + CMBR
IC scattering
TeV γ-ray

CR p + p π0 decay 

 GeV-TeV γ-ray

(Berezhko & Voelk)
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W= wave dissipation heating,  uw = drift speed of waves

L= thermal energy loss due to injection, Q= CR injection

ordinary gasdynamics EQs 

+ Pc terms

Basic Equations for Kinetic DSA Simulations
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(1D plane-parallel)

CR Modified Shocks
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Bohm type diffusion:
- wide range of diffusion length scales to be resolved:

from pinj/mc(~10-2) to outer scales for the highest pmax/mc (~106)

1) Shock Tracking Method (Le Veque & Shyue 1995)

- tracks the subshock as an exact discontinuity
2) Adaptive Mesh Refinement (Berger & Le Veque 1997)

- refines region around the subshock with multi-level grids

Nrf=100

Numerical Tool: CRASH Code (Kang et al. 2001)
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sdiff upl /)(κ=

CR Modified ShocksComoving with the shock
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After Pc,2 reaches to 
an asymptotic value,

 the shock flow 
becomes self-similar. 
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The shock structure 
stretches linearly 
with t, independent 
of κ(p).
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Kinetic Simulations of CR modified Shocks

M=10 shock

CR Modified Shocks
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Why CR modified shocks becomes self-similar ?
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The shock structure 
stretches linearly 
with t, independent 
of κ(p).
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Self-similar Evolution of  CR modified Shocks

CR Modified Shocks



Time asymptotic solutions from DSA simulations
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Note that these solutions cannot be 
obtained  analytically from first 
principles (i.e. conservation laws), 
so they have to be found through 
DSA numerical solutions.
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In CR modified shocks, the precursor & subshock
transition approach the time-asymptotic state.

Then shock precursor structure evolves in a self-similar 
fashion, depending only on similarity variable, ξ=x/(us t). 
During this self-similar stage, the CR distribution at the 
subshock maintains a characteristic form: two power-laws

SUMMARY

CR Modified Shocks

constant /  ,/ , , 12022,2, →== ρρσρρσ stcg PP (need numerical simulations)
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Nonlinear DSA & modified structure

CR injection due to
cross-field diffusion & 

streaming

Self-generation of waves &
Amplification of B fields

Self-consistent
diffusion coefficient)

Scattering 
by waves

CR streaming 
instability

diffusion in a converging flow 
 Fermi 1st order

Fermi 2nd 
order

Growth & 
Damping of  waves

Scattering,
κ(x,p)

Predict f(p),  pmax
non-thermal radiation

(observation)

wave-particle interactions
at collisonless shocks



Hyesung Kang 26CR Modified Shocks



Hyesung Kang

“Transparency function”: probability 
that particles at a given velocity can leak 
upstream.      e.g.  τesc = 1  for CRs

τesc = 0 for thermal ptls

CRs

gas ptls

ε B=0.25

Smaller ε B : stronger turbulence, 
 difficult to cross the shock,
 less efficient injection

fieldturbulent 
fieldmean 
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For a given values of ε B , 
injection rate is controlled by 
the shock Mach number.

)/,( dBesc uυετ : filter function
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Numerical Model for Thermal Leakage Injection in CRASH

CR Modified Shocks
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Monte Carlo simulation Vladimirov, Ellison, & Bykov (2006)
B field Amplification in CR dominated shocks

CR streaming instability  (eg. McKenzie & Volk 1982)

growth of B turbulent energy

Pinj

With a prescribed 
scattering model 

 f(x,p)

+ Gasdynamic equations for a steady-state shock

28

B eff /B0 ~ 30-400 : amplification factor
 can achieve higher   pmax CR Modified Shocks
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