Self-Similar Evolution of Cosmic-Ray Modified Shocks (& current status of DSA)

Hyesung Kang Pusan National University, KOREA T. W. Jones University of Minnesota, USA Dongsu Ryu Chungnam National University, KOREA

Outline

- Introduction: shocks & CRs in Astrophysics
- Key Physics of Diffusive Shock Acceleration
 - * Fermi 1st order acceleration process
 - * test-particle spectrum, f(p) → nonlinear feedback
 - * wave-particle interactions: injection, wave generation
- Numerical Methods to study DSA Time-dependent Kinetic simulations using CRASH (Cosmic Ray Acceleration Shock) code
- Self-Similar Evolution of CR modified shocks

Analytic form for time-dependent CR spectrum, *f*(*p*,*t*)

Shocks and Cosmic Rays in Astrophysical Environments

Hyesung Kang

CR Modified Shocks

- Cosmic rays = relativistic charged particles
- in Astrophysical plasmas: CRs = nonthermal particles
 - *i.e.* tail above Maxwellian distribution in *p* space
- suprathermal particles leak out of thermal pool into CRs

10 100

CR energy spectrum observed at Earth

Prediction of DSA theory in test particle limit

(when non-linear feedback due to CR pressure is insignificant)

$$\frac{\Delta p}{p} \sim \frac{u_1 - u_2}{v}, \ p_{esc} = \frac{u_2}{v} (\text{escape prob.}) \Longrightarrow f(p) \propto p^{-q}$$

where the slope, $q = 3\sigma/(\sigma-1) = 3u_1/(u_1-u_2)$

 $(\sigma = \rho_2/\rho_1 = u_1/u_2$ determined by the shock Mach No.) for strong gas shock : $\sigma \rightarrow 4$, $q \rightarrow 4$,

(for $\gamma = 5/3$ adiabatic index) **independent of** *M*

So this could explain the universal power-law of f(p).

But DSA is quite efficient \rightarrow shock structure is modified by CR pressure.

$$q(p) = \frac{3U(p)}{U(p) - u_2} + \frac{d\ln(U(p) - u_2)}{d\ln p}$$

U(p) is the precursor velocity that particles with p sample.

e.g. semi-analytic model for f(p): Berezhko & Ellison

Electron and Proton distributions from efficient DSA (from Berezhko & Ellison accel. model)

Particle injection, Wave generation, drift & dissipation

- waves drift upstream with $u_w = v_A$
 - waves dissipate energy & heat the gas.

- CRs are scattered and isotropized in the wave frame rather than the fluid frame.

suprathermal particles
→leak upstream : becomes CRs (thermal leakage injection)
→ self-generation of waves by wave-particle interactions & Amplification of B fields

particle spectra in Solar wind (Mewaldt et al 2001)

Following individual particle trajectories and evolution of fields are impractical.

Complex wave-particle interactions are simplified.

→diffusion approximation (assuming isotropy of velocity

distribution in local wave frame)

 \rightarrow Solve for Diffusion-Convection EQ for

f(p) = isotropic part of particle distribution function

$$\frac{\partial f}{\partial t} + (u + u_w) \frac{\partial f}{\partial x} = \frac{1}{3} \frac{\partial}{\partial x} [(u + u_w)] p \frac{\partial f}{\partial p} + \frac{\partial}{\partial x} [\kappa(x, p) \frac{\partial f}{\partial x}] + Q(x, p)$$

 $u_w = B / \sqrt{4\pi\rho}$ in upstream, $u_w = 0$ in downstream,

 $\kappa(x, p)$ is spatial diffusion coefficient,

Q(x, p) represents the injection term.

Numerical Methods to study DSA-1

- Full & Hybrid plasma simulations: 3D is required

- follow individual particles and magnetic fields
- provide the most complete picture, but computationally very expensive (e.g. Bell & Lucek, Giacalone & Jokipii)
- Monte Carlo Simulations with a scattering model:
 - scattered with a prescribed scattering model,
 - assume a steady-state shock structure with FEB $\lambda \propto \frac{R^{\alpha}}{\rho} = \lambda_0 \left(\frac{A}{Q}\right)^{\alpha} \left(\frac{v}{u_2}\right)^{\alpha} \left[\frac{\rho_2}{\rho(x)}\right],$
 - (e.g. Ellison & Jones, Baring)
- Semi-analytic Method:
 - assume a steady-state shock structure with a fixed p_{max}
 - find the self-consistent shock structure

(e.g. Malkov & Voelk, Blasi & Amato)

e.g. Semi-analytic model: Amato & Blasi 2005, 2006

Solve DC equation for f(x,p) along with gasdynamic equations in the steady state limit

- Kinetic Simulations : for quasi-parallel shocks

diffusion approximation based on isotropy of particle distribution

follow time dependent evolution of f(x,p) + gasdynamics EQs

- * Berezkho, Voelk, & collaborators:
 - 1D spherical geometry, piston driven shock , applied to SNRs,
 - renormalization of space variables with diffusion length
 - successful in predicting nonthermal radiation from SNRs
- * Kang & Jones : CRASH (Cosmic Ray Acceleration SHock code)
 - 1D plane-parallel and spherical grid comoving with a shock
 - shock-tracking and AMR techniques are adopted
 - numerical models for thermal leakage injection & wave drift are implemented.

Basic Equations for Kinetic DSA Simulations

Diffusion Convection Eq. for isotropic part of f(p)

$$\frac{\partial f}{\partial t} + (u + u_w) \frac{\partial f}{\partial r} = \frac{1}{3} \frac{\partial}{\partial x} (u + u_w) \cdot p \frac{\partial f}{\partial p} + \frac{\partial}{\partial x} [\kappa(x, p) \frac{\partial f}{\partial x}] + Q(x, p)$$
$$P_c = \frac{4}{3} \pi m_p c^2 \int_0^\infty f(p) \frac{p^4 dp}{\sqrt{p^2 + 1}}$$

W= wave dissipation heating, $u_w = drift$ speed of waves L= thermal energy loss due to injection, Q= CR injection

Hyesung Kang

CR Modified Shocks

Numerical Tool: CRASH Code (Kang et al. 2001)

Bohm type diffusion: $_{\mathcal{K}(p)} \propto p^2 / \sqrt{p^2 + 1}$

- wide range of diffusion length scales to be resolved: $l_{diff} = \kappa(p) / u_s$

from $p_{inj}/mc(\sim 10^{-2})$ to outer scales for the highest p_{max}/mc (~10⁶)

1) Shock Tracking Method (Le Veque & Shyue 1995)

- tracks the subshock as an exact discontinuity
- 2) Adaptive Mesh Refinement (Berger & Le Veque 1997)
 - refines region around the subshock with multi-level grids

Why CR modified shocks becomes self-similar ?

Self-similar Evolution of CR modified Shocks

Time asymptotic solutions from DSA simulations

$$\frac{P_{c,2}}{\rho_0 u_s^2} \approx 0.5 \text{ for } M_0 \ge 20$$

Note that these solutions cannot be obtained analytically from first principles (i.e. conservation laws), so they have to be found through DSA numerical solutions.

SUMMARY

In CR modified shocks, the precursor & subshock transition approach the time-asymptotic state.

 $P_{g,2}, P_{c,2}, \sigma_t = \rho_2 / \rho_0, \ \sigma_s = \rho_2 / \rho_1 \rightarrow \text{constant}$ (need numerical simulations)

Then shock precursor structure evolves in a self-similar fashion, depending only on similarity variable, $\xi = x/(u_s t)$. During this self-similar stage, the CR distribution at the subshock maintains a characteristic form: two power-laws

$$f_{s}(p,t) = [f_{1} \cdot (p / p_{\min})^{-q_{s}} + f_{2} \cdot (p / p_{\max}(t))^{-q_{t}}] \cdot \exp[-(\frac{p}{1.5p_{\max}(t)})^{2\alpha}]$$

where $f_{1} = f_{th}(p_{\text{inj}})$ at thermal tail, f_{2} : to be determined by $P_{c,2}$
 $q_{s}(M) = \frac{3\sigma_{s}}{\sigma_{s} - 1}$, $q_{t}(M) = \frac{3\sigma_{t}}{\sigma_{t} - 1}$, $p_{\text{inj}} \approx 2 \cdot (\frac{u_{s}}{c})$, $p_{\max}(t) \approx \frac{u_{s}^{2}}{8\kappa_{n}} \cdot t$

10

at collisonless shocks

Scattering,

к(х,р)

CR Modified Shocks

Growth & Damping of waves Predict f(p), p_{max} → non-thermal radiation (observation)

Hyesung Kang

Numerical Model for Thermal Leakage Injection in CRASH

 $\tau_{esc}(\varepsilon_B, \upsilon/u_d)$: filter function

"Transparency function": probability that particles at a given velocity can leak upstream. e.g. $\tau_{esc} = 1$ for CRs

 $\tau_{\rm esc} = 0$ for thermal ptls

0.001 $g_{M}(p)$ r(p) 0.8 0.00010.6 0.4 10^{-6} ũ.Ž gas ptls 0 10-6 10 100 v/u_{a}

 $u_d =$ downstream flow speed

$$\frac{\upsilon}{u_d} \approx \frac{\upsilon_{th}}{u_d} = fcn(M_s)$$

$$\varepsilon_B = \frac{B_0}{B_\perp} = \frac{\text{mean field}}{\text{turbulent field}}$$

Smaller ε_B : stronger turbulence,
→ difficult to cross the shock,
→ less efficient injection

For a given values of ε_B , injection rate is controlled by the shock Mach number.

Hyesung Kang

Monte Carlo simulation Vladimirov, Ellison, & Bykov (2006) B field Amplification in CR dominated shocks

CR streaming instability (eg. McKenzie & Volk 1982)

 $\left[\frac{d}{dt}U(x,k)\right]_{\text{stream}} = V_G \left[\frac{\partial P_p(x,p)}{\partial x}\frac{dp}{dk}\right]_{p=\bar{p}(k)} \text{ growth of B turbulent energy}$

With a prescribed scattering model $\lambda \propto \frac{R^{\alpha}}{\rho} = \lambda_0 \left(\frac{A}{Q}\right)^{\alpha} \left(\frac{v}{u_2}\right)^{\alpha} \left[\frac{\rho_2}{\rho(x)}\right],$

 $\rightarrow f(x,p)$

+ Gasdynamic equations for a steady-state shock

All parameters are the same in these cases except one has **B**-amplification

Don Ellison, NCSU