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Entropy condition and conservation laws

Many phenomena in continuum mechanics may be modeled as
systems of hyperbolic conservation laws:

oU (x,1)

> + VF(U(z,t)) =0

Their solutions need to be considered together with some
admissibility condition,
also called entropy condition.

This will be done through appropriate approximate Riemann solvers.



Godunov’s method (for nonlinear equation)
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Linear hyperbolic systems

gt + Aqy =0

A1s m x m with eigenvalues AP and eigenvectors r?,
ot =1; 2. ;oo Mk

Let R be matrix of right eigenvectors and v = R~ !q.
R'¢+R'ARR ¢, =0
Since R~ AR = A, this diagonalizes the system:
v + Av, = 0.

This 1s a system of m decoupled advection equations

vy + APovP = 0.
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Shock tube problem for the Euler equations of compressible gas dynamics:
at time
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This is the exact solution of the Riemann problem.



Consider equations of ideal MHD:

0,p + Ox(pv,) = 0,

0;pv, + O, (pvi + p - ;Btz) — 0,
0;pv, + O, (pv,v; — B,B,) =
0B, + 0.(v,B, — B,v,) = 0,
0E+0,((E+ p+1B)v, —B,B,-v,) =0.

with Riemann initial data:

(P10, v, By, B pr) = (1,0,0, L ((1)) 1>,

0 0 0 COS X
(o0t 0. B, B0 ) = (02,0,0.1, (27,02



The same initial data allows for two solutions:
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We shall use the following admissibility (or entropy) condition:

(p9(s))e + div(pugp(s)) <0

where ¢is an appropriately chosen convex functional.

An entropy condition implies for gas dynamics it preserves
nonnegative density and internal energy.



Jin - Xin relaxation:

replace: ug + f(u)y =0
b)’ U+ Vy —
Vt + a2u$ —



the role of a”

'Ut'%ef(u)xzzzo
consider Riemann problem for the two sets of
equations:
Ut + Vy — 0
- t 5 1
wave of the original v +atu, = —(f(u) —v))
€

equation

speed a

subcharacteristic condition:

—a < f'(u) <a
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Goal: o

find approximation to N
Riemann problem of u;: + f(u),

approximate the exact solution to the Riemann '\ .
Pl‘ObIem - Vgt

constant stdte Z
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- by the Riemann solution of the relaxation
system
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The Riemann solution to the relaxation system is easy to find
because it is linearly degenerate.

In addition it is possible to determine the speeds of the
approximate Riemann solver quite accurately while still
maintaining the subcharacteristic condition.



Brief history of approximate Riemann solvers

In the
|. Reconstruct

2. Evolve
3. Average

Algorithm
Phil Roe in 1981 noticed that it is not necessary to do the

evolution step (2.)(the Riemann solution) exact, because we loose
quite a bit of information in the averaging step (3.).

He thus suggested to introduced an
approximate Riemann solver.

He introduced a local linearization of the flux which is consistent
and conservative.



For the Euler equations Roe’s approximate Riemann solver
consists of three constant states separated by jumps.

waves for the system L
of gas-dynamics

the Roe
approximate waves

L

advantage: can be made quite
accurate )

[disadvantage: poor stability]




Harten, Lax, van Leer 1983: even simpler approximate Riemann solver
with only two waves, called the “HLL" solver.

waves for the system 5
of gas-dynamics

the two HLL
approximate waves

L

advantage: good stability, entropy

, disadvantage: poor accurac
consistent ) [ Sl y]




Toro et. al. (1994) for gas dynamics improved the HLL solver by introducing a
middle wave, the “HLLC” solver.

Siliciu (1990), Tzavaras (1999) Coquel (1999), Coquel
& Kl. (1999) and others noticed that the HLLC

solver could be improved by a relaxation approach.

Francois Bouchut

Nonlinear Stability

of Finite Yolume Methods

for Hyperbolic

Conservation Laws

This opened the way for precise tools to analyze
these schemes, see book by Bouchut (2004):

and Well-Balanced Schemes
for Sources

- relaxation solvers -

which are entropy consistent (stable), accurate
and allow for rigorous analysis
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In this spirit we embed system of compressible gas dynamics into
a more “‘complete model”.

For smooth solutions of the Euler equations

Pt ‘|‘2 (pu)z =0
(pu)t + (pu” +p)e =0

E;+ (u(E+p) =0

we can write an evolution equation for the pressure:

2/
(pp)t + (pup)s + p"p (p)uz =0
Replace p by a new dependant variable 7 and let ¢ replace the soundspeed p+/p’(p)

D— 1T
c Siliciu (1990), Coquel, et.al. (1999)

(pm)e + (pmu + c*u)y = p



the enlarged system has a small parameter € > 0 s.th.

e> () enlarged system
e =0 original system ot + (pu)r =0
(pu)t + (pu® + )z = 0O
Ei+ [(E+ m)u]z =0

(pm)¢ + (pru+ Pu)y = p—

€

The constant c replaces the sound speed, which is a nonlinear
function.

The advantage of the extended system is that by making the pressure a new
dependent variable it easy to solve the Riemann problem for the
homogeneous part of the extended system (all eigenvalues are degenerate).



wave speeds for the
system of extended U
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Absolutely essential is the choice of the constant ¢ (replacing the sound speed).

c > /0\/ 1% ( /0) “subcharacteristic condition”

maore
precise: 1
The choice of C determines the “stability’ of u— ;l U
this relaxation. U U’ /,qu p
It ensures an entropy inequality.
» \ | U U,
This is analyzed a la Chen, Levermore, Liu

(1994) allowing for rigorous justification. " 7




For practical purposes, in order to devise a formula for a
numerical scheme, one has to choose a particular value for ¢
out of the possible values the inequality allows for.

Cl Pr — DI
— =/P(p) + —— +tu —ur |
2z pry/ P (pr) N

ifp?“_plzoa - P — P
;\/p’(erOz( lcl - uzur) ,
" Bouchut (2004)
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Pl Cr n

This ensures the optimal properties of this approximate Riemann solver.



additional
dependent
variables of the

extended system

T

/

/

lllustrate relaxation solver in phase space

phase space:

T =P equilibrium
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Numerical procedure in phase

additional
dependent Space:
variables of the o
extended system (n+ 1)At™
brojection equilit?r lum
evolution manifold
nAt
the solution of dependent variables of the original system
the original
system S lives . . . o
here This results in a2 numerical method for the original

system.



A relaxation solver for magnetohydrodynamics

Bouchut, Klingenberg, Waagan: A multi-wave approximate Riemann solver
for ideal MHD based on relaxation | - theoretical framework, Numerische
Mathematik (2008)

Waves in one-dimensional VIHD

u entropy waves — contact discontinuities

U slow magnetosonic waves

L

[

»
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i et b, Alfvén waves
utcy fast magnetosonic waves




Designing the relaxation solver for MHD

The extended system for MHD:

1 2 1 2
€

—-B, b, —m

€

(pm)t 4 [pmu + (5 + ¢} — ca)u — cab-ui]e = p

(p1)e + (pmiu+ cqu — cobu)y = p

m=p+I|B|°/2- B;
with: T, =—B,5



wave speeds for the system of extended magnetohydrodynamics:

(multiplicity 4)




A three wave approximate Riemann solver is obtained by:

Set c; = ¢cq = ¢y
Theorem

The approximate Riemann solver defined by this 3-wave relaxation is positive
and defines a discrete entropy inequality if for all intermediate states we have:




The proof of the discrete entropy inequality

T T T n n n At S S
P (s (o e ) = plls(pr,er)) + == (Gryy =Gy ) <0

is given in Bouchut, KI.,Waagan (2008).

A formal derivation of this for smooth solutions is available by a Chapman-Enscog expansion.

Write 7 —= p - %Bi — %Bi—l—g(e)—l—@(&) T, = —B:By++g1€e+O(e?)

Insert this into the extended system

pt + (pu)z =0

(pu)t + (pu” +7)e =0
(pur)e + (puv +my1 )z =0
] 0

) 0

Et+[(E+7T)U—|—7TJ_°UJ_
(B, ) + (BLu — By

(pm)t + [pru+ (¢ 4 ¢§ — cg)u — cab-ui]e = p

(pT 1)t + (pmLu+ cqu — cobu)y = p



This gives

pt + (pu)z =0

i cg + 2 — cg
(pu)t + (pu® + )y = € ( 5 (op" + B )) Uz + (Bz Bl

(pu1 )t + (puv + 71 ) =€ | (BB

_ c§+02 —C?L B.b
EFi+|[(E+mu+m -ulls =€ u( [‘)f (pp’—l—Bi)) Uz +u(B. B ) (Un)e

(BJ_)t + (BJ_U — Bxuj_)x =0

The entropy is evolved by an equation of the type

NU): +GU)z — €[y (U)DU)U,], = _GD(U)tn”((DUw - Uy

The conditions of the theorem then ensure entropy dissipation.
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When devising a numerical scheme we need to get concrete speeds of
the waves out of the inequality in the theorem.

Theorem:

For the three wave solver the following relaxation speeds are sufficient to
guarantee positivity and entropy stability:

Ty — T
c = pa] + ap | (w —u)4 ( , )+
PM@"’:OTOJQT

T — T,
60 = pral + ap, (wz )y 4 L) )

Y . .
where o= and o] o are given by a complicated formula.




Bouchut, Klingenberg, Waagan: A multiwave approximate Riemann solver for
Ideal MHD based on relaxation Il - numerical aspects, submitted (2009)

We have also found a five and seven wave approximate solver.

Again we can prove entropy consistency under some complicated
“subcharacteristic” condition

We have explicit formulas for the speeds.



Showing how our Riemann solver compares to other solvers

This Riemann
problem has
two strong
rarefaction
waves going
apart creating
a low density
region.

1
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velocity

(this is another solver)
PROMETHEUS

~

‘density larger on next page

PROMETHEUS -
modified

(this is our solver)
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(this is our solver)
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“exact~
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three space dimensions, turbulence simulations:

DB: iso2Madb3_0005 hierarchy
Cycle: 367  Time0.25

Contour
Var: Vorticity
- 3250 1.0

— 250.0

—175.0 0.8
Max: 1034,
Mirn: 04871

Y-AXIS
vorticity

Wolfram Schmidt, J. Niemeyer
(2006)

7 user: schmidt
1 U Mon Dec 19 14:48:29 2005
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time evolution of root mean squared Mach number
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conclusion:

dissipativity of PROMETHEUS is independent of Mach number

dissipativity of PROMETHEUS-modified is less for higher than for lower Mach
numbers

The PPM method is widely used in the astrophysics community. Thus
there was a question on how much their results depend on this algorithm

We conclude that PPM is accurate with respect to the Riemann solver.

PROMETHEUS-modified is at least 20% faster than PROMETHEUS.



