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Riemann solver application to inviscid SPH method:

consequences on the state equation
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INAF-OAC (Ct)

SPH is a Lagrangian numerical scheme;

SPH origin to be found in Lucy (1977) + Monaghan (from 1977 up to
today - in particular 1992);

PM methods vs. SPH: in SPH, spatial interpolations are performed
on particles themselves; SPH is a Mesh-Free method;

SPH is widely adopted also in laboratory flow simulations or in solid-
body collision simulations (Astrophysical and Engineering);

SPH provides very good results in simulations of flow discontinuities
and/or convective fows;
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In SPH,Ai — J' AjWij d rij (interpolation or convolution integral)

where £|J :£i _£j

KerneIW W(rur h) W(l”

, h) — smooth function: cubic spline or
Gaussian functlon —

Normalization: jWij d 3r =1

1=) W;/n; = mW,/p,
In computational discretization, A = Zj AW, /n; = Zj m;AW; / p;

M; = SPH particle mass.
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In SPH framework, all spatial derivatives of physical quantities
transform in Kernel spatial derivatives. SPH particle mass is known.
Therefore SPH particle density can be computed by definition as:

L = ZJ_ ijij (SPH equiv. of the time integral of continuity eq. 2)

Or via temporal integration of direct SPH conversion of eq. (2):
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ﬂ — _Z m;Vv; - Y W continuity equation (6)

The SPH conversion of momentum equation and energy equation in
non-viscous modelling is:
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As a “shock capturing method”, in SPH an artificial viscosity term: 17;
IS Introduced to handle shock and flow discontinuities. It is effective
. Otherwise it is zero.

b B
=5 (1+77ij) T = Cly +ﬂ/'lij? 9)
Pi Pi lgas
2hv; -1
Hy = > C,;, C,; » sound velocities
(Csi +Csj xru +é/ )

iy =0 -r;; 4“2 << h?to prevent a singularity when particles collide.
[ is a Von Neumann-Richtmyer-like viscosity contribution;

Despite the role of artificial viscosity pressure terms are marginal,
compared to physical pressure terms, artificial viscosity looks like not
suitable to reveal weak shocks, especially if rotational flows are
involved. For strong shocks, typically ¢ =1 and f = 1— 2

Papers of Molteni et al. (1991), Lanzafame et al. (1992), Meglicki et
al. (1993), Yukawa et al. (1997), as to accretion discs in close
binaries, both in high compressibility ( ¥ =1.01 ) and in low
compressibility ( ¥ =5/3 ) conditions, outline such SPH difficulties.

In particular, Meglicki et al. (1993) adopted & =0.04 and =0,
obtaining a very turbulent disc without any spiral shock.



Viscous pressure terms can also be written as:

ﬂ N =— ah\_/u ~ij C_—z h\_/IJ £Ij
2 I]

Pi | gas Pij‘[ij‘ \ LJ" J

Where Csij = 0.5(0Si + csj) and p; = 0'5(/Oi +,0,-)

The term involving the speed of sound is based on the viscosity of a
gas. The term involving &/ij rus)2 IS Introduced to prevent particle
penetration of high Mach number collisions by producing an artificial
pressure term proportional to pv In the continuum limit, this artificial
viscosity gives both bulk and shear viscosity components. Strong
shocks require o ~1 . However, for weak shocks and for small Mach
number flows, the fluid becomes “too viscous” and angular momentum
and vorticity are transferred unphysically.

Several solutions are proposed to solve such a problem:



1) Balsara (1995) - formulation of a “limiter”, multiplying only the
artificial pressure terms:

f, =05(f,+f,) fi= V-yi

Vv +|Vxy|+ocg/h

m. m;
_Z j 1
V-V, = .;\—/ji'viwij nyizz JVjiXViWii c~0.1-0.2
i H

It reduces the unphysical spread of angular momentum in discs up to
20 times. It is nearly equal to one for planar shocks. It decreases
whenever and wherever the tangential shear kinematics is relevant.

2) Morris & Monaghan (1997) — a switch to reduce artificial viscosity:

In this hypothesis, the @ parameter evolves according to a decay
equation, including also a source term:

a =0.1
da. a—ao
—1 —_ + S, S, = f, max(-V-v,,0)
dt T h
s £201-02



3) Monaghan (1997) — reformulation of artificial viscosity according to
the Riemann Problem as a numerical approximation of the Riemann
solution, to be used in the momentum equation:

P p, — KVeig i Vi - J petter it 77 — 77y W/|ry
2 J
P gas 'OJ gas Pi
N
Where, l = r_‘ K=1 Vsig,ij =Gy + C yll i
L

Instead, as far as the energy equation is concerned,
1 :
being € :E(\_/i 1)2 T &
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Y A - —€; )] |- VW,
Zj: Pi ,0] Li; ( ) J

Vsig,ij must also be considered in the CFL condition.



o 4) Parshikov & Medin (2002) — the key concept in SPH approximation
IS to substitute the velocity and stresses determined at a contact point
by 1D Riemann solution, instead of SPH values between velocities
and stresses of basic and companion particles. So doing, there is no
need to use any artificial viscosity. The scheme sets a contact point
between the basic particle and each companion along the line joining
them.

« The main SPH equations of the Euler equations modify as follow:
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In the acoustic approximation,
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5) Inutsuka (2002) — SPH is reformulated according to the original
convolution, determining the force acting on each particle by solving
the 1D Riemann problem according to the 2° (MUSCL) and 3° (PPM)
Godunov method. In such reformulation, the general SPH interpolation:

m. L m.
A = ;jAjWﬁ modifiesin: A = ij—JAkWiijkd[k
j J K

W

Ensuring that Z—\N =1 and Zm V. [ ] 0
IOJ Pi

According to these concepts, the SPH momentum and the energy

equations become:
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Spatial integrals are computer knowing the spatial distribution of the
density along the 1D direction (s) joining particles i (basic) and |
(companion). To do this, either or

techniques are involved.

Numerical solutions through a Godunov scheme: S* are introduced Iin
the momentum and in the energy equations, taking into account of the
midpoint between the ith and the jth particles. Such numerical
solutions are used at each cell interface in the calculation of the

numerical flux. Therefore, and are:
*R 1 ( a *Ry\ 7 2 a X
—=—E W. ds :—22 m.p. V.. —W.
j Ij ka kas 55 ik 'Y jk Yk j j plj ij 8Si ij

* Where Wj W(”,«/Eh) and V, :V(s):l/p(s)



6) Molteni & Bilello (2003) — the Lagrangian Van Leer Godunov
technique is adopted to solve the 1D Riemann problem along the line
joining particles i and j. Pressure and velocity of the Riemann problem
are computed at the two “equivalent interface distances” both “ahead”
and “behind” the basic particle i. Such values are the used to
calculate spatial derivatives relative to particle i:

‘ = ] Vi =V ] W, =W, cos 9, if cosd >0
I W =0 otherwise

4, is the angle between I'; and Xy, (= =12, 3
Solution of the Riemann problem are: p:* and V
W® =W, cos §; if cosg <0
W, =0 otherwise

The “equivalent interface distance”

where M g‘lh Z—W
P;
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7) Lanzafame (2007?) — The treatment of the Riemann problem in the Euler
equations involves a dissipation either via an explicit artificial viscosity
contribution or via a native dissipation in the Godunov solver themselves (Park
& Kwon 2003). The key concept is that the physical interpretation of the
application of such a dissipation in the pressure terms corresponds to a
reformulation of the equation of state (EOS) for inviscid ideal flows, whose
equation:

p'® = (y ~)pe

Is strictly applied in fluid dynamics only to describe either equilibrium conditions
or “quasi-static” trasformations. In the case of gas collisions, it modifies as:

p* =(y —1)ps + other

The further term, within the pressure expression, takes into account the
velocity of perturbation propagation (Monaghan 1997). This velocity equals the
ideal gas sound velocity C_whenever we treat static or rarefying gases.
Instead, it includes the “coinpression velocity” term: V.. I (Eijf in the case
of shocks. In the first case, we write the EOS for inviscld sas:

ga

Where (:73/ = (7p/p)'/2 = (7/()/ —1)5)V2Instead, in the second case, the



New formulation for the EOS is:
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This formulation introduces the “shock pressure term?”: p(V32 _

) i ho 2\_/shock Cs) 4
whose dependence on linear and quadratic power on V;; -[ijjl[i. IS
analogue to both the linear and quadratic components of'the drtificial ViScosity
term (9). These contributions involve a dissipation, whose effect correspond to
an increase of the gas pressure. Adopting the reformulated pressure pi* within
the SPH formulation of the momentum and energy equations, we get:

V. ! :
L:_Z:mj p,z + pjz VW,
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—— ==, M —+ é Vi - ViW;;
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i
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WM e v,
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A dissipation is always necessary to solve the hyperbolic Euler equation
system either through an explicit artificial viscosity, or through an always
dissipative Godunov solver (Park & Kwon 2003).

Therefore, it could be time to consider a reformulation of the perfect flow EOS
including a physical dissipation due to the presence of discontinuities in the
flow producing non-reversible compressions.




To give an empirical more general EOS,

2

pr=Lc1-c&
/4 Cs

where C —> 1for Vi = yij '£ij /‘[ij‘ < 0, while C — (O otherwise.
As for C we propose:

C= icotl(R V—Rj
/ c

Where R>>1.R ~ g/d where A is the mean free path and d isthe
mean linear dimension of molecules.

S

Tests as far as thelD shock tube are concerned are accomplished for 7 =5/3
and V=0 attime T=0. Results are compared with “analytical” ones.

Very impressive results on both 1D and 2D simulations:
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Applications: Accretion Discs In Close
Binaries

M, =1M;M, =0.25051,2,2.5M_

[, ~10° Km in our models

« Non-dimensional equations - Normalization factors:



Free boundary conditions at disc inner and outer
edges

« Disc inner edge:

Particle free fall onto the primary star. Particle are simply eliminated
when their radial distance from the primary star r, <r.. = 2h

« Disc outer edge:

Particle are lost in the outer space. Particle are eliminated when their
radial distance from the primary star r, >r,, =1, , wherel;is the radial
distance of the inner Lagrangian point L1.

Stationary state disc models

 Stationary state disc configuration is fulfilled when the total number of
disc particles is statistically constant (balance among particles
Injected, accreted and ejected).
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