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• SPH is a Lagrangian numerical scheme;
• SPH origin to be found in Lucy (1977) + Monaghan (from 1977 up to 

today - in particular 1992);
• PM methods vs. SPH: in SPH, spatial interpolations are performed 

on particles themselves; SPH is a Mesh-Free method;
• SPH is widely adopted also in laboratory flow simulations or in solid- 

body collision simulations (Astrophysical and Engineering);
• SPH provides very good results in simulations of flow discontinuities 

and/or convective fows;



• In SPH,                                    (interpolation or convolution integral)

• where

• Kernel – smooth function: cubic spline or 
Gaussian function;

• Normalization:

• In computational discretization,                                         

• = SPH particle mass.
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• ideal gas state equation (1)

• continuity equation (2)

• momentum equation (3)

• energy equation (4)

• kinematic equation (5)

• In SPH framework, all spatial derivatives of physical quantities 
transform in Kernel spatial derivatives. SPH particle mass is known. 
Therefore SPH particle density can be computed by definition as:

• (SPH equiv. of the time integral of continuity eq. 2)

• Or via temporal integration of direct SPH conversion of eq. (2):
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• continuity equation (6)

• The SPH conversion of momentum equation and energy equation in 
non-viscous modelling is:

• momentum equation (7)

• energy equation (8a)

• energy equation (8b)
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• As a “shock capturing method”, in SPH an artificial viscosity term:        
is introduced to handle shock and flow discontinuities. It is effective 
only when particles approach with each other. Otherwise it is zero.

• (9)

• , sound velocities

• ;                 to prevent a singularity when particles collide.      
• is a Von Neumann-Richtmyer-like viscosity contribution;
• Despite the role of artificial viscosity pressure terms are marginal, 

compared to physical pressure terms, artificial viscosity looks like not 
suitable to reveal weak shocks, especially if rotational flows are 
involved. For strong shocks, typically and                     .

• Papers of Molteni et al. (1991), Lanzafame et al. (1992), Meglicki et 
al. (1993), Yukawa et al. (1997), as to accretion discs in close 
binaries, both in high compressibility (                ) and in low 
compressibility (                ) conditions, outline such SPH difficulties.

• In particular, Meglicki et al. (1993) adopted and          , 
obtaining a very turbulent disc without any spiral shock.
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• Viscous pressure terms can also be written as:

• Where and
• The term involving the speed of sound is based on the viscosity of a 

gas. The term involving is introduced to prevent particle 
penetration of high Mach number collisions by producing an artificial 
pressure term proportional to . In the continuum limit, this artificial 
viscosity gives both bulk and shear viscosity components. Strong 
shocks require . However, for weak shocks and for small Mach 
number flows, the fluid becomes “too viscous” and angular momentum 
and vorticity are transferred unphysically.

• Several solutions are proposed to solve such a problem:
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• 1) Balsara (1995) - formulation of a “limiter”, multiplying only the 
artificial pressure terms:

• It reduces the unphysical spread of angular momentum in discs up to 
20 times. It is nearly equal to one for planar shocks. It decreases 
whenever and wherever the tangential shear kinematics is relevant.

• 2) Morris & Monaghan (1997) – a switch to reduce artificial viscosity:
• In this hypothesis, the       parameter evolves according to a decay 

equation, including also a source term:
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• 3) Monaghan (1997) – reformulation of artificial viscosity according to 
the Riemann Problem as a numerical approximation of the Riemann 
solution, to be used in the momentum equation:

• better if

• Where,

• Instead, as far as the energy equation is concerned,

• being

• must also be considered in the CFL condition.
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• 4) Parshikov & Medin (2002) – the key concept in SPH approximation 
is to substitute the velocity and stresses determined at a contact point 
by 1D Riemann solution, instead of SPH values between velocities 
and stresses of basic and companion particles. So doing, there is no 
need to use any artificial viscosity. The scheme sets a contact point 
between the basic particle and each companion along the line joining 
them.

• The main SPH equations of the Euler equations modify as follow:

• This reformulation is done when

• In these expressions
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• In the acoustic approximation,

• Substituting in the previous equations

• We get:                                                               continuity equation

• momentum equation

• energy equation
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• 5) Inutsuka (2002) – SPH is reformulated according to the original 
convolution, determining the force acting on each particle by solving 
the 1D Riemann problem according to the 2° (MUSCL) and 3° (PPM) 
Godunov method. In such reformulation, the general SPH interpolation:

• modifies in:

• Ensuring that and

• According to these concepts, the SPH momentum and the energy 
equations become:
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• Spatial integrals are computer knowing the spatial distribution of the 
density along the 1D direction (s) joining particles i (basic) and j 
(companion). To do this, either linear or cubic spline interpolation 
techniques are involved.

• Numerical solutions through a Godunov scheme: S* are introduced in 
the momentum and in the energy equations, taking into account of the 
midpoint between the ith and the jth particles. Such numerical 
solutions are used at each cell interface in the calculation of the 
numerical flux. Therefore, momentum and energy equations are:

• Where and
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• 6) Molteni & Bilello (2003) – the Lagrangian Van Leer Godunov 
technique is adopted to solve the 1D Riemann problem along the line 
joining particles i and j. Pressure and velocity of the Riemann problem 
are computed at the two “equivalent interface distances” both “ahead” 
and “behind” the basic particle i. Such values are the used to 
calculate spatial derivatives relative to particle i:

• if
• otherwise

• is the angle between and
• Solution of the Riemann problem are:       and
• if
• otherwise
• The “equivalent interface distance”

• where
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• Spatial derivatives found are:

• where

• To be used in the integration of the Euler equations:
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• 7) Lanzafame (200?) – The treatment of the Riemann problem in the Euler 
equations involves a dissipation either via an explicit artificial viscosity 
contribution or via a native dissipation in the Godunov solver themselves (Park 
& Kwon 2003). The key concept is that the physical interpretation of the 
application of such a dissipation in the pressure terms corresponds to a 
reformulation of the equation of state (EOS) for inviscid ideal flows, whose 
equation:

• Is strictly applied in fluid dynamics only to describe either equilibrium conditions 
or “quasi-static” trasformations. In the case of gas collisions, it modifies as:

• The further term, within the pressure expression, takes into account the 
velocity of perturbation propagation (Monaghan 1997). This velocity equals the 
ideal gas sound velocity whenever we treat static or rarefying gases. 
Instead, it includes the “compression velocity” term:                        in the case 
of shocks. In the first case, we write the EOS for inviscid gases as:

• Where Instead, in the second case, the
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• New formulation for the EOS is:

• if

• if

• In the SPH, being:

• if

• otherwise
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• This formulation introduces the “shock pressure term”:
• whose dependence on linear and quadratic power on                        is 

analogue to both the linear and quadratic components of the artificial viscosity 
term (9). These contributions involve a dissipation, whose effect correspond to 
an increase of the gas pressure. Adopting the reformulated pressure within 
the SPH formulation of the momentum and energy equations, we get:

• A dissipation is always necessary to solve the hyperbolic Euler equation 
system either through an explicit artificial viscosity, or through an always 
dissipative Godunov solver (Park & Kwon 2003).

• Therefore, it could be time to consider a reformulation of the perfect flow EOS 
including a physical dissipation due to the presence of discontinuities in the 
flow producing non-reversible compressions.
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• To give an empirical more general EOS,

• where for , while otherwise.
• As for we propose:

• Where .                   where is the mean free path and       is the 
mean linear dimension of molecules.

• Tests as far as the1D shock tube are concerned are accomplished for 
and              at time T=0. Results are compared with “analytical” ones.

• Very impressive results on both 1D and 2D simulations:
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Applications: Accretion Discs in Close 
Binaries

• Km in our models

• Non-dimensional equations - Normalization factors: 

MMMM 5.2,2,1,5.0,25.0;1 21 
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Free boundary conditions at disc inner and outer 
edges

• Disc inner edge:

Particle free fall onto the primary star. Particle are simply eliminated
when their radial distance from the primary star

• Disc outer edge:

Particle are lost in the outer space. Particle are eliminated when their 
radial distance from the primary star                    , where is the radial 
distance of the inner Lagrangian point L1.

Stationary state disc models

• Stationary state disc configuration is fulfilled when the total number of 
disc particles is statistically constant (balance among particles 
injected, accreted and ejected).

hrr in 21 

11 Lout rrr  1Lr
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