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Motivation

Astrophysical gases are a complicated business... J

Rich microphysics

Radiation transport (cooling, thermal diffusion)
Chemistry

Magnetic fields

High Mach flows

High resolution features

= Need complicated benchmarks to test codes )
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The general method

General method

o Consider a set of partial differential equations
Fx,t,y(x,t),0ty,0xy,0xxy,...] =0

@ Choose a form for the solution y(x,t)

@ Plug it in the equations...

And if it doesn’'t work 7

o Adjust parameters of the solution

@ Choose better initial or boundary conditions

o Fudge the physics (change %)
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Fourier modes

A Fourier mode
(s.t+ik.x)

Y =X€

@ A must for linear equations...

The heat transport equation
Oty =0y = s+k’=0
(dispersion relation = fitting parameters)

@ Can work for non-linear equations as well !
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Fourier modes
For non-linear PDEs

@ Torsional Alfvén waves for ideal MHD

@ Incompressible MRI modes are solutions of the non-linear
isothermal ideal MHD Hill system (Note: it needs initially
homogeneous conditions).

@ For linear cooling and a proper choice of parameters, you get
solutions with cooling, resistivity and viscosity as well (Lesaffre
& Balbus, 2008) !
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JWKB approximation

JWKB expansion

_eXP[sH— Yn=0 €"Sn(x)]

e Find constraining ODEs for the S, at each order in &.
@ Then let € — 1.

@ The series is sometimes finite or converges very fast.

Sheared waves for the hydrodynamical Hill system (Balbus &
Hawley 2006, ApJ)
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Non-Linear waves

Non-linear wave form

y=Y(s.t—k.x)

Injecting this solution can convert the PDE into an ODE for Y.

@ HD sheared waves (Fromang, Papaloizou 2007, A&A)
@ Analytical Steady-state shocks (Lesaffre 2006, GAFD)

@ Method of characteristics
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Self-Similar solutions.

General self-similar form

y = f(t)+&(t). Y[a(t) + b(t).x]
@ Inject that form in the PDE

@ Then request variable separation between t and
X =a(t)+ b(t).x
@ That yields one ODE for each a(t), b(t), f(¢), g(t) and Y(X)

@ Non-linear waves are obtained by this procedure

@ Variable separation is more general than dimensional analysis

@ Although the time coefficients are often found to be power
laws or exponentials
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Detailed example

Adimensional equation for convective/radiative transport

eIn T = 0. Z(3In T) where Z(V) =V + U.[V—V,]*?

o We first inject the form In T = f(t)F[a(t)x] into the equation:
f(F+L2X0xF)=adxZ(fadxF) where X = ax

@ Request variable separation = get time constraints

{ff: “ with a and B constants
fa=p

@ and a second order ODE for the shape function F(X) :
OC(F—XaxF) = B&X.,?(B axF)
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@ You get the solution for any function .Z (pick up your
favourite convection theory)

o a(t) o< t=2 at large times: recover dimensional analysis result
for the radiative case

@ | believe the present family of solutions has dimension (3+2-2)
@ You can find broader families by using all a(t), b(t), f(t), g(t)

@ You can include nuclear heating provided it is of the form
e=a(t)E(X)

Apply technique to Navier-Stokes equations and recover
shock-tube, blast waves, bubbles, exponential solutions (c.f.
Zel'dovich & Raizer) with viscosity.

P. Lesaffre (Semi-)Analytical solutions of 1D partial differential equati



Introduction
Finding analytical solutions Fourier

ear waves
Self-similar solutions

Code Results

Comparing two ways of discretizing the energy equation

conservative vs. non-conservative conservative vs. non-conservative
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(a) Snapshot after 80 time steps (b) Evolution of errors
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Testing codes

Trust a code's result only when you already know it...

Check codes, debug them
Improve their accuracy

Find their domains of application

e 6 o6 o

Probe their convergence properties

Example

Lesaffre & Balbus (2007) probe the dissipation properties of ZEUS
thanks to Alfvén waves with viscosity and resistivity. They measure
a scaling law for the total dissipation:

N+ W = 0.76(£ ) Ax2B1/2 +1.08Ax C B}

where k is the wave number, Ax is the space resolution, C is the
Courant number and f is the plasma-f3 parameter
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Adress new physics

@ Basis for linear analysis

e parasitic modes
e frozen modes

@ Get physical behaviour for a wide range of parameters

e Understand continuity / discontinuity of solutions

dxx T and dy N are discontinuous at convective/radiative boundaries
(on self-similar solutions of the heat and chemical transport
problem)
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Build new numerical algorithms

@ First find a large family of solutions to your problem

o Carefully assess the dimension of that class (beware of
degeneracy, numerical and mathematical)

@ The analytical solutions space needs to be dense in the
solutions space

o Carefully design a way of picking up only one analytical
solution (given initial and boundary conditions)

@ Assess the stability of the process

Example: Godunov schemes

@ Assume initial conditions=smooth+Riemann problem.
@ Evolve thanks to self-similar solution.

@ Reconstruct the profile to get smooth+Riemann
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Summary

@ It is possible to find large classes of (semi-)analytical solutions,
even for complicated problems.

@ They can be really useful...

e to probe codes
e to understand physics
e to build new algorithms
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