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Outhne

* Modeling homogeneous sheared flow
* Sheared flows in astrophysics
* Shearing box and sheared frames
* Spectral representation

+ Parallel simulations

+ Example: the magnetorotational instability in accretion discs
* The accretion problem
* The magnetorotational instability
* Impact of non ideal MHD
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Sheared flow 1n astrophysics
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Disks around Young Stars
Hubble Space Telescope « WFPC2

+  Accretion discs
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+ Stellar interiors & Phtamennay]
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< The solar tachocline
(Thompson et al. 2003)
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Modeling homogeneous sheared flows

*  Assume incompressible flow (accretion disc turbulence is subsonic)
* Neglect vertical stratification («small» shearing box approximation)

+ Equations with a background sheared flow U = —Sze,
Ov —Sz0y,v+v-Vv = —Viy+ (5 —20)vey + 2Qu,ex
+B - VB + vAv
0B — Sx0,B = —-SB,ey +V x(vxB)+nAB
Vv = 0
V-B = 0

Copy ofthe  Working copy of the
simulation simulation gjmulation

box box box
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Shearing waves and sheared coordinates

* Let’s consider the evolution of a non axisymmetric «<wave» (ky#0)

* The natural basis of the flow is made of «shearing waves»
Q(z,y,2,t) = » Qu(t)exp(ik(t)x)
k

with
k(t) = (k) + Stk,)ey + kye, + ke,

* Equivalent to a Fourier basis in sheared coordinates (y’=y+Sxt)
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The Snoopy code

* MHD equations solved in the sheared frame

+ Use the Fourier basis to compute derivatives: O,/ < 1k (t)

*  Compute non linear terms using a pseudo spectral representation
# 3rd order low storage Runge-Kutta integrator

*  OpenMP and /or MPI parallelization

*  Written in C

* Advantages:
* Shearing waves are computed exactly (natural basis)
* Exponential convergence when resolution is increased
*  Magnetic flux conserved to machine precision

* Sheared frame & incompressible approximation: no CFL constrain due to the
background sheared flow /sound speed.

*  Very weak numerical dissipation: tight control on physical dissipation processes
* Disadvantages:

* Slower than finite differences for the same resolution (number of real grid points)

* Shocks/discontinuities can’t be treated spectrally (Gibbs oscillations)

*  Strongly parallel codes are not very etficient
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Parallel Fourier Transtorms

* Example: 2D FFT on a distributed memory cluster (e.g. using MPI)

Ist step Array transposition 2nd step

Node 1 Wb Node 1
Node 2 _—-!——-”—l_\i\\‘*fa Node 2
Node 3 n \ — Node 3
Node 4 T Node 4
> >
1st 1D FFT 2nd 1D FFT

* To compute 1 FFT, the complete array has to transit through the network.

+ Typically, the transposition step represent 40% of the total computation time
(Vargas, IDRIS with QDR Infiniband network)

* Parallelism allowed in only one direction (OpenMP can help to overcome this
limitation)
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Outhne

+ Example: the magnetorotational instability in accretion discs
* The accretion problem
* The magnetorotational instability
* Impact of non ideal MHD
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A problem of accretion...

* Observations, dynamics and lifetime of discs suggest they are turbulent.

* Turbulence generates an anomalous viscosity v; :

vy = acgH 10 <a<1 (observations)

* The magnetorotational instability (Velikhov 1958, Balbus & Hawley 1991) is an
obvious candidate to produce turbulence in discs

« » Can we explain the observed anomalous viscosity with
turbulence generated by the MRI?

* Measure the anomalous viscosity in local models:

(8V,8V,) — (6B46B,)/4mp
52 H2

()
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Simulation example

Orbits: 5.973616

Simulation parameters: Re=1000,
Pm=1, f=1000

3D map of vy (azimuthal velocity)
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The Magnetorotational mstability:
Open questions

* «Efficient» instability (for astrophysicists) found for weak fields.

* First 3D non linear numerical simulations by Hawley ef al. (1995) and Stone et al.
(1996)

* Second order finite ditferences
* Numerical dissipation (convergence? see Fromang & Papaloizou 2007)
* No properly defined Re/Rm/Pm
* In several known examples (e.g. small scale dynamos, see Schekochihin et al. 2004),

properties of MHD turbulence depends on the dissipation coefficients (for instance
Pm)...

= « Does MRI turbulence depend on dissipation coefficients?
If yes, can we explain it?
What is the impact for astrophysical objects?

Geoffroy Lesur Astronum 2009 Conference 29 June-3 July 2009 11



Parameter space
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Magnetic Prandtl number and MRI turbulence
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* The Magnetic Prandtl number modifies the transport efficiency (independently of the aspect ratio)
aox Pm® 0.25<6<0.8

* Points out a reaction of the small scales (dissipative scales) on the large scales (responsible for the
turbulent transport).

* In real astrophysical objects, Pm varies by many orders of magnitude.

= « The actual efficiency of MRI turbulence in astrophysical discs is not known...
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Is 1t a lInear effect?

Simulations Linear growth rate
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* No! The linear analysis is unable to explain the Pm-a correlation.
* Turbulent transport = Linear theory

* One should look for a non linear theory...
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Parasitic instabilities?

* Parasitic instabilities are secondary instabilities of MRI modes

<

= » «Quasi-linear» theory is still not enough...

Possible to predict a saturation level of the MRI thanks to these instabilities...
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Pessah & Goodman (2009)
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High Reynolds number: saturation?

High resolution runs (768x384x192 points)
with Re=20,000 and 3=1000

Same slope as a function of Pm

Transport increases at large Re for a
given ’m

No saturation observed (yet?)

Re=20000, Rm=20000 Re=20000, Rm=5000
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Conclusions

* The magnetorotational instability in discs:
* The impact of dissipative process on MRI turbulence is strong
* No saturation has been observed at large Re.

* Linear/parasitic modes theories do not agree with simulations

* Spectral methods for sheared flow:

* Simulations done with the Snoopy code
( hitp:/[www.damtp.cam.ac.uk/user/glesur/ )

* Also includes modules for:
* Boussinesq convection

* Time-dependant shear
* MHD

Turbulent convection in a sheared flow
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