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Sheared flow in astrophysics

✤ Accretion discs

✤ Stellar interiors

✤ ...
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The solar tachocline 
(Thompson et al. 2003)

Protoplanetary discs
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Modeling homogeneous sheared flows
✤ Assume incompressible flow (accretion disc turbulence is subsonic)
✤ Neglect vertical stratification («small» shearing box approximation)
✤ Equations with a background sheared flow

✤ Shearing-sheet boundary conditions (Goldreich & Lynden-Bell 1965 - Hawley et al. 1995)
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∂tv − Sx∂yv + v ·∇v = −∇ψ + (S − 2Ω)vxey + 2Ωvyex

+B ·∇B + ν∆v
∂tB− Sx∂yB = −SBxey +∇× (v ×B) + η∆B

∇ · v = 0
∇ · B = 0

U = −Sxey

H x

y z
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Shearing waves and sheared coordinates

✤ Let’s consider the evolution of a non axisymmetric «wave» (ky≠0)

✤ The natural basis of the flow is made of «shearing waves»

✤ Equivalent to a Fourier basis in sheared coordinates (y’=y+Sxt)
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k(t) = (k0
x + Stky)ex + kyey + kzez

with

Q(x, y, z, t) =
∑

k

Q̂k(t) exp(ik(t)·x)
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The Snoopy code
✤ MHD equations solved in the sheared frame
✤ Use the Fourier basis to compute derivatives:
✤ Compute non linear terms using a pseudo spectral representation
✤ 3rd order low storage Runge-Kutta integrator
✤ OpenMP and/or MPI parallelization
✤ Written in C

✤ Advantages:
✤ Shearing waves are computed exactly (natural basis)
✤ Exponential convergence when resolution is increased
✤ Magnetic flux conserved to machine precision
✤ Sheared frame & incompressible approximation: no CFL constrain due to the 

background sheared flow/sound speed.
✤ Very weak numerical dissipation: tight control on physical dissipation processes

✤ Disadvantages:
✤ Slower than finite differences for the same resolution (number of real grid points)
✤ Shocks/discontinuities can’t be treated spectrally (Gibbs oscillations)
✤ Strongly parallel codes are not very efficient

6

∂x′ ↔ ikx(t) . . .
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Parallel Fourier Transforms

✤ Example: 2D FFT on a distributed memory cluster (e.g. using MPI)

✤ To compute 1 FFT, the complete array has to transit through the network.
✤ Typically, the transposition step represent 40% of the total computation time 

(Vargas, IDRIS with QDR Infiniband network)
✤ Parallelism allowed in only one direction (OpenMP can help to overcome this 

limitation)
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Node 1

Node 2

Node 3

Node 4

1st 1D FFT 2nd 1D FFT

1st step Array transposition 2nd step

Node 1

Node 2

Node 3

Node 4
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A problem of accretion...

✤ Observations, dynamics and lifetime of discs suggest they are turbulent.
✤ Turbulence generates an anomalous viscosity     :

✤ The magnetorotational instability (Velikhov 1958, Balbus & Hawley 1991) is an 
obvious candidate to produce turbulence in discs

✤ Can we explain the observed anomalous viscosity with 
turbulence generated by the MRI? 

✤ Measure the anomalous viscosity in local models:
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νt

νt = αcsH 10−3 < α < 1 (observations)

H x

y z
α =

〈δVxδVy〉 − 〈δBxδBy〉/4πρ

S2H2
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Simulation example

Simulation parameters: Re=1000, 
Pm=1, β=1000
3D map of vy (azimuthal velocity)
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The Magnetorotational instability:
Open questions

✤ «Efficient» instability (for astrophysicists) found for weak fields.
✤ First 3D non linear numerical simulations by Hawley et al. (1995) and Stone et al. 

(1996)
✤ Second order finite differences
✤ Numerical dissipation (convergence? see Fromang & Papaloizou 2007)
✤ No properly defined Re/Rm/Pm

✤ In several known examples (e.g. small scale dynamos, see Schekochihin et al. 2004), 
properties of MHD turbulence depends on the dissipation coefficients (for instance 
Pm)...

✤ Does MRI turbulence depend on dissipation coefficients?
If yes, can we explain it?
What is the impact for astrophysical objects?

11
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Parameter space

✤ Includes a mean vertical magnetic field B0.

✤ β-like parameter:                           

✤ Reynolds number                         (Re~1010-1015)

✤ Magnetic Reynolds number:                            (Rm~1-1015)

✤ Magnetic Prandtl number:                                (Pm~10-4-105)
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Rm =
SH2

η

Pm =
ν

η
=

Rm

Re

β =

(
SH

VA

)2

Re =
SH2

ν
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Magnetic Prandtl number and MRI turbulence

✤ The Magnetic Prandtl number modifies the transport efficiency (independently of the aspect ratio)

✤ Points out a reaction of the small scales (dissipative scales) on the large scales (responsible for the 
turbulent transport).

✤ In real astrophysical objects, Pm varies by many orders of magnitude.
✤ The actual efficiency of MRI turbulence in astrophysical discs is not known...
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Lesur & Longaretti (2009) in prep 4x4x1 box
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Is it a linear effect?

✤ No! The linear analysis is unable to explain the Pm-α correlation.
✤ Turbulent transport ≠ Linear theory
✤ One should look for a non linear theory...
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Simulations Linear growth rate
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Parasitic instabilities?

✤ Parasitic instabilities are secondary instabilities of MRI modes
✤ Possible to predict a saturation level of the MRI thanks to these instabilities...
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Simulations Predicted saturation
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SATURATION OF THE MAGNETOROTATIONAL INSTABILITY 3

FIG. 2.— Predicted dimensionless stress at saturation, αsat, as a function of the dimensionless numbersRe and Pm. The set of values for Re corresponds to
the values used in LL07, Re′ = {200, 400, 800, 1600, 3200, 6400}, rescaled to reflect our choice of dimensionless variables. In each case, the magnetic field
amplitude is such thatB0 = Bsat

0
(ν, η), i.e., it is such that the growth rate of the fastest growing parasitic mode matches the growth rate of the fastest available

primary MRI mode. In the left panel the fastest MRI modes are allowed to be excited, i.e., K = Kmax(ν, η), while in the right panel the fastest available
primary MRI mode is limited by the vertical extent of the domain, i.e.,K = max{3π/

√
β, Kmax(ν, η)} = max{0.94, Kmax(ν, η)}, for β = 100. Note that

Kmax =
p

15/16 = 0.97 in the ideal case, and it decreases with increasing viscosity and/or resistivity. In both cases, the fastest growing parasites are allowed
to be excited, i.e., there are no restrictions onkh.

4. SATURATION OF THE MAGNETOROTATIONAL INSTABILITY

The secondarymodeswill be clearly dynamically important
when their growth rates are comparable to the growth rates of
the primary modes upon which they feed. We refer to this in-
stance as the “saturation” of the primary MRI mode. It is then
convenient to define the saturation amplitude Bsat

0 (ν, η, K)
as the amplitude that the magnetic field produced by the MRI
must have grown to in order for the instantaneous growth rate
of the fastest parasitic mode, smax(ν, η, K), to match that of
the primary, Γ(ν, η, K).
In the ideal limit, the growth rate of the secondary modes

is linear in the amplitude of the primary magnetic field B0

(GX94). Thus, the amplitude B0 at which the growth rate of
the fastest secondary equals the growth rate of a given pri-
mary mode can be obtained after solving equations (8) and
(9) with ν = η = 0. However, in the non-ideal case the am-
plitude of the magnetic field generated by the MRI cannot be
scaled out of the problem and the growth rate of the secondary
modes depends on it in a non-trivial way. Figure 1 shows the
fastest growth rates smax(ν, η, Kmax, kz, θ) of various sec-
ondary modes that feed off the fastest primary MRI mode for
three combinations ofRe and Pm. The various curves in each
panel correspond to different values of the parameter kz . In
all of the cases shown, B0 = Bsat

0 (ν, η, Kmax), i.e., the am-
plitude of the primary MRI mode is such that the fastest sec-
ondary growth rate, smax(ν, η, Kmax) = Γmax(ν, η).
For all the cases within the dissipative regime that we ex-

plored the fastest parasitic modes have the same vertical pe-
riodicity as the primary mode (i.e., kz = 0) and they are
non-axisymmetric (i.e., θ != 0). In fact, it can be seen that
the fastest modes have horizontal wavevectors that are either
quasi-parallel to the primary velocity field, ∆v, or the pri-
mary magnetic field, ∆B. The first type are clearly related
to Kelvin-Helmholtz instabilities while the latter are related
to tearing modes. The ratio between the horizontal wavenum-
ber of the fastest parasitic mode, kh,max(ν, η, Kmax), and the
wavenumber of the fastest primary mode is rather insensitive
to either Re or Pm; kh,max/Kmax varies from 0.59, in ideal
MHD, to 0.46, for the cases with highest viscosity and re-
sistivity. Therefore, provided that the vertical extent of the

domain under consideration can accommodate the fastest pri-
mary MRI mode, i.e., Lz ≥ 2π/Kmax, then it seems safest
to require that Lr, Lφ ! 2Lz so that the fastest secondaries
affecting all the primaries that fit in the domain can evolve
freely.

We can calculate the dimensionless stress at saturation as
αsat ≡ T̄ sat

rφ /(LzΩ0)2, where T̄ sat
rφ ≡ R̄sat

rφ − M̄ sat
rφ , is the

sum of the Reynolds and Maxwell stresses

R̄sat
rφ ≡

1

Lz

∫ Lz/2

−Lz/2

V sat
0,r (z)V sat

0,φ (z)dz , (10)

M̄ sat
rφ ≡

1

Lz

∫ Lz/2

−Lz/2

Bsat
0,r(z)Bsat

0,φ(z)dz . (11)

These expressions can be integrated to obtain the dimension-
less stress αsat in terms of the parameter β,

αsat =
(3/2)2

4β
[(V sat

0 )2 sin 2θV − (Bsat
0 )2 sin 2θB] . (12)

The left panel of Figure 2 shows αsat in the case where
both primary and secondary instabilities evolve unimpeded.
There are competitive effects that set the value of αsat, which
is dominated by the Maxwell stress. As dissipation increases,
the saturation amplitude Bsat

0 increases from Bsat
0 = 3.8, in

ideal MHD, to Bsat
0 % 5.5, in the cases with high dissipa-

tion. However, the angle θB decreases towards π/2, so that
| sin 2θB| decreases. Both effects roughly compensate each
other so that the final value of αsat changes only by a factor
of 2. Therefore, for the range of dissipation coefficients that
we explored, our analysis suggests that the saturation ampli-
tude of the primary modes should be rather insensitive to the
value of the dissipation coefficients if both the fastest primary
and secondary instabilities are allowed to evolve.

The right panel of Figure 2 shows αsat when the primary
mode considered is the fastest mode that can fit in a domain
with fixed β. The purpose of this exercise is to emulate the
situation in which the wavelength of the fastest mode could
be larger than the simulation domain, which is indeed the
case for some of the runs in LL07. If the wavelength of the
longest mode that can be excited is restricted by the size of

Pessah & Goodman (2009)

✤ «Quasi-linear» theory is still not enough...
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High Reynolds number: saturation?

✤ High resolution runs (768x384x192 points) 
with Re=20,000 and β=1000
✤ Same slope as a function of Pm
✤ Transport increases at large Re for a 

given Pm
✤ No saturation observed (yet?)
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Conclusions

✤ The magnetorotational instability in discs:
✤ The impact of dissipative process on MRI turbulence is strong
✤ No saturation has been observed at large Re.
✤ Linear/parasitic modes theories do not agree with simulations

✤ Spectral methods for sheared flow:
✤ Simulations done with the Snoopy code 

( http://www.damtp.cam.ac.uk/user/glesur/ )
✤ Also includes modules for:

✤ Boussinesq convection
✤ Time-dependant shear
✤ MHD
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Rm=5000

Turbulent convection in a sheared flow

http://www.damtp.cam.ac.uk/user/glesur/
http://www.damtp.cam.ac.uk/user/glesur/

