Star formation in a turbulent cloud core with self-gravitational MHD adaptive mesh refinement

Tomoaki Matsumoto (Hosei University)

Outline

D Introduction

□ Our AMR code: SFUMATO

□ Star formation in magnetized turbulent cloud cores

D Summary

Development of our adaptive mesh codes

SFUMATO

Block-structured AMR

- Oct-tree structure
- Parallel computation via MPI

D Hydrodynamics, MHD

SFUMATO

Block-structured AMR

- Oct-tree structure
- Parallel computation via MPI

Hydrodynamics, MHD

- Roe scheme + a hyperbolic cleaning of div B
- Second order accuracy by TVD

selfgravity

- Multigrid iteration
- Second order accuracy

Convergence test for fast wave. Comparison among grid types

AMR grid

Uniform grid

 $\Delta x = 1/256, \quad \Delta x = 1/128$

 $\Delta x = 1/128$

Summary of the convergence test 2^{nd} order @ $\Delta x \ll 1$ 1^{st} order @ $\Delta x \sim 1$

SFUMATO

Block-structured AMR

- Oct-tree structure
- Parallel computation via MPI

Hydrodynamics, MHD

- Roe scheme + a hyperbolic cleaning of div B
- second order accuracy by TVD

Selfgravity

- Three types of Multigrid iterations (Unique!)
- Second order accuracy

Multigrid iteration for seflgravity: How to coarsen AMR grid. An example.

Multigrid iteration for seflgravity: Coarsen all cells over blocks and levels. Factor 2 coarsened.

Multigrid iteration for seflgravity: Coarsen all cells over blocks and levels. Factor 4 coarsened.

Multigrid iteration for seflgravity: Remove the finest grid. Factor 8 coarsened.

Multigrid iteration for seflgravity: Remove the finest grid more... Factor 16 coarsened.

Multigrid iteration for seflgravity: Remove the finest grid more... Factor 32 coarsened.

Multigrid iteration for seflgravity: Coarsen an uniform grid. Factor 64 coarsened.

Multigrid iteration for seflgravity: Coarsen an uniform grid. Factor 128 coarsened.

One cell. We stop here.

Summary of Poisson solver: Multigrid iteration @ AMR

Convergence test of multi-grid method: 2nd order accuracy

Introduction: Traditional scenario of fragmentation

Collapse

Rotation promotes fragmentation

Machida et al. (2005) Hennebelle & Fromang (2008) Price & Bate (2008)

Magnetic field suppresses fragmentation

Introduction: Does turbulence promote fragmentation?

Collapse

Rotation promotes fragmentation

Machida et al. Hennebelle & Fromang (2008) Price & Bate (2008)

Magnetic field suppresses fragmentation

Initial condition

Density: BE sphere profile Center: 10⁴cm⁻³ Radius: 0.17 pc Mass: 6.1 M_{sun}

Moderate magnetic field: 18.6 µG

Turbulent flow: $\langle v \rangle^2 \propto k^{-4}$ Mean Mach number = 0.5 - 5

Barotropic EOS Ideal MHD

Computation: XT4@CfCA NAOJ The last stage (model with M=1)

Density iso-surfaces: 0.1, 1, 10 ρ_0

Disturbed @low density Flat @high density

Magnetic field: perpendicular to a flat density structure.

Turbulent flow of the iso-surface: M = 1.5 Zoom in on the cloud core: The cloud core is disturbed by turbulent flow.

Zoom in on the center: The cloud core is disturbed by turbulent flow.

Zoom in on the center: Axisymmetry at collapsing region.

Zoom in on the center: Outflow from first core.

200AU

Isosurface of outflow: $v_r = 4$

Level=9

Magnetic flux – spin relation So called the Machida-diagram. Clouds do not fragment

Summary

- □ SFUMATO, a selfgravitational MHD AMR code was developed.
 - Second order accuracy in time and space.
 - Fast Poisson solver using multigrid iterations.

□ Gravitational collapse of magnetized cloud cores was performed.

- A cloud core is disturbed by turbulent flow, but a collapsed region is converged to an axisymmetric structure.
- Turbulent flow does NOT promote fragmentation until the first core formation when ideal MHD is assumed.
 - Ohmic dissipation may be necessary for a cloud to fragment (Machida et al. 2008; simulations by the nested-grid).
 - Cloud core may fragment during the second collapse.
 - For the later stage, a sink particle method may be necessary to solve.