A Higher Order Modified Godunov's Method for PDE's with Stiff Sources Miniati & Colella 2007, JCP, 224, 519; Miniati & Colella 2009, JCP, in prep.

Francesco Miniati ETH Zurich June 30, Chamonix

Source term: diffusion, relaxation, endothermic, drag...

Non-stiff regime

$$U^{n+1} = U^n - \frac{\Delta t}{\Delta x} \left(\Delta F\right)^{n+\frac{1}{2}} + \frac{\Delta t}{2} \left(S\left(U^n\right) + S\left(U^{n+1}\right)\right)$$

Predictor Primitive formulation

$$\frac{\partial W}{\partial t} + A \frac{\partial W}{\partial x} = S(W),$$
$$A \equiv \frac{\partial W}{\partial U} \frac{\partial F}{\partial U} \frac{\partial U}{\partial W} = uI + A_{I}$$

$$W_{\pm} = W_{i}^{n} + \frac{1}{2} \left(I - \frac{\Delta t}{\Delta x} A \right) \sum_{\pm \lambda_{k} > 0} \left(l_{k} \cdot \Delta W \right) r_{k}$$
$$W_{\pm} = W_{\pm} + \frac{\Delta t}{2} S \left(W_{i}^{n} \right)$$
$$\text{Hydrodynamics} \quad U = \begin{pmatrix} \rho \\ \rho u \\ \rho E \end{pmatrix}, \quad W = \begin{pmatrix} \rho \\ u \\ P \end{pmatrix}, \quad F = \begin{pmatrix} \rho u \\ \rho u^{2} \\ (\rho E + P) u \end{pmatrix}$$

Fractional Step Method

$$\frac{\partial U}{\partial t} = -\nabla \cdot F(U) \equiv H \cdot U$$
$$\frac{dU}{dt} = S(U) \equiv \Sigma \cdot U$$
$$U(t + 2\Delta t) = \sum_{\Delta t/2} H_{\Delta t} \sum_{\Delta t} H_{\Delta t} \sum_{\Delta t} J$$

Operator splitting (Strang 1968, LeVeque 1997) provides only first order accuracy (Pember 1984).

Extensive literature on the issue (Chen et al 1994, Jin 1995, Jin & Levermore 1996, Caflish et al. 1997, Jin et al 1998) mostly RK+MoL, more recently Dumbser et al (2008) ADER framework.

Our proposal

- Modified predictor step to account for the effect of source term on the hyperbolic structure of the system.
- Apply a one step, 2nd order, A- and L-stable integrator to the ODE (SDC by Dutt, Greengard & Rokhlin 2000; α-QSS by Mott, Oren & van Leer 2000).

$$\frac{dU}{dt} = S(U) - (\nabla \cdot F)^{n+\frac{1}{2}}$$

Lagrangean Trajectories

$$\frac{DW}{Dt} = -A_L \frac{\partial W}{\partial x} + S(W) \simeq -A_L \frac{\partial W}{\partial x} + S(W_0) + \frac{\partial S}{\partial W} \cdot \left(W - W_0\right)$$

Duhamel's formula:

$$W(t) = W_{0} + \int_{0}^{t} e^{(t-\tau) \frac{\partial S}{\partial W}} \left(-A_{L} \frac{\partial W}{\partial x} + S(W_{0}) \right) d\tau$$
$$\approx W_{0} + \left[\frac{1}{t} \int_{0}^{t} e^{(t-\tau) \frac{\partial S}{\partial W}} d\tau \right] \cdot \left(-A_{L} \frac{\partial W}{\partial x} + S(W_{0}) \right) d\tau$$
$$\equiv \mathfrak{I}_{\partial S/\partial W}(t) \cdot \left(-A_{L} \frac{\partial W}{\partial x} + S(W_{0}) \right) t$$

Modified Dynamics

$$\frac{DW}{Dt} + \mathfrak{S}_{(\partial S/\partial W)_0}(t) \cdot A_L \frac{\partial W}{\partial x} = \mathfrak{S}_{(\partial S/\partial W)_0}(t) \cdot S(W_0)$$

- The operator '\$' tends to the identity as the eigenvalues of '∂S/∂W' become small compared to 't', thus recovering the usual system in primitive form.
- In the opposite limit, however, the operator '3' projects out the stiff dynamics, leaving only processes resolved over a timestep t, and effectively enforcing the equilibrium EoS.

$$\begin{aligned} & \textbf{Modified Predictor Step} \\ & W_{\pm} = W_i^n + \frac{1}{2} \bigg[I - \frac{\Delta t}{\Delta x} \Big(\Im_{(\partial S/\partial W)_0} (\Delta t/2) \cdot A_L + uI \Big) \bigg] \sum_{\pm \lambda_k > 0} (l_k \cdot \Delta W) r_k \\ & W_{\pm} = W_{\pm} + \frac{\Delta t}{2} \Im_{(\partial S/\partial W)_0} (\Delta t/2) \cdot S \Big(W_i^n \Big) \\ & \Im_{\partial S/\partial W} (t) \equiv \frac{1}{t} \int_0^t e^{(t-\tau) \cdot \partial S/\partial W} d\tau \end{aligned}$$

The characteristic analysis is now carried out on the operator ' \Im · A_L ', and both characteristic tracing and Riemann solver are based on the hyperbolic structure of this operator.

Applications

- Endothermic processes (energy sources)
- Dust drag (momentum)
- Radiation Hydrodynamics (M. Sekora & J. Stone)

Endothermic Processes

$$S(W) = (0, 0, \Lambda)^{T}, \ \Lambda \equiv \frac{de}{dt}, \quad e.g. \ \Lambda(e) = K(e - e_{Eq}),$$
$$\Lambda_{e} \equiv \frac{\partial \Lambda}{\partial e} \neq 0, \quad \Lambda_{\rho} \equiv \frac{\partial \Lambda}{\partial \rho} = 0$$

$$c \rightarrow c_{eff} = \left\{ \begin{bmatrix} \alpha (\gamma - 1) + 1 \end{bmatrix} \frac{P}{\rho} \right\}^{1/2}$$
$$\alpha \equiv \frac{e^{\Lambda_e \Delta t/2} - 1}{\Lambda_e \Delta t/2}, \quad 0 < \alpha \le 1$$
$$c_{eff} = \left\{ \begin{array}{l} \sqrt{\gamma P / \rho} & \text{for } \alpha \to 1 \text{ (non-stiff)} \\ \sqrt{P / \rho} & \text{for } \alpha \to 0 \text{ (stiff)} \end{array} \right\}$$

Convergence Rates

534		F. Miniati, P. Col	ella Journal of (Computationa	ıl Physics 224 (20	007) 519–538				
Table 3 Convergen	ice rates: 2-D case:	$A = 10^{-2}, \mathbf{k} = (2$	$(\sqrt{5}, 1/\sqrt{5})$							
N _{cell}	Density			Momentum	Momentum					
	L_1	L_2	L_{∞}	R_1^{a}	L_1	L_2	L_{∞}	R_1^{a}		
K = 1										
32	3.2E-5	3.5E-5	5.3E-5	_	4.3E-5	4.8E-5	7.0E-5	_		
64	8.6E-6	9.5E-6	1.4E-5	1.9	9.8E-6	1.1E-5	1.6E-5	2.1		
128	2.2E-6	2.5E-6	3.6E-6	2.0	2.3E-6	2.6E-6	3.8E-6	2.1		
256	5.7E-7	6.4E-7	9.2E-7	2.0	5.7E-7	6.3E-7	9.1E-7	2.0		
K = 50										
32	6.2E-5	7.0E-5	1.0E-5	_	3.6E-5	4.0E-5	5.9E-5	_		
64	1.2E-5	1.4E-5	2.0E-5	2.4	7.9E-6	8.8E-6	1.3E-5	2.4		
128	2.7E-6	3.0E-6	4.3E-6	2.2	1.8E-6	1.9E-6	2.8E-6	2.1		
256	6.2E-7	6.9E-7	1.0E-6	2.1	4.0E-7	4.5E-7	6.5E-6	2.2		
$K = 10^8$										
32	7.4E-5	8.2E-5	1.2E-4	_	4.5E-5	5.0E-5	7.3E-5	_		
64	1.6E-5	1.8E-5	2.6E-5	2.2	1.0E-5	1.1E-5	1.7E-5	2.2		
128	3.8E-6	4.2E-6	6.1E-6	2.1	2.5E-6	2.8E-6	4.1E-6	2.0		
256	9.4E-7	1.0E-6	1.5E-6	2.0	6.2E-7	6.9E-7	9.9E-6	2.0		
a R. is th	he convergence rat	e based on the L	errors							

Dust Drag

$$\frac{du_g}{dx} = -k_g \left(u_g - u_d \right) - \nabla \varphi + \text{hydro terms}$$
$$\frac{dv_d}{dx} = -k_d \left(v_d - u_g \right) - \nabla \varphi$$
$$k_g = k_0 \frac{\rho_d}{s} c$$
$$k_s = k_0 \frac{\rho_g}{s} c$$

Velocity equations

Drag coefficients

Stiff conditions either in the limit of small particles sizes (s) and/or high dust densities.

S

ď

Complications

- want dust as a set of particles, to better represent their collision-less character.
- but stiff regime implies effectively coupling among particles as well.
- So we use with fluid description of dust as an intermediate step to describe gas-dust coupling during the gas update.
- We then advance the particle solution taking into account the drag forces using the gas solution at times 't' and 't+Δt'.

Governing Equations

Conservative

$$\frac{\partial U}{\partial t} + \nabla \cdot F = K_U U$$

Primitive

$$\frac{DW}{Dt} = -A_L \frac{\partial W}{\partial x} + K_W W$$

$$U = \begin{pmatrix} \rho_g \\ \rho_g u_g \\ \rho_g E \\ \rho_d \\ \rho_d u_d \end{pmatrix}, \quad W = \begin{pmatrix} \rho_g \\ u_g \\ u_g \\ P \\ \rho_d \\ u_d \end{pmatrix}, \quad F = \begin{pmatrix} \rho_g u_g \\ \rho_g u_g^2 \\ (\rho_g E + P) u_g \\ \rho_d u_d \\ \rho_d u_d^2 \end{pmatrix}$$

Characteristic Speeds

(eigenvalues of the system $(\Im \cdot A_L)$)

 δu and c dust-gas velocity difference modulated by coupling stiffness, φ is a mixing angle between dust driven and acoustic modes, depends on stiffness, ρ_{dust} and ρ_{gas} .

Dust collection at P_{max} t=0.8 t=1.1 $\mathsf{P}_{\mathsf{gas}}$ $\mathsf{P}_{\mathsf{gas}}$ ho_{dust} ho_{dust} -0.246 2.20 -0.198 9.48 -0.268 1.85 -0.236 7.13 -0.291 1.50 -0.274 4.78 1.15 -0.313 -0.312 2.42 -0.335 0.803 -0.350 0.0711

Convergence Rates

Table 7: Convergence Rates: Case D: $A = 1.4 \times 10^{-2}$, $\mathbf{k} = (2, 1)/\sqrt{5}$, $\rho_d/\rho_g = 10^2$.												
N_{cells}	L_1	R_1	L_2	R_2	L_{∞}	R_∞	L_1	R_1	L_2	R_2	L_{∞}	R_{∞}
density-gas x-vel-gas												
16	7.5E-06	_	8.4E-06	-	1.2E-05	-	2.3E-04	-	2.6E-04	-	3.6E-04	-
32	2.6E-06	1.5	2.9E-06	1.5	4.2E-06	1.5	1.6E-04	1.5	1.7E-04	1.5	2.5E-04	1.5
64	1.1E-06	1.3	1.2E-06	1.3	1.7E-06	1.3	9.0E-05	1.3	1.0E-04	1.3	1.4E-04	1.3
128	5.8E-07	0.9	6.4E-07	0.9	9.1E-07	0.9	5.4E-05	0.9	5.9E-05	0.9	8.4E-05	0.9
	y-vel-ga	S					pressure					
16	3.2E-04	-	3.5E-04	-	5.0E-04	-	1.1E-05	-	1.2E-05	-	1.7E-05	-
32	2.2E-04	0.5	2.4E-04	0.5	3.4E-04	0.5	3.7E-06	0.5	4.1E-06	0.5	5.8E-06	0.5
64	1.3E-04	0.8	1.4E-04	0.8	2.0E-04	0.8	1.5E-06	0.8	1.7E-06	0.8	2.4E-06	0.8
128	7.2E-05	0.8	8.0E-05	0.8	1.1E-04	0.8	8.1E-07	0.8	9.0E-07	0.8	1.3E-06	0.8
	density-dust					x-vel-dust						
16	8.1E-06	_	8.9E-06	_	1.2E-05	_	4.4E-04	_	4.8E-04	_	6.8E-04	_
32	3.2E-06	1.3	3.6E-06	1.3	5.1E-06	1.3	2.2E-04	1.3	2.5E-04	1.3	3.5E-04	1.3
64	1.3E-06	1.3	1.5E-06	1.3	2.1E-06	1.3	1.1E-04	1.3	1.2E-04	1.3	1.7E-04	1.3
128	6.4E-07	1.0	7.1E-07	1.0	1.0E-06	1.0	5.8E-05	1.0	6.5E-05	1.0	9.2E-05	1.0
	y-vel-du	st										
16	6.1E-04	_	6.8E-04	_	9.5E-04	_						
32	3.1E-04	1.0	3.4E-04	1.0	4.9E-04	1.0						
64	1.5E-04	1.0	1.7E-04	1.0	2.4E-04	1.0						
128	7.9E-05	1.0	8.8E-05	1.0	1.2E-04	1.0						

Table 5: Convergence Rates: Case B: $\kappa_0 = 10^6$, $\mathbf{k} = (2, 1)/\sqrt{5}$, $\rho_d/\rho_q = 1$.												
$N_{\rm cells}$	L_1	R_1	L_2	R_2	L_{∞}	R_{∞}	L_1	R_1	L_2	R_2	L_{∞}	R_{∞}
	density-gas x-vel-gas											
16	1.9E-4	-	2.1E-4	-	3.1E-4	-	8.6E-5	-	9.4E-5	-	1.5E-4	-
32	8.3E-5	1.2	9.2E-5	1.2	1.4E-4	1.2	3.0E-5	1.2	3.4E-5	1.2	6.0E-5	1.2
64	3.9E-5	1.1	4.3E-5	1.1	6.6E-5	1.1	1.9E-5	1.1	2.1E-5	1.1	3.6E-5	1.1
128	2.0E-5	1.0	2.2E-5	1.0	3.3E-5	1.0	8.6E-6	1.0	9.5E-6	1.0	1.7E-5	1.0
	y-vel-gas pressure											
16	1.4E-4	-	1.6E-4	-	2.4E-4	-	2.7E-4	-	3.0E-4	-	4.3E-4	-
32	5.1E-5	1.5	5.7E-5	1.5	8.8E-5	1.4	1.2E-4	1.5	1.3E-4	1.5	1.9E-4	1.4
64	3.4E-5	0.6	3.8E-5	0.6	5.6E-5	0.7	5.5E-5	0.6	6.1E-5	0.6	9.2E-5	0.7
128	2.1E-5	0.7	2.4E-5	0.7	3.4E-5	0.7	2.7E-5	0.7	3.0E-5	0.7	4.7E-5	0.7
	density	-dust					x-vel-d	ust				
16	1.1E-4	-	1.3E-4	-	1.8E-4	-	7.3E-5	-	8.1E-5	-	1.2E-4	-
32	4.8E-5	1.2	5.3E-5	1.2	8.3E-5	1.2	1.0E-5	1.2	1.1E-5	1.2	2.0E-5	1.2
64	2.1E-5	1.2	2.4E-5	1.1	3.9E-5	1.1	2.8E-6	1.2	3.2E-6	1.1	6.4E-6	1.1
128	1.0E-5	1.1	1.1E-5	1.1	1.8E-5	1.1	1.0E-6	1.1	1.4E-6	1.1	5.3E-6	1.1
	y-vel-dust											
16	2.4E-4	-	2.7E-4	-	3.9E-4	-						

32	1.3E-4	0.9	1.5E-4	0.9	2.1E-4	0.9
64	6.3E-5	1.0	7.0E-5	1.1	1.0E-4	1.0
128	3.1E-5	1.0	3.4E-5	1.0	4.8E-5	1.1

Summary

- We have presented a higher order Godunov's method for conservation equations with stiff source terms.
- The novelty of the method consist in the formulation of a modified predictor step derived from a local effective dynamics based on Duhamel's formula.
- For a relaxation law describing endothermic procs., the method is shown to be second order accurate independent of the stiffness conditions.
- A hybrid particle-gas system stiffly coupled through momentum exchange (via drag) is stable and first order accurate.