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Cons. Eq.

Source term: diffusion, relaxation, endothermic, drag...



Non-stiff regime
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Operator splitting (Strang 1968, LeVeque 1997) 
provides only first order accuracy (Pember 1984). 

Extensive literature on the issue (Chen et al 
1994, Jin1995, Jin & Levermore 1996, Caflish et al. 
1997, Jin et al 1998) mostly RK+MoL, more 
recently Dumbser et al (2008) ADER framework.
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U(t + 2Δt) = ΣΔt /2HΔtΣΔtHΔtΣΔt /2

Fractional Step Method



Our proposal

• Modified predictor step to account for the 
effect of source term on the hyperbolic 
structure of the system.

• Apply a one step, 2nd order, A- and L-stable 
integrator to the ODE (SDC by Dutt, Greengard & 
Rokhlin 2000; α-QSS by Mott, Oren & van Leer 2000).
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Lagrangean Trajectories
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Duhamel’s formula:



Modified Dynamics

• The operator ‘ℑ’ tends to the identity as the 
eigenvalues of ‘∂S/∂W’ become small 
compared to ‘t’, thus recovering the usual 
system in primitive form.

• In the opposite limit, however, the operator 
‘ℑ’ projects out the stiff dynamics, leaving 
only processes resolved over a timestep t, 
and effectively enforcing the equilibrium EoS.
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Modified Predictor Step
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The characteristic analysis is now carried out on 
the operator ‘ℑ･AL’, and both characteristic tracing 

and Riemann solver are based on the hyperbolic 
structure of this operator.



Applications

• Endothermic processes (energy sources)

• Dust drag (momentum)

• Radiation Hydrodynamics (M. Sekora & J. Stone)



Endothermic Processes
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Convergence Rates



Dust Drag
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Drag coefficients

Velocity equations
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Stiff conditions either in the limit of small particles 
sizes (s) and/or high dust densities.



Complications
• want dust as a set of particles, to better 

represent their collision-less character.

• but stiff regime implies effectively coupling 
among particles as well. 

• So we use with fluid description of dust as 
an intermediate step to describe gas-dust 
coupling during the gas update.

• We then advance the particle solution 
taking into account the drag forces using 
the gas solution at times ‘t’ and ‘t+Δt’.



Governing Equations
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Characteristic Speeds 
(eigenvalues of the system ‘ℑ･AL’)
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     and    dust-gas velocity difference modulated by coupling  
 stiffness,      is a mixing angle between dust driven and acoustic
 modes, depends on stiffness, ρdust and ρgas.
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Dust collection at Pmax

Pgas ρdust Pgas ρdust

t=0.8 t=1.1



Convergence Rates



Summary
• We have presented a higher order Godunov’s 

method for conservation equations with stiff source 
terms.

• The novelty of the method consist in the formulation 
of a modified predictor step derived from a local 
effective dynamics based on Duhamel’s formula. 

• For a relaxation law describing endothermic procs., 
the method is shown to be second order accurate 
independent of the stiffness conditions.

• A hybrid particle-gas system stiffly coupled through 
momentum exchange (via drag) is stable and first 
order accurate. 


