Simulation of relativistic shocks and associated radiation from turbulent magnetic fields

Ken Nishikawa

National Space Science & Technology Center/UAH

Collaborators:

M. Medvedev (Univ. of Kansas) B. Zhang (Univ. Nevada, Las Vegas) P. Hardee (Univ. of Alabama, Tuscaloosa) J. Niemiec (Institute of Nuclear Physics PAN) Y. Mizuno (Univ. Alabama in Huntsville/CSPAR) Å. Nordlund (Neils Bohr Institute) J. Frederiksen (Neils Bohr Institute) H. Sol (Meudon Observatory) M. Pohl (Iowa State University) D. H. Hartmann (Clemson Univ.) M. Oka (UAH/CSPAR) G. J. Fishman (NASA/MSFC)

4th International Conference on Numerical Modeling of Space Plasma Flows June 29th - July 3rd 2009, Chamonix , FRANCE

Outline of talk

- Motivations
- Recent 3-D particle simulations of relativistic jets
 - * e[±]pair jet into e[±]pair, γ= 15
- Radiation from two electrons
- New initial results of radiation from electrons based on particle trajectories
- Summary
- Future plans of our simulations of relativistic jets

1. Present theory of Synchrotron radiation

- Fermi acceleration (Monte Carlo simulations are not self-consistent; particles are crossing at the shock surface many times and accelerated, the strength of turbulent magnetic fields are assumed), New simulations show Fermi acceleration (Spitkovsky 2008, Martins et al. 2009)
- The strength of magnetic fields is assumed based on the equipartition (magnetic field is similar to the thermal energy) (ε_B)
- The density of accelerated electrons are assumed by the power law $(F(\gamma) = \gamma P; p = 2.2?)(\epsilon_e)$
- Synchrotron emission is calculated based on p and ε_B
- There are many assumptions in this calculation

Synchrotron Emission: radiation from accelerated

Schematic GRB from a massive stellar progenitor

(Meszaros, Science 2001)

Collisionless shock

Electric and magnetic fields created selfconsistently by particle dynamics randomize particles

jet

(Buneman 1993)

 $\partial B / \partial t = -\nabla \times E$ $\partial E / \partial t = \nabla \times B - J$ $dm_0 \gamma v / dt = q(E + v \times B)$ $\partial \rho / \partial t + \nabla g J = 0$

ambient ion

(Nishikawa et al. ApJ, 698, L10, 2009)

Weibel instability Time: $\tau = \gamma_{\rm sh}^{1/2} \omega_{\rm pe} \approx 21.5$ Length: current filamentation $\lambda = \gamma_{th}^{1/2} c k_{pe} \approx 9.6\Delta$ jet generated х magnetic fields $ev_z \times B_x$ (electrons) BX

(Medvedev & Loeb, 1999, ApJ)_{9/39}

Radiation from particles in collisionless shock

To obtain a spectrum, "just" integrate:

$$\frac{d^2 W}{d\Omega d\omega} = \frac{\mu_0 c q^2}{16\pi^3} \left| \int_{-\infty}^{\infty} \frac{\mathbf{n} \times \left[(\mathbf{n} - \boldsymbol{\beta}) \times \dot{\boldsymbol{\beta}} \right]}{(1 - \boldsymbol{\beta} \cdot \mathbf{n})^2} e^{i\omega(t' - \mathbf{n} \cdot \mathbf{r}_0(t')/c)} dt' \right|^2$$

where \mathbf{r}_0 is the position, $\boldsymbol{\beta}$ the velocity and $\boldsymbol{\beta}$ the acceleration

New approach: Calculate radiation from integrating position, velocity, and acceleration of ensemble of particles (electrons and positrons)

Hededal, Thesis 2005 (astro-ph/0506559) Nishikawa et al. 2008 (astro-ph/0802.2558)

Synchrotron radiation from gyrating electrons in a uniform magnetic field

spectra with different viewing angles

time evolution of three frequencies

Rybicki, G. B., & Lightman, A. P. 1979, Radiative Processes in Astrophysics, John Wiley & Sons, New York 14/39

Synchrotron Emission: radiation from accelerated

Self-consistent calculation of radiation

- Electrons are accelerated by the electromagnetic field generated by the Weibel instability (without the assumption used in test-particle simulations for Fermi acceleration)
- Radiation is calculated by the particle trajectory in the self-consistent magnetic field
- This calculation include Jitter radiation (Medvedev 2000, 2006) which is different from standard synchrotron emission
- Some synchrotron radiation from electron is reported (Nishikawa et al. 2008 (astroph/0801.4390;0802.2558;0809.5067)

Cyclotron radiation

 $\gamma = 15$

Angle dependence of radiation

$$\overline{U} = e^4 H^2 v^2 (1 - \frac{v^2}{2}) \left(-2 + \frac{v^2}{2} \sin^2 \theta - (1 - \frac{v^2}{2}) (4 + \frac{v^2}{2} \sin^2 \theta) \right)$$

$$\frac{dI}{d\Omega} = \frac{8 \Pi^{-1} e^{-(1-\frac{c^2}{c^2})}}{8\pi^2 m^2 c^5} \left\{ \frac{2 + \frac{c^2}{c^2} \sin^2 \theta}{(1 - \frac{v^2}{c^2} \sin^2 \theta)^{5/2}} - \frac{(1 - \frac{c^2}{c^2})(1 + \frac{c^2}{c^2} \sin^2 \theta) \sin^2 \theta}{4(1 - \frac{v^2}{c^2} \sin^2 \theta)^{7/2}} \right\}$$

Radiation ratio at
$$\theta = 0$$
 and $\pi/2$

$$\frac{\left(\frac{dI}{d\Omega}\right)_{\pi/2}}{\left(\frac{dI}{d\Omega}\right)_{0}} = \frac{4+3\frac{v^{2}}{c^{2}}}{8\left(1-\frac{v^{2}}{c^{2}}\right)^{5/2}} : \gamma^{5}$$

 $\begin{bmatrix} 10^{5} \\ 10^{4} \\ 10^{3} \\ 10^{1} \\ 10^{0} \\ 0^{\circ} \\ 30^{\circ} \\ \theta \\ \end{bmatrix} \begin{bmatrix} 0^{2} \\ 0^{\circ} \\ 0^{\circ$

from Landau & Lifshitz, The Classical Theory of Fields, 1980

(74.4)

Synchrotron radiation from propagating electrons in a uniform magnetic field

electron trajectories

radiation electric field observed at long distance

spectra with different viewing angles

TABLE 1.	Seven cases	of radiation
----------	-------------	--------------

	B _x	$V_{j1,2}$	$V_{\perp,1}$	$V_{\perp,2}$	Ymax	θ_{Γ}	Remarks
Р	3.70 (B _z)	0.0c	0.998c	0.9997c	40.08	1.43	gyrating
Α	3.70	0.99c	0.1c	0.12c	13.48	4.25	jet
В	3.70	0.9924c	0.1c	0.12c	36.70	1.56	jet
С	3.70	0.99c	0.01c	0.012e	7.114	8.05	jet
D	0.370	0.99c	0.01c	0.012e	7.114	8.05	jet
Е	0.370	0.99c	0.1c	0.12c	13.48	4.25	$\Delta t = 0.005$
F	0.370	0.99c	0.1c	0.12c	13.48	4.25	$\Delta t = 0.025$

(Nishikawa et al. astro-ph/0809.5067)

1110								
	B _x	<i>V</i> _{j1,2}	$V_{\perp,1}$	$V_{\perp,2}$	Ymax	θ_{Γ}	Remarks	
Р	3.70 (<i>B</i> _z)	0.0c	0.998c	0.9997c	40.08	1.43	gyrating	
Α	3.70	0.99c	0.1c	0.12c	13.48	4.25	jet	
В	3.70	0.9924c	0.1c	0.12c	36.70	1.56	jet	
С	3.70	0.99c	0.01c	0.012c	7.114	8.05	jet	
D	0.370	0.99c	0.01c	0.012e	7.114	8.05	jet	
Е	0.370	0.99c	0.1c	0.12c	13.48	4.25	$\Delta t = 0.005$	
F	0.370	0.99c	0.1c	0.12c	13.48	4.25	$\Delta t = 0.025$	

Case A

(Nishikawa et al. astro-ph/0809.5067)

TREE I. Seven cases of faciation							
	B _x	<i>V</i> _{j1,2}	$V_{\perp,1}$	$V_{\perp,2}$	Imax	θ_{Γ}	Remarks
Р	3.70 (B _z)	0.0c	0.998c	0.9997c	40.08	1.43	gyrating
Α	3.70	0.99c	0.1c	0.12c	13.48	4.25	jet
В	3.70	0.9924c	0.1c	0.12c	36.70	1.56	jet
С	3.70	0.99c	0.01c	0.012c	7.114	8.05	jet
D	0.370	0.99c	0.01c	0.012e	7.114	8.05	jet
Е	0.370	0.99c	0.1c	0.12c	13.48	4.25	$\Delta t = 0.005$
F	0.370	0.99c	0.1c	0.12c	13.48	4.25	$\Delta t = 0.025$

Case D

(Nishikawa et al. astro-ph/0809.5067)

3D jitter radiation (diffusive synchrotron radiation) with a ensemble of mono-energetic electrons ($\gamma = 3$) in turbulent magnetic fields (Medvedev 2000; 2006, Fleishman 2006)

 $P_B(k) \propto k^\mu$

2d slice of magnetic field

3D jitter radiation with $\gamma = 3$ electrons

Hededal & Nordlund (astro-ph/0511662)

Radiation from collisionless shock

GRB 000301c (Panaitescu 2001)

Shock simulations

Hededal Thesis: http://www.astro.ku.dk/~hededal

Hededal & Nordlund 2005, submitted to ApJL (astro-ph/0511662)

Jitter radiation from electrons by tracing trajectories self-consistently

using a small simulation system

initial setup for jitter radiation

select electrons (12,150) in jet and ambient

final condition for jitter radiation

15,000 steps

dt = 0.005 ω_{pe}^{-1}

 $\omega_{\rm h} = 100$

 $\theta_n = 2$

 $\Delta x jet = 75 \Delta$

 $\Delta t_{jitt} = 75 \quad \omega_{pe}^{-1}$

Calculated spectra for jet electrons and ambient electrons

Summary

- Simulation results show electromagnetic stream instability driven by streaming e[±] pairs are responsible for the excitation of nearequipartition, turbulent magnetic fields.
- Ambient ions assist in generation of stronger magnetic fields.
- Weibel instability plays a major role in particle acceleration due the quasi-steady radial electric field around the current filaments and local reconnections during merging filaments in relativistic jets.
- The magnetic fields created by Weibel instability generate highly inhomogeneous magnetic fields, which is responsible for jitter radiation (Medvedev, 2000, 2006; Fleishman 2006).

Future plans for particle acceleration in relativistic jets

- Further simulations with a systematic parameter survey will be performed in order to understand shock dynamics with larger systems
- Simulations with magnetic field may accelerate particles further?
- În order to investigate shock dynamics further diagnostics will be developed
- Investigate synchrotron (jitter) emission, and/or polarity from the accelerated electrons in inhomogeneous magnetic fields and compare with observations (Blazars and gamma-ray burst emissions) (Medvedev, 2000, 2006; Fleishman 2006)

Gamma-Ray Large Area Space Telescope (FERMI)

(launched on June 11, 2008) http://www-glast.stanford.edu/

Compton Gamma-Ray Observatory (CGRO)

Burst And Transient Source Experiment (BATSE) (1991-2000)

PI: Jerry Fishman

Fermi (GLAST) All sky monitor

- Large Area Telescope (LAT) PI: Peter Michaelson: gamma-ray energies between 20 MeV to about 300 GeV
- Fermi Gamma-ray Burst Monitor (GBM) PI: Bill Paciaas (UAH) (Chip Meegan (Retired;USRA)): X-rays and gamma rays with energies between 8 keV and 25 MeV (http://gammaray.nsstc.nasa.gov/gbm/)

The combination of the GBM and the LAT provides a powerful tool for studying radiation from relativistic jets and gamma-ray bursts, particularly for time-resolved spectral studies over very large energy band.

GRB progenitor

relativistic jet

Fushin

(god of wind)

(Tanyu Kano 1657)

emission

(shocks, acceleration)

Raishin

(god of lightning)

Good text books for radiation

- *Classical Electrodynamics*, by Jackson, J. D., Interscience, 1999
- *Radiative Processes in Astrophysics*, by Rybicki, G.
 B., & Lightman, A. P., John Wiley & Sons, New York, 1979
- Radiation Processes in Plasmas, by Bekefi, G., Wiley & Sons, New York, 1966
- *The Classical Theory of Fields*, by Landau, L. D., Pergamon Press, 1975

Synchrotron emission from a particle pitch angle a

G. B. Rybicki & A. P. Lightman, Radiative rocesses in Astrophysics

$$\frac{dW_{\perp}}{d\omega} = \frac{2q^2\omega^2 a^2 \sin\alpha}{3\pi c^3 \gamma^4} \int_{-\infty}^{\infty} \theta_{\gamma}^4 K_{2/3}^2(\eta) d\theta$$
$$\frac{dW_{\rm P}}{d\omega} = \frac{2q^2\omega^2 a^2 \sin\alpha}{3\pi c^3 \gamma^4} \int_{-\infty}^{\infty} \theta_{\gamma}^2 \theta^2 K_{1/3}^2(\eta) d\theta$$

$$\theta_{\gamma}^2 \equiv 1 + \gamma^2 \theta^2$$
 $\eta \equiv \frac{\omega a \theta_{\gamma}^3}{3 c \gamma^3} \approx \eta (\theta = 0) = \frac{\omega}{2\omega_c}$

$$\omega_c \equiv \frac{3}{2} \gamma^3 \omega_B \sin \alpha \qquad \omega_B = \frac{qB}{\gamma mc}$$

for $\alpha = 0^{\circ}$ radiation becomes zero??

Cyclotron emission of an electron in helical motion

resultant electric field

$$\beta^2 = \beta_{\mathsf{P}}^2 + \beta_{\perp}^2 = \left(\frac{v_{\mathsf{P}}}{c}\right)^2 + \left(\frac{v_{\perp}}{c}\right)^2 \qquad \gamma = (1 - \beta^2)^{-1/2}$$

$$x = \frac{\omega}{\omega_0} \beta_\perp \sin \theta \qquad \qquad \omega_0 = -\frac{eB_0}{m_0 \gamma}$$

$$y = m\omega_0 - \omega(1 - \beta_{\mathsf{P}}\cos\theta)$$

$$\eta_m(\omega, v, \theta) = \frac{e^2 \omega^2}{8\pi^2 \varepsilon_0 c} \left[\sum_{1}^{\infty} \left(\frac{\cos \theta - \beta_{\mathsf{P}}}{\sin \theta} \right)^2 J_m^2(x) + \beta_{\perp}^2 J_m'^2(x) \right] \delta(y)$$
$$J_m' \equiv dJ_m(x) / dx \quad \neq 0 \text{ even } \theta = 0$$

G. Bekefi, *Radiation Processes in Plasma*, 1966, John Wiley & Sons, Inc

1110	LL I. 50%	in cases or .	achation				
	B _x	<i>V</i> _{j1,2}	$V_{\perp,1}$	$V_{\perp,2}$	$\gamma_{ m max}$	θ_{Γ}	Remarks
Р	3.70 (B _z)	0.0c	0.998c	0.9997c	40.08	1.43	gyrating
Α	3.70	0.99c	0.1c	0.12c	13.48	4.25	jet
В	3.70	0.9924c	0.1c	0.12c	36.70	1.56	jet
С	3.70	0.99c	0.01c	0.012e	7.114	8.05	jet
D	0.370	0.99c	0.01c	0.012e	7.114	8.05	jet
Е	0.370	0.99c	0.1c	0.12c	13.48	4.25	$\Delta t = 0.005$
F	0.370	0.99c	0.1c	0.12c	13.48	4.25	$\Delta t = 0.025$

Case B

(Nishikawa et al. astro-ph/0809.5067)

TABLE 1. Seven cases of factation							
	B _x	<i>V</i> _{j1,2}	$V_{\perp,1}$	$V_{\perp,2}$	$\gamma_{ m max}$	θ_{Γ}	Remarks
Р	3.70 (B _z)	0.0c	0.998c	0.9997c	40.08	1.43	gyrating
Α	3.70	0.99c	0.1c	0.12c	13.48	4.25	jet
В	3.70	0.9924c	0.1c	0.12c	36.70	1.56	jet
С	3.70	0.99c	0.01c	0.012c	7.114	8.05	jet
D	0.370	0.99c	0.01c	0.012e	7.114	8.05	jet
Е	0.370	0.99c	0.1c	0.12c	13.48	4.25	$\Delta t = 0.005$
F	0.370	0.99c	0.1c	0.12c	13.48	4.25	$\Delta t = 0.025$

Case C

(Nishikawa et al. astro-ph/0809.5067)

TABLE 1. Seven cases of faciation							
	B _x	<i>V</i> _{j1,2}	$V_{\perp,1}$	$V_{\perp,2}$	Ymax	θ_{Γ}	Remarks
Р	3.70 (<i>B</i> _z)	0.0c	0.998c	0.9997c	40.08	1.43	gyrating
Α	3.70	0.99c	0.1c	0.12c	13.48	4.25	jet
В	3.70	0.9924c	0.1c	0.12c	36.70	1.56	jet
С	3.70	0.99c	0.01c	0.012e	7.114	8.05	jet
D	0.370	0.99c	0.01c	0.012e	7.114	8.05	jet
Е	0.370	0.99c	0.1c	0.12c	13.48	4.25	$\Delta t = 0.005$
F	0.370	0.99c	0.1c	0.12c	13.48	4.25	$\Delta t = 0.025$

Case E

(Nishikawa et al. astro-ph/0809.5067)

THEFT. Seven cases of radiation							
	B _x	<i>V</i> _{j1,2}	$V_{\perp,1}$	$V_{\perp,2}$	Yma x	θ_{Γ}	Remarks
Р	3.70 (<i>B</i> _z)	0.0c	0.998c	0.9997c	40.08	1.43	gyrating
Α	3.70	0.99c	0.1c	0.12c	13.48	4.25	jet
В	3.70	0.9924c	0.1c	0.12c	36.70	1.56	jet
С	3.70	0.99c	0.01c	0.012e	7.114	8.05	jet
D	0.370	0.99c	0.01c	0.012e	7.114	8.05	jet
Е	0.370	0.99c	0.1c	0.12c	13.48	4.25	$\Delta t = 0.005$
F	0.370	0.99c	0.1c	0.12c	13.48	4.25	$\Delta t = 0.025$

Case F

(Nishikawa et al. astro-ph/0809.5067)

Radiation from collisionless shock

GRB 000301c (Panaitescu 2001)

Shock simulations

Hededal Thesis: http://www.astro.ku.dk/~hededal

Hededal & Nordlund 2005, submitted to ApJL (astro-ph/0511662)

 $JY \quad (JX, JZ) \quad T= 5.0$

(Nishikawa et al. 2005)

3-D isosurfaces of density of jet particles and J_z for narrow jet (m=12.57)

 $t = 59.8\omega_e^{-1}$ jet electrons (blue), positrons (gray)

electron-positron ambient

-J_z (red), magnetic field lines (white)

Isosurfaces of z-component of current density for narrow jet (yv=12.57)

electron-ion ambient plasma

electron-positron ambient plasma

(+J_z: blue, -J_z:red) local magnetic field lines (white curves)