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What’s behind the new 
results?
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A large grid of high resolution unigrid (mostly 
5003 and some 10003) supersonic MHD 
simulations with selfgravity and sink particles 
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decaying and driven


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state 
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But that isn’t the whole story; 
gravity isn’t the only player:
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big”, and the collapse time should 
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the energy density play-off
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Turbulence and the Star-Formation Rate

Supersonic isothermal turbulence results in large density fluctuations:

Wide density pdf  →
 

SFR as the mass fraction above a critical 
density,  divided by a characteristic time (e.g. τff

 

)

ρcr

Only a small mass fraction can collapse into stars, hence one reason for the low 
SFR



Logarithm of projected densityLogarithm of projected density
Stagger Code, N=1,000Stagger Code, N=1,00033, Mach=10, , Mach=10, ββ=20, no self=20, no self--gravitygravity

(Padoan et al. 2007) (Padoan et al. 2007) 
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The PDF of local virial ratios
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Emission Lines
(CO, CS, N2 H+, ...)

Zeeman (OH, CN)

NIR dust scattering

Comparing synthetic and real observations

Polarized dust emission

Computer simulations:Computer simulations:
turbulence, gravity,turbulence, gravity,

magnetic fieldsmagnetic fields

FIR dust emission

Planck

Herschel



Simulated Zeeman effect in super-Alfvenic turbulence

Lunttila, Padoan et al. 2008:

OH map (3' beam)                                   Zeeman map

From a 1,0003

 

simulation with <B> = 0.69 μG, but rms B such that β
 

≈
 

0.4.

The Zeeman map shows that large Blos

 

can be detected in cores, despite the very low 
value of the mean magnetic field (super-Alfvenic turbulence).



Consistency of our B-field: 
Synthetic Zeeman splitting
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Star-Formation Rate versus Virial Parameter 
and Magnetic Field

HD:                                  MHD:

The SFR is low due to both the turbulence and the magnetic field.



Model results



Comparison with theoretical predictions

Excellent agreement between MHD model and the numerical results.

Krumholz & 
McKee 2005

Padoan &
Nordlund 
2009



What determines the actual 
value of the virial parameter?
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State of the art: 
de Avillez & Breitschwerdt 2004, 2005, 2007



Combine the two
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or initial B much too large; B is not a free 
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synthetic data should be consistent with 
observations
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The ”velocity law”



 
Here is the figure from Larson’s 1981 paper:

 
Here is the figure from Larson’s 1981 paper:

Notice the break at a 
few hundred pc, ~ disk 

scale height

Notice also the slope ~0.4, 
there is no way it could be 
~0.5 when measured over 

a large range of sizes



The ”velocity law”
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formation activity 
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Hence local feedback cannot be a significant 
contributor to the velocity dispersion!

 



 
This law holds independent of local star 
formation activity


 

e.g. Heyer & Brundt 2006


 

here is their figure:



 
Hence local feedback cannot be a significant 
contributor to the velocity dispersion!



Rosetta Cloud, C13 O – 
vigurous star formation



Maddalena Cloud C13 O – 
practically no star formation

This very quiescent 
cloud has practically the 
same normalization of 

Larson’s v-law !!
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