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Progenitor and collapse

I Progenitor: a massive star (& 8M�) after exhaustion of nuclear
full (onion-shell structure)

I gravitational collapse of the core to a proto neutron star: ρmax

increases from ∼ 109 g/cm3 to > ρnuc ∼ 2× 1014 g/cm3 within ∼
a free-fall time

I ecore ∼ 1053 erg relased, mostly in neutrinos
I collapse stops when nuclear density is reached
⇒ formation of a shock wave

I the shock propagates outwards, but stalls due to energy loss in
dissociation reactions

¿ How is the stalled shock wave revived?
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Ingredients

multi-scale problem
I star: blue or red giant
I pre-collapse core: few 1000 km
I PNS: few 10 km
I stalled shock: few 100 km
I large (magnetic) Reynolds

number
I many dynamical time scales

multi-physics problem
I multi-dimensional (GR)(M)HD
I turbulence
I nuclear equation of state
I neutrino transport (from

optically thick to transparent),
neutrino-matter interactions

I nuclear burning
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Exlosion mechanisms

How is the failed explosion revived?

Not a matter of energy (ecore � eenv), but
of energy transfer.

I Spherical neutrino-driven
explosion

I Standard model: neutrino
heating aided by
hydrodynamic instabilities

I Energy transfer by waves
I rotational mechanisms
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Neutrino mechanism
I Neutrinos diffuse out of the PNS
I they heat the matter behind the

shock.
⇒ explosions for cores in a limited

mass range (Kitaura et al., 2006)
I compatible with standard

pre-collapse evolution
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Hydro instabilities
I Neutrino heating
I convection and standing accretion

shock instability (Blondin et al.,
2003, 2006; Foglizzo et al., 2007)

⇒ successful for M ≈ 11...15M�
I compatible with standard

pre-collapse evolution
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Exlosion mechanisms

How is the failed explosion revived?

Not a matter of energy (ecore � eenv), but
of energy transfer.

I Spherical neutrino-driven
explosion

I Standard model: neutrino
heating aided by
hydrodynamic instabilities

I Energy transfer by waves
I rotational mechanisms

Waves
I accoustic (Burrows et al., 2006,

2007) or Alfvén waves (Suzuki et
al., 2008) generated at the PNS

I waves dissipate near the shock
I successful?
I compatible with standard

pre-collapse evolution?
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Exlosion mechanisms

How is the failed explosion revived?

Not a matter of energy (ecore � eenv), but
of energy transfer.
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I Spherical neutrino-driven
explosion

I Standard model: neutrino
heating aided by
hydrodynamic instabilities

I Energy transfer by waves
I rotational mechanisms

Rotation
I tap into erot by magnetic fields

(Thompson et al., 2004)
I successful?
I realistic?

I rapid rotation: only certain stars
I |~b| sufficiently strong?

→ MRI? (Akiyama et al., 2003)
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Field amplification in supernovae

Why magnetic fields?
I pulsar fields, magnetars
I asymmetric explosions:

caused by large-scale fields?
I additional energy reservoir:

rotation

But...
I strong (equipartition) fields

needed
I typical pre-collapse fields are

too weak
⇒ I special class of progenitors

I strong amplification

field amplification mechanisms
I compression: gravitational infall⇒ magnetic energy
I winding: differential rotation⇒ magnetic energy
I hydromagnetic instabilities: differential rotation,

entropy/composion gradients⇒ magnetic energy



Core-collapse supernovae Magnetic fields and the MRI in supernovae MRI simulations Summary

Field amplification in supernovae

Why magnetic fields?
I pulsar fields, magnetars
I asymmetric explosions:

caused by large-scale fields?
I additional energy reservoir:

rotation

But...
I strong (equipartition) fields

needed
I typical pre-collapse fields are

too weak
⇒ I special class of progenitors

I strong amplification

field amplification mechanisms
I compression: gravitational infall⇒ magnetic energy
I winding: differential rotation⇒ magnetic energy
I hydromagnetic instabilities: differential rotation,

entropy/composion gradients⇒ magnetic energy



Core-collapse supernovae Magnetic fields and the MRI in supernovae MRI simulations Summary

Field amplification in supernovae

Why magnetic fields?
I pulsar fields, magnetars
I asymmetric explosions:

caused by large-scale fields?
I additional energy reservoir:

rotation

But...
I strong (equipartition) fields

needed
I typical pre-collapse fields are

too weak
⇒ I special class of progenitors

I strong amplification

field amplification mechanisms
I compression: gravitational infall⇒ magnetic energy
I winding: differential rotation⇒ magnetic energy
I hydromagnetic instabilities: differential rotation,

entropy/composion gradients⇒ magnetic energy



Core-collapse supernovae Magnetic fields and the MRI in supernovae MRI simulations Summary

General properties of the MRI

I local linear MHD instability of differentially rotating fluids
I weak initial magnetic field required
I run-away of angular-momentum transport along field lines
I instability criterion: negative Ω gradient
I growth time ∼ rotational period
I leads to MHD turbulence and efficient transport
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Peculiarties of the MRI in SNe

Accretion discs
I Keplerian shear
⇒ Rayleigh-stable, MRI-unstable
I rapid growth
I MHD turbulence may provide

viscosity required for accretion
I well-studied system, yet still

many open questions

Supernovae
I differential rotation, thermal

stratification
⇒ possibly: hydrodynamically

unstable + MRI unstable
I growth: fast enough?
I saturation: strong enough?
I starting to receive interest

study the MRI in supernovae
I theoretical analysis of the instability criteria
I simulations of MRI-unstable systems
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Regimes of the axisymmetric MRI

convective
similar to
hydrodynamic
convection
(Schwarzschild
or Ledoux)

mixed interplay
of many
effects

magneto-bouyant
convection stabilised by
rotation, but destabilised
by the magnetic field
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Physics and numerics

Simplified physics
I Full ideal MHD (rather

than shearing box)
I simplified equation of state
I external gravity
I no neutrino transport

Code
I Eulerian, conservative
I high-order reconstruction

(MP or WENO)
I MUSTA Riemann solver

(Titarev & Toro, 2005)
I constraint transport

Models
I gas in hydrostatic equilibrium; uniform field or vanishing net flux
I axisymmetric and 3d simulations
I small (few kilometres) boxes resembling the equatorial region
I resolution between 0.625 and 40 metres
I shearing-disc boundary conditions (Klahr & Bodenheimer, 2003)
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Questions to be addressed

General problems
I dependence of the saturation

on numerics: box size,
resolution, boundaries

I dependence of the saturation
on initial field strength and
geometry

MRI in supernovae
I verify the regimes
I growth rates for typical SN

conditions
I saturation level in SN cores

Many questions, but no final answers yet...
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Dynamics

temporal evolution of the
magnetic energy
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I confirm all (relevant) regimes
of the linear analysis

I (de-)stabilisation by interplay
of Ω and S gradients

I growth rates in agreement
with linear analysis, i.e., a few
milliseconds for rapidly
rotating cores

I maximum field strength
& 1015 G
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Dynamics
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  t = 12.123 ms

I early phase: exponential growth
of channel flows

I termination of growth and
breakup of channels
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Scaling of the termination level

Termination (6= saturation)

the Maxwell stress reached at
the end of the growth of the MRI
depends on (among other
factors)

I the grid resolution:
finer grid⇒ higher M$φ

I the initial field:
stronger b0 ⇒ higher M$φ

I the rotational profile:
slower⇒ higher M$φ 10 100
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Scaling of the termination level

I MRI growth terminates when
channel flows are disrupted by
resistive instabilities.

I Channels are generically
unstable against secondary
instabilities, here tearing
modes (Goodman & Xu,
1994).

I MRI terminates approximately
when the resistive instabilities
grow faster than the MRI.
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Scaling of the termination level

auxiliary simulations

simplified 2d models of channel
flows to study resistive instabilities:

I wider channels⇒ tearing
modes grow slower

I stronger fields⇒ tearing
modes grow faster

I finer grids⇒ tearing modes
slow slower

properties of channel flows

channel width determined from the
MRI dispersion relation (fastest
growing mode)

I weaker initial fields⇒ thinner
I slower rotation⇒ wider

field strength increases at MRI
growth rate

growth rates of tearing modes & channel evolution

⇒ towards an explanation of the scaling of MRI termination
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Saturation: turbulence and coherent flows

I Saturation: turbulent state
I efficient transport of angular

momentum
I coherent flow and field

patterns can be identified
I stable over several rotational

periods
I example: average value of the

toroidal field on slices
z = const. as a function of
time (cf. Lesur & Ogilvie, 2008)
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Summary

I Explosion mechanism of core-collapse supernovae involves a
combination of neutrino transport, hydrodynamic instabilities, and
possibly magnetic fields.

I Post-collapse cores are MRI-unstable.
I Starting to explore the MRI in core-collapse supernovae by

I analysis of the dispersion relation
I simplified simulations of model systems

I Results suggest possible importance of the MRI.
⇒ More accurate modelling required.
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