Simulations of the magneto-rotational instability in core-collapse supernovae

Martin Obergaulinger, Pablo Cerdá-Durán, Ewald Müller, Miguel Angel Aloy

Max-Planck-Institut für Astrophysik, Universitat de Valéncia

ASTRONUM 2009, Chamonix, June 29th – July 3rd, 2009

Progenitor and collapse

- ► Progenitor: a massive star (≥ 8M_☉) after exhaustion of nuclear full (onion-shell structure)
- ▶ gravitational collapse of the core to a proto neutron star: ρ_{max} increases from $\sim 10^9$ g/cm³ to > $\rho_{nuc} \sim 2 \times 10^{14}$ g/cm³ within \sim a free-fall time
- $e_{\rm core} \sim 10^{53}$ erg relased, mostly in neutrinos
- collapse stops when nuclear density is reached
 ⇒ formation of a shock wave
- the shock propagates outwards, but stalls due to energy loss in dissociation reactions
- ¿ How is the stalled shock wave revived?

Ingredients

multi-scale problem

- star: blue or red giant
- pre-collapse core: few 1000 km
- PNS: few 10 km
- stalled shock: few 100 km
- large (magnetic) Reynolds number
- many dynamical time scales

multi-physics problem

- multi-dimensional (GR)(M)HD
- ► turbulence
- nuclear equation of state
- neutrino transport (from optically thick to transparent), neutrino-matter interactions

・ロット (雪) (日) (日)

nuclear burning

Ingredients

multi-scale problem

- star: blue or red giant
- pre-collapse core: few 1000 km
- PNS: few 10 km
- stalled shock: few 100 km
- large (magnetic) Reynolds number
- many dynamical time scales

multi-physics problem

- multi-dimensional (GR)(M)HD
- turbulence
- nuclear equation of state
- neutrino transport (from optically thick to transparent), neutrino-matter interactions

ヘロン ヘ週ン ヘヨン ヘヨン

nuclear burning

Magnetic fields and the MRI in supernovae

MRI simulations

・ロット (雪) ・ (日) ・ (日)

Summary

Exlosion mechanisms

How is the failed explosion revived?

Not a matter of energy ($e_{\rm core} \gg e_{\rm env}$), but of energy transfer.

- Spherical neutrino-driven explosion
- Standard model: neutrino heating aided by hydrodynamic instabilities
- Energy transfer by waves
- rotational mechanisms

MRI simulations

Exlosion mechanisms

How is the failed explosion revived?

Not a matter of energy ($e_{\rm core} \gg e_{\rm env}$), but of energy transfer.

Spherical neutrino-driven explosion

- Standard model: neutrino heating aided by hydrodynamic instabilities
- Energy transfer by waves
- rotational mechanisms

Neutrino mechanism

- Neutrinos diffuse out of the PNS
- they heat the matter behind the shock.
- ⇒ explosions for cores in a limited mass range (Kitaura et al., 2006)

・ ロ ト ・ 雪 ト ・ 雪 ト ・ 日 ト

 compatible with standard pre-collapse evolution

MRI simulations

-

Exlosion mechanisms

How is the failed explosion revived?

Not a matter of energy ($e_{\rm core} \gg e_{\rm env}$), but of energy transfer.

- Spherical neutrino-driven explosion
- Standard model: neutrino heating aided by hydrodynamic instabilities
- Energy transfer by waves
- rotational mechanisms

Hydro instabilities

- Neutrino heating
- convection and standing accretion shock instability (Blondin et al., 2003, 2006; Foglizzo et al., 2007)

・ロット (雪) ・ (日) ・ (日)

- \Rightarrow successful for $M \approx 11...15 M_{\odot}$
 - compatible with standard pre-collapse evolution

MRI simulations

Exlosion mechanisms

How is the failed explosion revived?

Not a matter of energy ($e_{\rm core} \gg e_{\rm env}$), but of energy transfer.

- Spherical neutrino-driven explosion
- Standard model: neutrino heating aided by hydrodynamic instabilities
- Energy transfer by waves
- rotational mechanisms

Waves

- accoustic (Burrows et al., 2006, 2007) or Alfvén waves (Suzuki et al., 2008) generated at the PNS
- waves dissipate near the shock

・ロット (雪) (日) (日)

- successful?
- compatible with standard pre-collapse evolution?

Max-Planck-Invited Ret Astrophysik

MRI simulations

Exlosion mechanisms

How is the failed explosion revived?

Not a matter of energy ($e_{\rm core} \gg e_{\rm env}$), but of energy transfer.

- Spherical neutrino-driven explosion
- Standard model: neutrino heating aided by hydrodynamic instabilities
- Energy transfer by waves
- rotational mechanisms

Rotation

- tap into e_{rot} by magnetic fields (Thompson et al., 2004)
- successful?
- realistic?
 - rapid rotation: only certain stars

・ ロ ト ・ 雪 ト ・ 雪 ト ・ 日 ト

- $|\vec{b}|$ sufficiently strong?
- \rightarrow MRI? (Akiyama et al., 2003)

MRI simulations

Summary

Field amplification in supernovae

Why magnetic fields?

- pulsar fields, magnetars
- asymmetric explosions: caused by large-scale fields?
- additional energy reservoir: rotation

But...

- strong (equipartition) fields needed
- typical pre-collapse fields are too weak
- special class of progenitors

・ロット (雪) (日) (日)

strong amplification

field amplification mechanisms

- compression: gravitational infall \Rightarrow magnetic energy
- ▶ winding: differential rotation ⇒ magnetic energy
- ► hydromagnetic instabilities: differential rotation, entropy/composion gradients ⇒ magnetic energy

MRI simulations

Summary

Field amplification in supernovae

Why magnetic fields?

- pulsar fields, magnetars
- asymmetric explosions: caused by large-scale fields?
- additional energy reservoir: rotation

But...

- strong (equipartition) fields needed
- typical pre-collapse fields are too weak
- \Rightarrow > special class of progenitors

・ コ ト ・ 雪 ト ・ 目 ト ・

strong amplification

field amplification mechanisms

- compression: gravitational infall \Rightarrow magnetic energy
- ▶ winding: differential rotation ⇒ magnetic energy
- ► hydromagnetic instabilities: differential rotation, entropy/composion gradients ⇒ magnetic energy

MRI simulations

Summary

Field amplification in supernovae

Why magnetic fields?

- pulsar fields, magnetars
- asymmetric explosions: caused by large-scale fields?
- additional energy reservoir: rotation

But...

- strong (equipartition) fields needed
- typical pre-collapse fields are too weak
- ⇒ ► special class of progenitors

・ロット (雪) (日) (日)

strong amplification

field amplification mechanisms

- compression: gravitational infall \Rightarrow magnetic energy
- ▶ winding: differential rotation ⇒ magnetic energy
- ► hydromagnetic instabilities: differential rotation, entropy/composion gradients ⇒ magnetic energy

General properties of the MRI

- Iocal linear MHD instability of differentially rotating fluids
- weak initial magnetic field required
- run-away of angular-momentum transport along field lines
- instability criterion: negative Ω gradient
- growth time \sim rotational period
- leads to MHD turbulence and efficient transport

MRI simulations

Summary

Peculiarties of the MRI in SNe

Accretion discs

- Keplerian shear
- \Rightarrow Rayleigh-stable, MRI-unstable
 - rapid growth
 - MHD turbulence may provide viscosity required for accretion
 - well-studied system, yet still many open questions

Supernovae

- differential rotation, thermal stratification
- ⇒ possibly: hydrodynamically unstable + MRI unstable
 - growth: fast enough?
 - saturation: strong enough?
 - starting to receive interest

・ ロ ト ・ 雪 ト ・ 雪 ト ・ 日 ト

study the MRI in supernovae

- theoretical analysis of the instability criteria
- simulations of MRI-unstable systems

MRI simulations

Summary

Peculiarties of the MRI in SNe

Accretion discs

- Keplerian shear
- \Rightarrow Rayleigh-stable, MRI-unstable
 - rapid growth
 - MHD turbulence may provide viscosity required for accretion
 - well-studied system, yet still many open questions

Supernovae

- differential rotation, thermal stratification
- ⇒ possibly: hydrodynamically unstable + MRI unstable
 - growth: fast enough?
 - saturation: strong enough?
 - starting to receive interest

・ロット (雪) (日) (日)

study the MRI in supernovae

- theoretical analysis of the instability criteria
- simulations of MRI-unstable systems

magneto-bouyant

convection stabilised by rotation, but destabilised

by the magnetic field

MRI simulations

Summary

Regimes of the axisymmetric MRI

convective

similar to hydrodynamic convection (Schwarzschild or Ledoux)

mixed interplay of many effects

shear regime Rayleigh unstable

stable stabilised by positive entropy or Ω gradients

magneto-shear classical MRI, e.g., accretion discs

・ ロ ト ・ 雪 ト ・ 目 ト

Physics and numerics

Simplified physics

- Full ideal MHD (rather than shearing box)
- simplified equation of state
- external gravity
- no neutrino transport

Code

- Eulerian, conservative
- high-order reconstruction (MP or WENO)
- MUSTA Riemann solver (Titarev & Toro, 2005)

・ ロ ト ・ 雪 ト ・ 雪 ト ・ 日 ト

constraint transport

Models

- ► gas in hydrostatic equilibrium; uniform field or vanishing net flux
- axisymmetric and 3d simulations
- small (few kilometres) boxes resembling the equatorial region
- resolution between 0.625 and 40 metres
- shearing-disc boundary conditions (Klahr & Bodenheimer, 200

э

Physics and numerics

Simplified physics

- Full ideal MHD (rather than shearing box)
- simplified equation of state
- external gravity
- no neutrino transport

Code

- Eulerian, conservative
- high-order reconstruction (MP or WENO)
- MUSTA Riemann solver (Titarev & Toro, 2005)
- constraint transport

Models

- gas in hydrostatic equilibrium; uniform field or vanishing net flux
- axisymmetric and 3d simulations
- small (few kilometres) boxes resembling the equatorial region
- resolution between 0.625 and 40 metres
- shearing-disc boundary conditions (Klahr & Bodenheimer, 2003)

Magnetic fields and the MRI in supernovae

MRI simulations

Summary

Questions to be addressed

General problems

- dependence of the saturation on numerics: box size, resolution, boundaries
- dependence of the saturation on initial field strength and geometry

MRI in supernovae

- verify the regimes
- growth rates for typical SN conditions
- saturation level in SN cores

・ロット (雪) ・ (日) ・ (日)

Many questions, but no final answers yet ...

MRI simulations

Summary

Dynamics

- confirm all (relevant) regimes of the linear analysis
- (de-)stabilisation by interplay of Ω and S gradients
- growth rates in agreement with linear analysis, i.e., a few milliseconds for rapidly rotating cores

(日)

 $\blacktriangleright\,$ maximum field strength $\gtrsim 10^{15}~G$

Magnetic fields and the MRI in supernovae

MRI simulations

Summary

Dynamics

- early phase: exponential growth of channel flows
- termination of growth and breakup of channels

L64×10⁻¹

15.6 15.8

Magnetic fields and the MRI in supernovae

MRI simulations

Summary

Scaling of the termination level

Termination (\neq saturation)

the Maxwell stress reached at the end of the growth of the MRI depends on (among other factors)

- the grid resolution: finer grid \Rightarrow higher $M_{\varpi\phi}$
- ► the initial field: stronger b₀ ⇒ higher M_{∞φ}
- the rotational profile: slower \Rightarrow higher $M_{\varpi\phi}$

Magnetic fields and the MRI in supernovae

MRI simulations

Summary

Scaling of the termination level

- MRI growth terminates when channel flows are disrupted by resistive instabilities.
- Channels are generically unstable against secondary instabilities, here tearing modes (Goodman & Xu, 1994).
- MRI terminates approximately when the resistive instabilities grow faster than the MRI.

Magnetic fields and the MRI in supernovae

MRI simulations

Summary

Scaling of the termination level

- MRI growth terminates when channel flows are disrupted by resistive instabilities.
- Channels are generically unstable against secondary instabilities, here tearing modes (Goodman & Xu, 1994).
- MRI terminates approximately when the resistive instabilities grow faster than the MRI.

Magnetic fields and the MRI in supernovae

MRI simulations

Summary

Scaling of the termination level

- MRI growth terminates when channel flows are disrupted by resistive instabilities.
- Channels are generically unstable against secondary instabilities, here tearing modes (Goodman & Xu, 1994).
- MRI terminates approximately when the resistive instabilities grow faster than the MRI.

Magnetic fields and the MRI in supernovae

MRI simulations

Summary

Scaling of the termination level

- MRI growth terminates when channel flows are disrupted by resistive instabilities.
- Channels are generically unstable against secondary instabilities, here tearing modes (Goodman & Xu, 1994).
- MRI terminates approximately when the resistive instabilities grow faster than the MRI.

Magnetic fields and the MRI in supernovae

MRI simulations

Summary

Scaling of the termination level

auxiliary simulations

simplified 2d models of channel flows to study resistive instabilities:

- ► wider channels ⇒ tearing modes grow slower
- ► stronger fields ⇒ tearing modes grow faster
- ► finer grids ⇒ tearing modes slow slower

properties of channel flows

channel width determined from the MRI dispersion relation (fastest growing mode)

 \blacktriangleright weaker initial fields \Rightarrow thinner

・ ロ ト ・ 雪 ト ・ 雪 ト ・ 日 ト

• slower rotation \Rightarrow wider

field strength increases at MRI growth rate

growth rates of tearing modes & channel evolution

Magnetic fields and the MRI in supernovae

MRI simulations

Summary

Scaling of the termination level

auxiliary simulations

simplified 2d models of channel flows to study resistive instabilities:

- ► wider channels ⇒ tearing modes grow slower
- ► stronger fields ⇒ tearing modes grow faster
- ▶ finer grids ⇒ tearing modes slow slower

properties of channel flows

channel width determined from the MRI dispersion relation (fastest growing mode)

• weaker initial fields \Rightarrow thinner

・ロット (雪) (日) (日)

► slower rotation ⇒ wider

field strength increases at MRI growth rate

growth rates of tearing modes & channel evolution

Magnetic fields and the MRI in supernovae

MRI simulations

Summary

Scaling of the termination level

auxiliary simulations

simplified 2d models of channel flows to study resistive instabilities:

- ► wider channels ⇒ tearing modes grow slower
- ► stronger fields ⇒ tearing modes grow faster
- ► finer grids ⇒ tearing modes slow slower

properties of channel flows

channel width determined from the MRI dispersion relation (fastest growing mode)

• weaker initial fields \Rightarrow thinner

・ロット (雪) ・ (日) ・ (日)

► slower rotation ⇒ wider

field strength increases at MRI growth rate

growth rates of tearing modes & channel evolution

Magnetic fields and the MRI in supernovae

MRI simulations

(日)

Summary

Scaling of the termination level

growth rates of tearing modes & channel evolution

MRI simulations

Summary

Saturation: turbulence and coherent flows

- Saturation: turbulent state
- efficient transport of angular momentum
- coherent flow and field patterns can be identified
- stable over several rotational periods
- example: average value of the toroidal field on slices
 z = const. as a function of time (cf. Lesur & Ogilvie, 2008)

MRI simulations

Summary

Saturation: turbulence and coherent flows

- Saturation: turbulent state
- efficient transport of angular momentum
- coherent flow and field patterns can be identified
- stable over several rotational periods
- example: average value of the toroidal field on slices
 z = const. as a function of time (cf. Lesur & Ogilvie, 2008)

・ロット (雪) (日) (日)

MRI simulations

Summary

Saturation: turbulence and coherent flows

- Saturation: turbulent state
- efficient transport of angular momentum
- coherent flow and field patterns can be identified
- stable over several rotational periods
- example: average value of the toroidal field on slices
 z = const. as a function of time (cf. Lesur & Ogilvie, 2008)

・ロット (雪) ・ (日) ・ (日)

Summary

- Explosion mechanism of core-collapse supernovae involves a combination of neutrino transport, hydrodynamic instabilities, and possibly magnetic fields.
- Post-collapse cores are MRI-unstable.
- Starting to explore the MRI in core-collapse supernovae by
 - analysis of the dispersion relation
 - simplified simulations of model systems
- Results suggest possible importance of the MRI.
- \Rightarrow More accurate modelling required.