Relativistic particle transport in tangled magnetic fields

S. O'Sullivan¹, P. Duffy², K. Blundell³ & J. Binney³

¹School of Mathematical Sciences Dublin City University

> ²UCD School of Physics University College Dublin

> > ³Dept of Physics University of Oxford

Astronum 2009, Chamonix, 3 July

Stephen O'Sullivan (DCU)

Transport in turbulent fields

Astronum 2009 1 / 26

Sac

Stephen O'Sullivan (DCU)

Transport in turbulent fields

<ロト < 回ト < 回ト < 回ト

Background

Outline

Sac

Stephen O'Sullivan (DCU)

<ロト < 回ト < 回ト < 回ト

Motivation

3C334 VLA 6cm VLA

- Low and high frequency emission coincident
- Significant transverse extent in X-ray emitting particles
- Diffusion processes required in excess of classical efficiencies

Background

Typical Parameters ($\rho \equiv r_g/l_c$)

γ	$ \frac{ \nu_{\rm c}}{{ m GHz}} $	$r_{ m g}$ pc	ρ
10^{3}	0.028	5.5×10^{-8}	5.5×10^{-11}
10^{5}	280.0	5.5×10^{-6}	5.5×10^{-9}
10^{7}	2.8×10^{6}	5.5×10^{-4}	5.5×10^{-7}

Sample parameters relevant to radio galaxies, for an assumed magnetic field strength of 1 nT and correlation length 1 kpc

-

4 D b 4 🗐 b 4

Quasilinear Theory

 $\mathbf{B} = B_0 \hat{\mathbf{z}} + \mathbf{B}_1$ where $b \equiv \left[\frac{\langle B_1^2 \rangle}{\langle B_0^2 \rangle}\right]^{1/2} \ll 1$ Two components to particle transport:

- Field line wandering => $\frac{\langle \Delta^2 x \rangle}{2\Delta s} = D_M = \frac{b^2 \lambda_{\parallel}^{corr}}{4}$
- Scattering => $\kappa_{\parallel} = \kappa_B/\epsilon$ $\kappa_{\perp} = \epsilon \kappa_B/(1 + \epsilon)$

Transport regimes:

• Ballistic =>
$$D_{\perp} \rightarrow \kappa_{\perp} + v D_M$$

- Collisional (A $\stackrel{<}{_\sim}$ 1) => $D_\perp o \kappa_\perp$ and $D_\parallel o \kappa_\parallel$
- Compound ($\Lambda \gg 1$) => subdiffusive followed by diffusive

See Duffy et al. A&A 1995

ヘロト 人間 トイヨト イヨト

 $\kappa_B \equiv \frac{\gamma v^2 mc}{3eB}$ $\epsilon = \nu_{coll} / \omega_{a}$ $\Lambda \equiv \frac{b^2 \lambda_{\parallel}^{corr}}{\sqrt{2} \epsilon \lambda_{\parallel}^{corr}}$ $D_{\perp} \equiv \frac{\langle \Delta^2 x \rangle}{2\Delta t}$ $D_{\parallel} \equiv \frac{\langle \Delta^2 z \rangle}{2 \Delta t}$

Model

Outline

Sac

Stephen O'Sullivan (DCU)

<ロト < 回ト < 回ト < 回ト

Particle path integration

- Static **B** => energy conserved.
- Integration of $\gamma m_0 \frac{d\mathbf{v}}{dt} = Ze\left(\frac{\mathbf{v}}{c} \times \mathbf{B}\right)$ is problematic for high γ as the change in energy due to roundoff errors scales as γ^3 .
- In terms of particle's four-velocity and proper-time, the Lorentz covariant equation of motion of a particle of charge *e* and rest mass *m* in a static magnetic field *B*(*r*) is

$$rac{\mathrm{d}\boldsymbol{u}}{\mathrm{d}\tau} = rac{e}{m}\boldsymbol{u} imes \boldsymbol{B} \quad \boldsymbol{u} = rac{\mathrm{d}\boldsymbol{r}}{\mathrm{d}\tau}$$

Particle paths are obtained by integrating a Burlisch-Stoer routine.

B-field power-law models

- Random field with vanishing mean $\boldsymbol{B} = \int d^3 \boldsymbol{k} \, \boldsymbol{A}_{\boldsymbol{k}} \exp(i \boldsymbol{k} \cdot \boldsymbol{r})$
- $\nabla \cdot \boldsymbol{B} = 0$ requires $\boldsymbol{k} \cdot \boldsymbol{A}_{\boldsymbol{k}} = 0$
- A_k statistically independent, field homogeneous and Gaussian $\langle A_k \cdot A_{k'}^* \rangle = P(k) \delta(k - k')$

B-field representation

$$A^{2}(k_{n}) = \sigma^{2}G(k_{n}) \left[\sum_{n=1}^{N_{m}} G(k_{n})\right]^{-1} G(k_{n}) = \frac{\Delta V_{n}}{1 + (k_{n}L_{c})^{11/3}}$$

$$\sigma^{2} = \text{variance, } L_{c} = \text{correlation length}$$

$$\boldsymbol{B}_1(\boldsymbol{r}) = \sum_{n=1}^M A_n \exp(\boldsymbol{k}_n \cdot \boldsymbol{r} + \beta_n) \hat{\boldsymbol{\xi}}_n$$

 $(\hat{\pmb{\xi}}\cdot\hat{\pmb{k}}=0$ ensures solenoidal field)

590

Stephen O'Sullivan (DCU)

<ロト < 回ト < 回ト < 回ト

Model

B-field representation

Field can be represented numerically in one of two ways:

• Discrete mesh of dimension *N* interpolated to particle positions eg. Casse et al. PhysRevD 2002

 $\lambda_{min} = 2\Delta x$ $\lambda_{max} = N\Delta x$ => $\lambda_{max}/\lambda_{min} = 2/N$

Typical feasible dynamic range only two orders of magnitude

(Recall $\rho \sim 10^{-11}$!)

Continuous functional form eg. Giacalone & Jokipii ApJ 1999

No limit on dynamic range, but computationally more demanding and requires that field is sufficiently resolved.

Stephen O'Sullivan (DCU)

Astronum 2009 11 / 26

Sac

・ロト ・ 同ト ・ ヨト ・ ヨト ・ ヨ

Broken power-law modes

Stephen O'Sullivan (DCU)

Stephen O'Sullivan (DCU)

Stephen O'Sullivan (DCU)

Field line bundle for $(2L_c)^3$ (with initial bundle radius $0.009L_c$).

< E

Outline

Sac

Stephen O'Sullivan (DCU)

1

<ロト < 回ト < 回ト < 回ト

Particle Transport

Running diffusion and kurtosis coefficients

Stephen O'Sullivan (DCU)

Astronum 2009 18 / 26

4 6 1 1 4

∃ ► ∢

Particle Transport

Comparison with diffusion coefficients from various sources

Stephen O'Sullivan (DCU)

Astronum 2009 19 / 26

Particle Transport

Stephen O'Sullivan (DCU)

Understanding Subdiffusion

- Böhm diffusion: step $\sim \overline{\bar{r}}_{\rm g}$ in time $\sim 3\overline{\bar{r}}_{\rm g}/c$
- Field line diffusion: step ~ L_c in time ~ L_c/c
- Ratio is $\sim \rho/3$: FLD should dominate at low ρ
- Only true for $\rho \sim$ 1 => retracing
- Hop $\sim \overline{\overline{r}}_{g} \Rightarrow$ more pronounced sub-diffusion at lower ρ

Understanding subdiffusion

- Scatter θ through ~ π/2 for reversals
- Resonant scattering?
- Magnetic bottle?
- 4/6 reversals at maxima in B
- Variation in μ in agreement with variation in *B*

Field-line tracing model

- Mean-free path s_{mf}
- Diffusion coefficient $D = s_{mf}c$
- QLT: $D \simeq A \rho^{1/3} L_c c$ (A = 4.08)
- $s_{\rm mf} \simeq A \rho^{1/3} L_c$
- Assume in time $t_{\rm mf} = s_{\rm mf}/c$ gyrocentre shifts across field lines by distance $\sim \overline{\overline{r}}_{\rm g}$ with equal probability of moving in either direction
- *s*_{mf} > L_c: kurtosis small
- $s_{\rm mf} \ll L_c$: diffusion significantly non-classical

・ 同 ト ・ ヨ ト ・ ヨ ト

Field-line tracing model

Running diffusion and kurtosis

Stephen O'Sullivan (DCU)

Astronum 2009 24 / 26

∃ ► < ∃</p>

Field-line tracing model

Asymptotic diffusion coefficients

Stephen O'Sullivan (DCU)

Summary

- At low-rigidities spatial distribution is not well described by Gaussian statistics during a prolonged initial subdiffusive phase.
- Field line re-tracing appears to be a dominant process in supressing diffusion.
- Simple random walk model appears to support this.
- Our results suggest that $\kappa \propto I_c c$ as $\rho \rightarrow 0$.
- Non-resonanant process becomes dominant (?)

∃ ► < ∃ ►</p>