
Smoothed Particle Hydrodynamics:
Turbulence and MHD
Daniel Price (Monash University)
Christoph Federrath (ITA, University of Heidelberg)

ASTRONUM June 29th - July 3rd 2009, Chamonix, France.



1
9
8
1
M
N
R
A
S
.
1
9
4
.
.
8
0
9
L

Larson (1981)

Turbulence in the Interstellar Medium

• highly supersonic, Mach numbers ~ 5-20

• isothermal to good approximation

• unknown driving mechanism, but “large scale”

• super-Alfvenic - magnetic fields mildly important

• statistics of turbulence may determine 
distribution of stellar masses (IMF)             
(Padoan & Nordlund 2002)

Goldsmith et al. (2008)



A simple approach is 
to study isothermal 

turbulence in periodic 
box, driven artificially 

in fourier space at 
“large scales”

• previous disagreement between SPH and grid codes (Padoan et al., 2007; 
Ballesteros-Peredes et al., 2006)

• but based on very low resolution SPH simulations (~583 particles)



Smoothed Particle Hydrodynamics

2h

Lucy (1977), Gingold & Monaghan (1977), Monaghan (1992), Price (2004), Monaghan (2005)

ρ(r) =
N∑

j=1

mjW (|r− rj |, h)



SPH (PHANTOM) vs. Grid (FLASH)



SPH vs. Grid



Max density



Power spectra

• Kinetic energy goes like k-2 -“Burgulence”



A new universality?

• Kritsuk et al. (2007) suggest rho1/3 v should scale like Kolmogorov (k-5/3)

• Some support for this, however not much inertial range even at 5123



Grid (FLASH)



Tracer particles, with SPH density calculation



SPH (PHANTOM)



PDFs



PDFs with tracer particles - I



PDFs with tracer particles - iterated density

Tracer particles tend to get 
“stuck” at high densities

(follow the mass, but don’t 
feel any differential forces 

below the grid scale)



MHD



Smoothed Particle Magnetohydrodynamics

• numerical instability related to B(div B) term in conservative MHD force 
(particles attract unstoppably) (Phillips & Monaghan 1985)

• formulation of dissipative terms associated with MHD shocks

• incorporating variable smoothing length self-consistently

• maintenance of the div B = 0 constraint

Four main issues:

Morris (1996), Borve et al. (2001), Price & Monaghan (2004a)

Price & Monaghan (2004a)

Price & Monaghan (2004b)

Price & Monaghan (2005), using divergence cleaning schemes



Euler Potentials / “Clebsch variables”

B = ∇α×∇β



Advantage

dα

dt
= 0;

dβ

dt
= 0

Induction equation



Disadvantage

dα

dt
= 0;

dβ

dt
= 0

• mapping from initial->final particle distribution

• field cannot wind more than once around

• difficult to incorporate non-ideal MHD terms



The Vector Potential

dA
dt

= −A× (∇× v)− (A ·∇)v + v ×Bext − ηJ.

dA
dt

= v ×∇×A + (v ·∇)A + v ×Bext − ηJ +∇φ.

∂A
∂t

= v ×B− ηJ +∇φ,

B = ∇×A

Also correct low speed (v << c) and magnetically dominated 
(E < cB) limit for electromagnetism (de Montigny & 

Rousseaux 2007, Am. J. Phys 75, 984)

φ = v · AUse Gauge that gives 
Galilean invariance:



SPMHD with a vector potential

Smoothed Particle Magnetohydrodynamics with the vector potential 3

standard case) in order to derive the equations of motion in amanner that is constrained by the exact numerical formulation of both (4) and the

numerical representation of the induction equation for the vector potential (§2.1). This means that exact conservation of all physical quantities

(linear and angular momentum and energy) is guaranteed in the resultant numerical equations provided that the appropriate symmetries (i.e.,

invariance to translations, rotations and time, respectively) are present in the Lagrangian and the equations used to constrain it. We find that

this very powerful approach leads to a novel formulation of the force term which is already different to previous SPMHD formulations of the

MHD force in one and two dimensions and indeed conserves momentum and energy exactly. We demonstrate that these symmetries are also

respected in three dimensions provided an appropriate gauge choice is made in the dA/dt equation in order that it is Galilean invariant.

Secondly, in §3 we show how dissipative terms should be constructed for vector potential SPMHD in order that total energy is con-
served and that the second law of thermodynamics is obeyed, i.e., a positive definite contribution to the entropy results. These terms, which

are derived independently of the equations of motion, differ from previous formulations of dissipative terms that have been used for the

vector/Euler potentials in SPMHD.

Finally, we examine the new vector potential force formulation and the dissipative terms on the suite of one and two dimensional

test problems (§4). Whilst the hope was that by constructing the SPMHD equations such that the divergence-free constraint was inbuilt,

instabilities would not appear in the equations. However it turns out that the consistent formulation of the vector potential force has similar

– in fact, much worse – problems with the tensile instability than even the standard conservative SPMHD force. Whilst we have managed to

obtain reasonable results on a range of numerical tests with the consistent vector potential equations of motion, we find that a better approach

is to use the vector potential in conjunction with a stable but non-conservative force such as those employed by Price & Monaghan (2005)

and Børve et al. (2001). The main practical improvement in this paper is therefore in the formulation of the dissipative terms.

2 A CONSISTENT FORMULATION OF SPMHD USING THE VECTOR POTENTIAL

2.1 Variational Principle

We start from the Lagrangian for MHD, which in continuum form is given by (e.g. Newcomb 1962; Henyey 1982; Oppeneer 1984; Field

1986)

L =

Z
„

1
2
ρv2 − ρu −

1
2µ0

B2

«

dV, (8)

which is simply the kinetic minus the potential and magnetic energies. The SPH Lagrangian is obtained, following Price & Monaghan

(2004b) and Monaghan & Price (2001) by replacing the integral by a summation and the mass element ρdV by the mass per SPH particle

m, giving

Lsph =
X

b

mb

»

1
2
v

2
b − ub(ρb, sb) −

1
2µ0

B2
b

ρb

–

. (9)

where v ≡ ẋ is the velocity, ρ is the density, u is the thermal energy per unit mass (in general a function of both density ρ and entropy s)

andB is the magnetic field.

The equations of motion can be derived using the Euler-Lagrange equations provided that all variables appearing in the Lagrangian

can be expressed as a function of the particle coordinates and velocities (e.g. Monaghan & Price 2001; Price & Monaghan 2007). Whilst

for hydrodynamics the density can be written directly as a function of the particle coordinates via the SPH density sum (which is an exact

solution of the continuity equation), for MHD the magnetic fieldB (in this case the vector potentialA) can only be written as a function of

the change in particle coordinates (i.e., we do not have an exact solution to the induction equation). In this case (as in Price & Monaghan

2004b) we can derive the equations of motion by perturbing the Lagrangian and specifying that the change in action is zero, i.e.,

δS =

Z

δLdt = 0. (10)

where the variation δL is with respect to a small change in the particle coordinates δx. Importantly conservation properties (e.g. momentum

conservation) in this case will only follow provided that the respective symmetries (e.g. invariance to translation) are preserved in the

numerical representation of the perturbation.

Perturbing the Lagrangian (Equation 9) with respect to a change in the position of particle a, i.e., δxa, we have

δL = mava · δva −
X

b

mb

"

∂ub

∂ρb

˛

˛

˛

˛

s

δρb −
3

2µ0

„

Bb

ρb

«2

δρb +
1
µ0

Bb

ρ2
b

· δ (ρbBb)

#

, (11)

where we have expressed the perturbation for the magnetic field in terms of δ(ρB) for reasons that will become clear. The equations of
motion are obtained by using (11) in (10) and integrating the velocity term by parts with respect to time, i.e.,

Z

mava · δ

„

dxa

dt

«

dt = [mava · δxa]t
0
−

Z

ma
dva

dt
· δxadt, (12)
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where εijk is the Levi-Civita permutation tensor and repeated indices imply a summation. Compare this with a “naive” gauge choice∇φ = 0,

which gives (from equation 7)

dAi

dt
= vj ∂Aj

∂xi
+ εijkvjBk

ext − ηJi. (20)

With regards to the SPH formulation of equation (19) we face similar choices of SPH operators in order to compute both the curl and

gradient terms as discussed in §2.2.1. In this case we are again constrained by the physical requirement that the SPH expression of (19)

should be invariant to the absolute value of v, which is achieved using a similar operator to that used for the curl ofA. Neglecting dissipative

terms (discussed separately in §3), we have

dAa
i

dt
=

Aa
j

Ωaρa

X

b

mb(v
j
a − vj

b)
∂Wab(ha)

∂xi
a

+ εijkvj
aBk

ext,a, (21)

where in the above and throughout this paper, we adopt the convention that a, b, c, d refer to particle labels whilst i, j, k, l, m and n refer to
vector/tensor components. Again, in principle we could also choose the form with 1/ρb inside the summation rather than the above. As in

§2.2.1, we choose the above expression because it does not require prior knowledge of the density to compute and can therefore be computed

efficiently alongside the density summation.

2.2.3 Hybrid approach

At this point a hybrid approach would be to compute the time evolution of the vector potential using equation (21), calculate a magnetic field

B using (15) and then simply use this B in the equations of motion using (any of) the usual SPH expression(s) for the Lorentz force (e.g.

Price & Monaghan 2004b, 2005), for example the Morris (1996) formulation:

dvi
a

dt
= −

X

b

mb

"

Pa + 1

2
B2

a/µ0

Ωaρ2
a

∂Wab(ha)
∂xi

+
Pb + 1

2
B2

b /µ0

Ωbρ2
b

∂Wab(hb)
∂xi

#

+
1
µ0

X

b

mb
(BiBj)b − (BiBj)a

ρaρb

∂Wab

∂xj
, (22)

where

∂Wab

∂xj
=

1
2

»

∂Wab(ha)
∂xj

+
∂Wab(hb)

∂xj

–

. (23)

Alternatively one can use the stable MHD force formulated by Børve et al. (2004), that is, where the source term 1

2
B(∇ · B) is subtracted

from the conservative force, giving

dvi
a

dt
=

X

b

mb

"

M ij
a

Ωaρ2
a

∂Wab(ha)
∂xj

+
M ij

b

Ωbρ2
b

∂Wab(hb)
∂xj

#

+
1
2

Bi
a

µ0

X

b

mb

"

Bj
a

Ωaρ2
a

∂Wab(ha)

∂xj
a

+
Bj

b

Ωbρ2
b

∂Wab(hb)

∂xj
a

#

. (24)

where

M ij = −P δij +
1
µ0

„

BiBj −
1
2
B2δij

«

. (25)

Indeed this is exactly the approach taken using the Euler potentials by e.g. Price & Bate (2007, 2008). The flaw in this methodology

is that, since the equations of motion are not derived with the constraint of the numerical formulation of the induction equation, there is no

guarantee that total energy will be conserved3 (and indeed, using the Morris force, total momentum conservation is not guaranteed either,

though the errors are quite small even for shock-type problems, see Price 2004). In this context total energy conservation means that

dE
dt

=
d
dt

X

b

mb

„

1
2
v2

b + ub +
1
2

B2
b

µ0ρb

«

=
X

b

mb

„

vb ·
dvb

dt
+

dub

dt
−

1
2

B2
b

ρ2
b

dρb

dt
+

Bb

µ0ρb
·
dBb

dt

«

= 0, (26)

where dB/dt is the time derivative of (15) which in turn involves the time derivative ofA and thus our induction equation (21) (we derive the

expression for dB/dt in Appendix A). What is required is that the dv/dt term in the above is consistent with the dB/dt term resulting from

the vector potential evolution. Needless to say, guaranteeing the conservation of energy in a vector potential approach is thus a complicated

business, and one which is best achieved by following a variational approach.

Whilst the “naive” approach works reasonably well for the Euler potentials (where the time evolution is zero according to equation

2), for the more complicated evolution of the vector potential (Equation 21), using the induction equation to derive and thus constrain the

MHD force term is more important. Furthermore, as we show below, this leads to a novel formulation of the Lorentz force in SPH which has

3 An important aside with respect to Eulerian codes is due here. Whilst in principle it is possible to enforce total energy conservation in any SPH scheme by

simply evolving the total energy equation, if the system is not Hamiltonian all this does is push the errors to another quantity (for example the entropy in the case

of hydrodynamics) and in practise would simply lead to negative pressures where ‘total conservation’ is violated. The very power of a Hamiltonian formulation

of SPH is that exact and simultaneous conservation of all physical quantities is achieved (i.e., with zero dissipation) something which is never possible in a

grid-based scheme. The caveat is that dissipation terms are then explicitly added to the SPH scheme in order to capture shocks and other discontinuities, the

crudeness of which in practise often makes the schememore dissipative than its grid-based counterpart. However there is no intrinsic dissipation in SPH.

c© 2009 RAS, MNRAS 000, 1–19

Ba = (∇×A)a + Bext =
1

Ωaρa

X

b

mb(Aa − Ab) ×∇aWab(ha) + Bext,

Choose:

take δL = 0,



Perturbations upon perturbations...

6 Price

not previously been considered and which has a number of interesting properties. In fact it should be possible to derive the corresponding

formulation for the Euler potentials also, however we defer this to a future work. We compare the hybrid approach described above to the

consistent vector potential formulation described below in the numerical tests presented in §4.

2.3 Perturbations

In order to derive the equations of motion from (10)-(11) it remains to express the perturbations δρb and δ(ρbBb) in terms of the change in
particle positions δxa. The change in density is obtained by a perturbation of the density summation, giving (Price & Monaghan 2004b)

δρb =
1
Ωb

X

c

mc(δxb − δxc) ·∇bWbc(hb), (27)

which, when taken with respect to particle a, gives

δρb

δxa
=

1
Ωb

X

c

mc(δba − δca)∇bWbc(hb), (28)

where δba is the Kronecker delta referring to the particle labels.

The derivation of the Lagrangian perturbation for the magnetic field from (15) is a little more complicated and is given in Appendix A.

The result, including all terms relating to gradients in the smoothing length, is given by

δ(ρbBb) =
1
Ωb

X

c

mc(Ab − Ac) × [(δxb − δxc) ·∇]∇bWbc(hb)

+
1
Ωb

X

c

mc (δAb − δAc) ×∇bWbc(hb) + Bextδρb

+

»

Hb +
Bb,int

Ωb
ζb

–

δρb +
Bb,intρb

Ωb

∂hb

∂ρb

X

c

mc [(δxb − δxc) ·∇b]
∂Wbc(hb)

∂hb
, (29)

where we have assumed thatBext is spatially constant (i.e., δBext = 0). The termsH and ζ, defined in Appendix A, are higher order terms

related to the gradient in the smoothing length which are necessary for strict conservation of energy – hence we retain them here – though

they are generally expected to be negligible in practice. Taking the perturbation (29) with respect to δxi
a and using tensor notation gives

δ(ρbB
j
b )

δxi
a

=
εjkl

Ωb

X

c

mc(A
b
k − Ac

k)

»

(δba − δca)
∂

∂xi
b

–

∂Wbc(hb)

∂xl
b

+
εjkl

Ωb

X

c

mc

„

δAb
k

δxi
a
−

δAc
k

δxi
a

«

∂Wbc(hb)

∂xl
b

+ Bj
ext

δρb

δxi
a

+

"

Hj
b +

Bj
b,int

Ωb
ζb

#

δρb

δxi
a

+
Bj

b,intρb

Ωb

∂hb

∂ρb

X

c

mc

»

(δba − δca)
∂

∂xi
b

–

∂Wbc(hb)
∂hb

. (30)

The perturbation to the vector potential δA can be expressed as a function of δx, from (21), by

δAb
k =

Ab
m

Ωbρb

X

d

md(δx
m
b − δxm

d )
∂Wbd(hb)

∂xk
b

+ εkmnδxm
b Bn

ext,b. (31)

At this point it is worth briefly pausing to examine the consequences of (29) for the equations of motion. In particular if we consider

(29) and (31) together, ignoring the last two terms relating to smoothing length gradients, then one may observe that there are essentially

three separate terms that will contribute to the force. We will refer to these as the ‘2D’, ‘external’ and ‘3D’ force terms. The 2D term arises

from the first term in equation (29) and follows only from the SPH formulation of the curl used to construct B from A (i.e., Equation 15).

We refer to this as the 2D term because it is the only term which is present for purely two dimensional simulations where δA = 0 (i.e., there
is no external field). The ‘external’ term is present in the case of external fields and arises from the combination of the δx × Bext term in

(31) and the second term in Equation (29), plus the third term from Equation (29). Finally the 3D term arises from the combination of our

choice both of gauge and SPH formulation of the induction equation (i.e., the first term of equation 31) and the curl operator via the second

term in (29).

Whist the derivation of the 2D force is simply a matter of substituting the first term in (30) into (13) and simplifying, the external and

3D force terms are more complicated since they involve first substituting the terms in (31) into the second term of (30) and in turn into (13).

2.3.1 2.5D/Bext component

For the ‘external’ force term, we can substitute the second term in (31) into the second term of (29) and add the third term from (29) to obtain,

δ(ρbB
j
b ) ext =

εjklεkmn

Ωb

X

c

mc

`

δxm
b Bn

ext,b − δxm
c Bn

ext,c

´ ∂Wbc(hb)

∂xl
b

+ Bj
extδρb. (32)
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not previously been considered and which has a number of interesting properties. In fact it should be possible to derive the corresponding

formulation for the Euler potentials also, however we defer this to a future work. We compare the hybrid approach described above to the

consistent vector potential formulation described below in the numerical tests presented in §4.

2.3 Perturbations

In order to derive the equations of motion from (10)-(11) it remains to express the perturbations δρb and δ(ρbBb) in terms of the change in
particle positions δxa. The change in density is obtained by a perturbation of the density summation, giving (Price & Monaghan 2004b)

δρb =
1
Ωb

X

c

mc(δxb − δxc) ·∇bWbc(hb), (27)

which, when taken with respect to particle a, gives

δρb

δxa
=

1
Ωb

X

c

mc(δba − δca)∇bWbc(hb), (28)

where δba is the Kronecker delta referring to the particle labels.

The derivation of the Lagrangian perturbation for the magnetic field from (15) is a little more complicated and is given in Appendix A.

The result, including all terms relating to gradients in the smoothing length, is given by

δ(ρbBb) =
1
Ωb

X

c

mc(Ab − Ac) × [(δxb − δxc) ·∇]∇bWbc(hb)

+
1
Ωb

X

c

mc (δAb − δAc) ×∇bWbc(hb) + Bextδρb

+

»

Hb +
Bb,int

Ωb
ζb

–

δρb +
Bb,intρb

Ωb

∂hb

∂ρb

X

c

mc [(δxb − δxc) ·∇b]
∂Wbc(hb)

∂hb
, (29)

where we have assumed thatBext is spatially constant (i.e., δBext = 0). The termsH and ζ, defined in Appendix A, are higher order terms

related to the gradient in the smoothing length which are necessary for strict conservation of energy – hence we retain them here – though

they are generally expected to be negligible in practice. Taking the perturbation (29) with respect to δxi
a and using tensor notation gives

δ(ρbB
j
b )

δxi
a

=
εjkl

Ωb

X

c

mc(A
b
k − Ac

k)

»

(δba − δca)
∂

∂xi
b

–

∂Wbc(hb)

∂xl
b

+
εjkl

Ωb

X

c

mc

„

δAb
k

δxi
a
−

δAc
k

δxi
a

«

∂Wbc(hb)

∂xl
b

+ Bj
ext

δρb

δxi
a

+

"

Hj
b +

Bj
b,int

Ωb
ζb

#

δρb

δxi
a

+
Bj

b,intρb

Ωb

∂hb

∂ρb

X

c

mc

»

(δba − δca)
∂

∂xi
b

–

∂Wbc(hb)
∂hb

. (30)

The perturbation to the vector potential δA can be expressed as a function of δx, from (21), by

δAb
k =

Ab
m

Ωbρb

X

d

md(δx
m
b − δxm

d )
∂Wbd(hb)

∂xk
b

+ εkmnδxm
b Bn

ext,b. (31)

At this point it is worth briefly pausing to examine the consequences of (29) for the equations of motion. In particular if we consider

(29) and (31) together, ignoring the last two terms relating to smoothing length gradients, then one may observe that there are essentially

three separate terms that will contribute to the force. We will refer to these as the ‘2D’, ‘external’ and ‘3D’ force terms. The 2D term arises

from the first term in equation (29) and follows only from the SPH formulation of the curl used to construct B from A (i.e., Equation 15).

We refer to this as the 2D term because it is the only term which is present for purely two dimensional simulations where δA = 0 (i.e., there
is no external field). The ‘external’ term is present in the case of external fields and arises from the combination of the δx × Bext term in

(31) and the second term in Equation (29), plus the third term from Equation (29). Finally the 3D term arises from the combination of our

choice both of gauge and SPH formulation of the induction equation (i.e., the first term of equation 31) and the curl operator via the second

term in (29).

Whist the derivation of the 2D force is simply a matter of substituting the first term in (30) into (13) and simplifying, the external and

3D force terms are more complicated since they involve first substituting the terms in (31) into the second term of (30) and in turn into (13).

2.3.1 2.5D/Bext component

For the ‘external’ force term, we can substitute the second term in (31) into the second term of (29) and add the third term from (29) to obtain,

δ(ρbB
j
b ) ext =

εjklεkmn

Ωb

X

c

mc

`

δxm
b Bn

ext,b − δxm
c Bn

ext,c

´ ∂Wbc(hb)

∂xl
b

+ Bj
extδρb. (32)
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Using the standard identity for the Levi-Civita tensor εjklεkmn = δjnδlm − δjmδln we have

δ(ρbB
j
b ) ext =

1
Ωb

X

c

mc

“

δxl
bB

j
ext,b − δxl

cB
j
ext,c

” ∂Wbc(hb)

∂xl
b

−
1
Ωb

X

c

mc

“

δxj
bB

l
ext,b − δxj

cB
l
ext,c

” ∂Wbc(hb)

∂xl
b

+ Bj
extδρb. (33)

The astute reader will note that Galilean invariance in the perturbation (and thus momentum conservation in the equations of motion) only

follows if we make the simplifying assumption that the external magnetic field is spatially constant (and therefore independent of the particle

positions). This is in fact physical since an external field with spatial gradients can impart momentum to the fluid and the equations in that

case would not be expected to show Galilean invariance. In this paper we will deal only with spatially constant external fields, for which the

above simplifies to (in vector form, where we have also substituted for δρb using 27)

δ(ρbBb) ext =
2Bext

Ωb

X

c

mc (δxb − δxc) ·∇bWbc(hb) −
1
Ωb

X

c

mc (δxb − δxc)Bext ·∇bWbc(hb). (34)

Taking the above perturbation with respect to δxi
a, the resultant term in (30) is given by

"

δ(ρbB
j
b )

δxi
a

#

ext

=
2Bj

ext

Ωb

X

c

mc
∂Wbc(hb)

∂xi
b

(δba − δca) −
δj

i Bl
ext

Ωb

X

c

mc
∂Wbc(hb)

∂xl
b

(δba − δca) . (35)

2.3.2 3D component

The 3D force contribution is given by substituting the first term in (31), taken with respect to δxi
a, into the second term of (30), giving

"

δ(ρbB
j
b )

δxi
a

#

3D

=
εjkl

Ωb

X

c

mc
Ab

i

Ωbρb

"

X

d

md
∂Wbd(hb)

∂xk
b

(δba − δda)

#

∂Wbc(hb)

∂xl
b

−
εjkl

Ωb

X

c

mc
Ac

i

Ωcρc

"

X

d

md
∂Wcd(hc)

∂xk
c

(δca − δda)

#

∂Wbc(hb)

∂xl
b

. (36)

The fact that the δx is so deeply nested in the perturbation of B in the 3D case (i.e., via a summation for the curl ofA [equation 29], and

via a second summation for δA [equation 31]), as we will see below, leads to a force term which is somewhat complicated to calculate.

Nevertheless, it is a force term which preserves the basic symmetries that we asked for, namely momentum and energy conservation in the

SPMHD equations. For example, using the naive or ‘standard’ gauge choice (Equation 20) involves one fewer summations since the δx is not

nested inside a derivative in the perturbation toA. However, the perturbation is not Galilean invariant and can be straightforwardly shown to

lead to a force that does not conserve momentum.

2.4 Equations of motion

Putting the perturbations (28) and (30) [the second term of which has been expanded into (35) and (36)] into (13) we have

Z


−ma
dvi

a

dt
−

X

b

mb

Ωb

"

Pb

ρ2
b

−
3

2µ0

„

Bb

ρb

«2

+
ξb

ρ2
b

#

X

c

mc
∂Wbc(hb)

∂xi
b

(δba − δca)

−
εjkl

µ0

X

b

mb

Ωb

Bj
b

ρ2
b

X

c

mc(A
b
k − Ac

k)
∂2Wbc(hb)

∂xi
b∂xl

b

(δba − δca)

−
1
µ0

X

b

mb

Ωb

Bj
bBj

int,b

ρb

∂hb

∂ρb

X

c

mc(δba − δca)
∂2Wbc(hb)

∂xi
b∂hb

−
1
µ0

X

b

mb

Ωb

Bj
b

ρ2
b

h

2δl
iB

j
ext − δj

i B
l
ext

i

X

c

mc
∂Wbc(hb)

∂xl
b

(δba − δca)

−
εjkl

µ0

X

b

mb

Ωb

Bj
b

ρ2
b

X

c

mc
Ab

i

Ωbρb

"

X

d

md
∂Wbd(hb)

∂xk
b

(δba − δda)

#

∂Wbc(hb)

∂xl
b

+
εjkl

µ0

X

b

mb

Ωb

Bj
b

ρ2
b

X

c

mc
Ac

i

Ωcρc

"

X

d

md
∂Wcd(hc)

∂xk
c

(δca − δda)

#

∂Wbc(hb)

∂xl
b

)

δxi
adt = 0, (37)

where we have collected the isotropic terms relating to smoothing length gradients into a single term by defining

ξb ≡
1
µ0

»

Bj
bHj

b + Bj
bBj

int,b

ζb

Ωb

–

, (38)
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whereHj and ζ are defined in Appendix A. Since the perturbation δxi is arbitrary, upon simplification (37) implies that the principle of least

action is satisfied by the equations of motion in the form

dvi
a

dt
= −

X

b

mb

"

Pa − 3

2µ0
B2

a + ξa

ρ2
aΩa

∂Wab(ha)
∂xi

a
+

Pb −
3

2µ0
B2

b + ξb

ρ2
bΩb

∂Wab(hb)
∂xi

a

#

ff

isotropic term

−
εjkl

µ0

X

b

mb(A
a
k − Ab

k)

"

Bj
a

Ωaρ2
a

∂2Wab(ha)

∂xi
a∂xl

a
+

Bj
b

Ωbρ2
b

∂2Wab(hb)

∂xi
a∂xl

a

#

ff

2D term

−
1
µ0

X

b

mb

"

Bj
aBj

int,a

Ωaρa

∂ha

∂ρa

∂2Wab(ha)
∂xi

a∂ha
+

Bj
bBj

int,b

Ωbρb

∂hb

∂ρb

∂2Wab(hb)
∂xi

a∂hb

#

ff

2D∇h term

−
1
µ0

h

2δl
iB

j
ext − δj

i B
l
ext

i

X

b

mb

"

Bj
a

Ωaρ2
a

∂Wab(ha)
∂xl

a
+

Bj
b

Ωbρ2
b

∂Wab(hb)
∂xl

a

#

ff

2.5D/Bext term

−
X

b

mb

»

Aa
i

Ωaρ2
a
Jk

a
∂Wab(ha)

∂xk
a

+
Ab

i

Ωbρ2
b

Jk
b

∂Wab(hb)
∂xk

a

–

,

ff

3D term (39)

where the current Jk is defined according to

Jk
a ≡ −ρa

εkjl

µ0

X

b

mb

"

Bj
a

Ωaρ2
a

∂Wab(ha)
∂xl

a
+

Bj
b

Ωbρ2
b

∂Wab(hb)
∂xl

a

#

, (40)

noting that the swapping of indices in the permutation tensor εjkl → εkjl leads to a change of sign in the corresponding term in equation

(39). Although the curl operator in the above definition (40) is determined entirely by the variational principle, remarkably this is simply the

standard SPH symmetric curl operator in the presence of a variable smoothing length (i.e., Equation 17). The equations of motion can be

expressed in a more compact notation by writing the isotropic, 2.5D/Bext and 3D terms in terms of a stress tensor and the 2D and 2D∇h

terms in terms of differential operators, giving

dvi
a

dt
=
X

b

mb

"

„

Sij
a

ρ2
aΩa

+
(Aab × Ba)j

µ0ρ2
aΩa

∂
∂xi

a
+ ψaδi

j
∂

∂ha

«

∂Wab(ha)

∂xj
a

+

 

Sij
b

ρ2
bΩb

+
(Aab × Bb)

j

µ0ρ2
bΩb

∂
∂xi

a
+ ψbδ

i
j

∂
∂hb

!

∂Wab(hb)

∂xj
a

#

,(41)

whereAab ≡ Aa −Ab and we have defined

Sij ≡ −P δij +
1
µ0

»

BiBj
ext + δij

„

3
2
B2 − 2B · Bext − ξ

«–

− AiJj , (42)

ψa ≡ −
1
µ0

B · Bint

Ωaρa

∂ha

∂ρa
. (43)

Note that because the 2D terms cannot be represented by a stress tensor, Sij does not represent the usual MHD stress tensor, since the Lorentz

force in this case is composed of the divergence of the stress tensor plus the 2D terms.

For the case of a constant smoothing length, the equations of motion simplify to (in vector notation)

dva

dt
= −

X

b

mb

 

Pa − 3

2µ0
B2

a

ρ2
a

+
Pb − 3

2µ0
B2

b

ρ2
b

!

∇aWab

−
1
µ0

X

b

mb

„

Ba

ρ2
a

+
Bb

ρ2
b

«

· [(Aa − Ab) ×∇]

ff

∇aWab

−
2
µ0

X

b

mb

„

Ba

ρ2
a

+
Bb

ρ2
b

«

· Bext∇aWab +
1
µ0

X

b

mb

„

Ba

ρ2
a

+
Bb

ρ2
b

«

Bext ·∇aWab

−
X

b

mb

»

Aa

ρ2
a

Ja ·∇aWab +
Ab

ρ2
b

Jb ·∇aWab

–

, (44)

where

Ja ≡
(∇× B)a

µ0

≡ −
ρa

µ0

X

b

mb

»

Ba

ρ2
a

+
Bb

ρ2
b

–

×∇aWab. (45)

At this point it is worth stepping back to consider the SPH formulations encapsulated by the force terms in (39) or equivalently, (41)

or (44). The most fundamental question is whether or not the magnetic force terms in the equations of motion derived above indeed are a

representation of the Lorentz force when translated to the continuum limit. Since the proof is somewhat involved, the details and a translation

of each of the terms into continuum form are given in Appendix C. Given that the equations of motion are indeed correct in the continuum

limit, the following comments can be made about their numerical representation:

(i) The isotropic term in (39) is similar in form to the hydrodynamic SPH force and the usual isotropic MHD force in SPH. However,
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whereHj and ζ are defined in Appendix A. Since the perturbation δxi is arbitrary, upon simplification (37) implies that the principle of least

action is satisfied by the equations of motion in the form

dvi
a

dt
= −

X

b

mb

"

Pa − 3

2µ0
B2

a + ξa

ρ2
aΩa

∂Wab(ha)
∂xi

a
+

Pb −
3

2µ0
B2

b + ξb

ρ2
bΩb

∂Wab(hb)
∂xi

a

#

ff

isotropic term

−
εjkl

µ0

X

b

mb(A
a
k − Ab

k)

"

Bj
a

Ωaρ2
a

∂2Wab(ha)

∂xi
a∂xl

a
+

Bj
b

Ωbρ2
b

∂2Wab(hb)

∂xi
a∂xl

a

#

ff

2D term

−
1
µ0

X

b

mb

"

Bj
aBj

int,a

Ωaρa

∂ha

∂ρa

∂2Wab(ha)
∂xi

a∂ha
+

Bj
bBj

int,b

Ωbρb

∂hb

∂ρb

∂2Wab(hb)
∂xi

a∂hb

#

ff

2D∇h term

−
1
µ0

h

2δl
iB

j
ext − δj

i B
l
ext

i

X

b

mb

"

Bj
a

Ωaρ2
a

∂Wab(ha)
∂xl

a
+

Bj
b

Ωbρ2
b

∂Wab(hb)
∂xl

a

#

ff

2.5D/Bext term

−
X

b

mb

»

Aa
i

Ωaρ2
a
Jk

a
∂Wab(ha)

∂xk
a

+
Ab

i

Ωbρ2
b

Jk
b

∂Wab(hb)
∂xk

a

–

,

ff

3D term (39)

where the current Jk is defined according to

Jk
a ≡ −ρa

εkjl

µ0

X

b

mb

"

Bj
a

Ωaρ2
a

∂Wab(ha)
∂xl

a
+

Bj
b

Ωbρ2
b

∂Wab(hb)
∂xl

a

#

, (40)

noting that the swapping of indices in the permutation tensor εjkl → εkjl leads to a change of sign in the corresponding term in equation

(39). Although the curl operator in the above definition (40) is determined entirely by the variational principle, remarkably this is simply the

standard SPH symmetric curl operator in the presence of a variable smoothing length (i.e., Equation 17). The equations of motion can be

expressed in a more compact notation by writing the isotropic, 2.5D/Bext and 3D terms in terms of a stress tensor and the 2D and 2D∇h

terms in terms of differential operators, giving

dvi
a

dt
=
X

b

mb

"

„

Sij
a

ρ2
aΩa

+
(Aab × Ba)j

µ0ρ2
aΩa

∂
∂xi

a
+ ψaδi

j
∂

∂ha

«

∂Wab(ha)

∂xj
a

+

 

Sij
b

ρ2
bΩb

+
(Aab × Bb)

j

µ0ρ2
bΩb

∂
∂xi

a
+ ψbδ

i
j

∂
∂hb

!

∂Wab(hb)

∂xj
a

#

,(41)

whereAab ≡ Aa −Ab and we have defined

Sij ≡ −P δij +
1
µ0

»

BiBj
ext + δij

„

3
2
B2 − 2B · Bext − ξ

«–

− AiJj , (42)

ψa ≡ −
1
µ0

B · Bint

Ωaρa

∂ha

∂ρa
. (43)

Note that because the 2D terms cannot be represented by a stress tensor, Sij does not represent the usual MHD stress tensor, since the Lorentz

force in this case is composed of the divergence of the stress tensor plus the 2D terms.

For the case of a constant smoothing length, the equations of motion simplify to (in vector notation)

dva

dt
= −

X

b

mb

 

Pa − 3

2µ0
B2

a

ρ2
a

+
Pb − 3

2µ0
B2

b

ρ2
b

!

∇aWab

−
1
µ0

X

b

mb

„

Ba

ρ2
a

+
Bb

ρ2
b

«

· [(Aa − Ab) ×∇]

ff

∇aWab

−
2
µ0

X

b

mb

„

Ba

ρ2
a

+
Bb

ρ2
b

«

· Bext∇aWab +
1
µ0

X

b

mb

„

Ba

ρ2
a

+
Bb

ρ2
b

«

Bext ·∇aWab

−
X

b

mb

»

Aa

ρ2
a

Ja ·∇aWab +
Ab

ρ2
b

Jb ·∇aWab

–

, (44)

where

Ja ≡
(∇× B)a

µ0

≡ −
ρa

µ0

X

b

mb

»

Ba

ρ2
a

+
Bb

ρ2
b

–

×∇aWab. (45)

At this point it is worth stepping back to consider the SPH formulations encapsulated by the force terms in (39) or equivalently, (41)

or (44). The most fundamental question is whether or not the magnetic force terms in the equations of motion derived above indeed are a

representation of the Lorentz force when translated to the continuum limit. Since the proof is somewhat involved, the details and a translation

of each of the terms into continuum form are given in Appendix C. Given that the equations of motion are indeed correct in the continuum

limit, the following comments can be made about their numerical representation:

(i) The isotropic term in (39) is similar in form to the hydrodynamic SPH force and the usual isotropic MHD force in SPH. However,
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whereHj and ζ are defined in Appendix A. Since the perturbation δxi is arbitrary, upon simplification (37) implies that the principle of least

action is satisfied by the equations of motion in the form

dvi
a

dt
= −

X

b

mb

"

Pa − 3

2µ0
B2

a + ξa

ρ2
aΩa

∂Wab(ha)
∂xi

a
+

Pb −
3

2µ0
B2

b + ξb

ρ2
bΩb

∂Wab(hb)
∂xi

a

#

ff

isotropic term

−
εjkl

µ0

X

b

mb(A
a
k − Ab

k)

"

Bj
a

Ωaρ2
a

∂2Wab(ha)

∂xi
a∂xl

a
+

Bj
b

Ωbρ2
b

∂2Wab(hb)

∂xi
a∂xl

a

#

ff

2D term

−
1
µ0

X

b

mb

"

Bj
aBj

int,a

Ωaρa

∂ha

∂ρa

∂2Wab(ha)
∂xi

a∂ha
+

Bj
bBj

int,b

Ωbρb

∂hb

∂ρb

∂2Wab(hb)
∂xi

a∂hb

#

ff

2D∇h term

−
1
µ0

h

2δl
iB

j
ext − δj

i B
l
ext

i

X

b

mb

"

Bj
a

Ωaρ2
a

∂Wab(ha)
∂xl

a
+

Bj
b

Ωbρ2
b

∂Wab(hb)
∂xl

a

#

ff

2.5D/Bext term

−
X

b

mb

»

Aa
i

Ωaρ2
a
Jk

a
∂Wab(ha)

∂xk
a

+
Ab

i

Ωbρ2
b

Jk
b

∂Wab(hb)
∂xk

a

–

,

ff

3D term (39)

where the current Jk is defined according to

Jk
a ≡ −ρa

εkjl

µ0

X

b

mb

"

Bj
a

Ωaρ2
a

∂Wab(ha)
∂xl

a
+

Bj
b

Ωbρ2
b

∂Wab(hb)
∂xl

a

#

, (40)

noting that the swapping of indices in the permutation tensor εjkl → εkjl leads to a change of sign in the corresponding term in equation

(39). Although the curl operator in the above definition (40) is determined entirely by the variational principle, remarkably this is simply the

standard SPH symmetric curl operator in the presence of a variable smoothing length (i.e., Equation 17). The equations of motion can be

expressed in a more compact notation by writing the isotropic, 2.5D/Bext and 3D terms in terms of a stress tensor and the 2D and 2D∇h

terms in terms of differential operators, giving

dvi
a

dt
=
X

b

mb

"

„

Sij
a

ρ2
aΩa

+
(Aab × Ba)j

µ0ρ2
aΩa

∂
∂xi

a
+ ψaδi

j
∂

∂ha

«

∂Wab(ha)

∂xj
a

+

 

Sij
b

ρ2
bΩb

+
(Aab × Bb)

j

µ0ρ2
bΩb

∂
∂xi

a
+ ψbδ

i
j

∂
∂hb

!

∂Wab(hb)

∂xj
a

#

,(41)

whereAab ≡ Aa −Ab and we have defined

Sij ≡ −P δij +
1
µ0

»

BiBj
ext + δij

„

3
2
B2 − 2B · Bext − ξ

«–

− AiJj , (42)

ψa ≡ −
1
µ0

B · Bint

Ωaρa

∂ha

∂ρa
. (43)

Note that because the 2D terms cannot be represented by a stress tensor, Sij does not represent the usual MHD stress tensor, since the Lorentz

force in this case is composed of the divergence of the stress tensor plus the 2D terms.

For the case of a constant smoothing length, the equations of motion simplify to (in vector notation)

dva

dt
= −

X

b

mb

 

Pa − 3

2µ0
B2

a

ρ2
a

+
Pb − 3

2µ0
B2

b

ρ2
b

!

∇aWab

−
1
µ0

X

b

mb

„

Ba

ρ2
a

+
Bb

ρ2
b

«

· [(Aa − Ab) ×∇]

ff

∇aWab

−
2
µ0

X

b

mb

„

Ba

ρ2
a

+
Bb

ρ2
b

«

· Bext∇aWab +
1
µ0

X

b

mb

„

Ba

ρ2
a

+
Bb

ρ2
b

«

Bext ·∇aWab

−
X

b

mb

»

Aa

ρ2
a

Ja ·∇aWab +
Ab

ρ2
b

Jb ·∇aWab

–

, (44)

where

Ja ≡
(∇× B)a

µ0

≡ −
ρa

µ0

X

b

mb

»

Ba

ρ2
a

+
Bb

ρ2
b

–

×∇aWab. (45)

At this point it is worth stepping back to consider the SPH formulations encapsulated by the force terms in (39) or equivalently, (41)

or (44). The most fundamental question is whether or not the magnetic force terms in the equations of motion derived above indeed are a

representation of the Lorentz force when translated to the continuum limit. Since the proof is somewhat involved, the details and a translation

of each of the terms into continuum form are given in Appendix C. Given that the equations of motion are indeed correct in the continuum

limit, the following comments can be made about their numerical representation:

(i) The isotropic term in (39) is similar in form to the hydrodynamic SPH force and the usual isotropic MHD force in SPH. However,
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With some hacks...
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Figure 1. Brio-Wu using a hybrid approach: corrected with -B(div B). cubic spline. alphaB = 0.5

Method 3 : Correct the stress with the maximum value.

Sij = Sij − Smax (63)

As with method 1, this method conserves momentum but not energy, though in this case the correction to the stress can become arbitrarily

large.

4.2 Brio-Wu problem

• bad using ηnonlin - relies on bad J.

• much better with quintic (but NOT with symmetric J).

• NOT stabilised by constant stress subtraction.

• it is the formulation of J in dA/dt that matters.

4.3 1.5D shock tubes

Brio-Wu: stabilised by -B(div B)

mshk3: works OK with -B(div B)

mshk7: works OK with -B(div B)

4.4 Circularly polarized Alfvén wave

The circularly polarised Alvén wave is an exact, non-linear solution of the MHD equations. It is particularly useful as a test problem as it

allows one to compute the evolution of a non-linear wave of arbitrary amplitude indefinitely, since the wave does not compress the gas and

therefore does not steepen into a shock. The parameters for the test problem used here are identical to those described by Tóth (2000) for

Eulerian codes and the setup for SPH is identical to that described in Paper III for the standard SPMHD scheme except that here we set up

the magnetic field in terms of the vector potential.

c© 2009 RAS, MNRAS 000, 1–19



We can do OK
Smoothed Particle Magnetohydrodynamics with the vector potential 15

Figure 4. mshk7: corrected with -B(div B). cubic spline. alphaB applied with switch, alphau = 1, alpha with switch. good J.

The time derivative of the kernel gradient can be shown (Appendix B) to be given by

d
dt

(∇aWab) = (vab ·∇)∇Wab(ha) +
∂∇Wab(ha)

∂ha

dha

dt
, (A2)

the latter term arising only in the case of a variable smoothing length. Using this expression in (A1) and assuming h = h(ρ) gives

dBa

dt
=

1
Ωaρa

X

b

mb (Aa − Ab) × [(va − vb) ·∇]∇aWab(ha)

+
1

Ωaρa

X

b

mb

„

dAa

dt
−

dAb

dt

«

×∇aWab(ha) −
Bint

ρa

dρa

dt
−

Bint

Ωa

dΩa

dt
+

Ha

ρa

dρa

dt
, (A3)

where we have defined

Ha ≡
∂ha

∂ρa

1
Ωa

X

b

mb (Aa − Ab) ×
∂∇aWab(ha)

∂ha
. (A4)

Replacing v with δx/δt and time derivatives d/dt with δ/δt we have

δBa =
1

Ωaρa

X

b

mb(Aa −Ab) × [(δxa − δxb) ·∇]∇aWab(ha)

+
1

Ωaρa

X

b

mb (δAa − δAb) ×∇aWab(ha) −
Bint

ρa
δρa −

Bint

Ωa
δΩa +

Ha

ρa
δρa, (A5)

This is an SPH expression for the Lagrangian perturbation of the magnetic field, i.e.,

δB = ∇× [δA − (δx ·∇)A] + δx ·∇(∇× A). (A6)
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Circularly polarised Alfven wave, field loop advection (2D)

1000 crossings

first 25 crossings

ZERO dissipation until you add some



What about all that divergence-free wonder?

• 2D test problem: Orszag-Tang Vortex

[vx, vy] = v0[− sin(2πy), sin(2πx)] [Bx, By] = B0[− sin (2πy), sin (4πx)]

hacka method of beauty



2D Orszag-Tang Vortex: Energy conservation



High(er) resolution version



Field lines



Conclusions

• vector potential is not a viable approach for MHD in SPH. Numerical 
instabilities are MUCH WORSE than in the standard approach.

• better to look at generalised versions of the Euler potentials

• We find good agreement between SPH and grid codes on the statistics of 
supersonic turbulence

• SPH does a good job of simulating highly compressible turbulence by 
placing resolution in high density regions.

• tracer particles have the possibility of dramatically improving the density 
resolution in grid-based simulations at little extra cost. A hybrid scheme?

On turbulence:

On SPMHD:


