## Smoothed Particle Hydrodynamics: Turbulence and MHD

Daniel Price (Monash University)<br>Christoph Federrath (ITA, University of Heidelberg)

ASTRONUM June 29th - July 3rd 2009, Chamonix, France.

## Turbulence in the Interstellar Medium

- highly supersonic, Mach numbers ~ 5-20
- isothermal to good approximation
- unknown driving mechanism, but "large scale"
- super-Alfvenic - magnetic fields mildly important

- statistics of turbulence may determine distribution of stellar masses (IMF) (Padoan \& Nordlund 2002)



A simple approach is to study isothermal turbulence in periodic box, driven artificially in fourier space at "large scales"

- previous disagreement between SPH and grid codes (Padoan et al., 2007; Ballesteros-Peredes et al., 2006)
- but based on very low resolution SPH simulations (~583 ${ }^{3}$ particles)


## Smoothed Particle Hydrodynamics

Lucy (1977), Gingold \& Monaghan (1977), Monaghan (1992), Price (2004), Monaghan (2005)


## SPH (PHANTOM) vs. Grid (FLASH)



## SPH vs. Grid



## Max density



## Power spectra

- Kinetic energy goes like $\mathrm{k}^{-2}$-"Burgulence"



## A new universality?

- Kritsuk et al. (2007) suggest rho ${ }^{1 / 3}$ v should scale like Kolmogorov ( $\mathrm{k}^{-5 / 3}$ )


- Some support for this, however not much inertial range even at $512^{3}$


## Grid (FLASH)



## Tracer particles, with SPH density calculation



## SPH (PHANTOM)



## PDFs



PDFs with tracer particles - I


## PDFs with tracer particles - iterated density



MHD

## Smoothed Particle Magnetohydrodynamics

## Four main issues:

- numerical instability related to $\mathrm{B}($ div B$)$ term in conservative MHD force (particles attract unstoppably) (Phillips \& Monaghan 1985)

Morris (1996), Borve et al. (2001), Price \& Monaghan (2004a)

- formulation of dissipative terms associated with MHD shocks

Price \& Monaghan (2004a)

- incorporating variable smoothing length self-consistently

Price \& Monaghan (2004b)

- maintenance of the div $\mathrm{B}=0$ constraint

Price \& Monaghan (2005), using divergence cleaning schemes

## Euler Potentials / "Clebsch variables"

## $\mathbf{B}=\nabla \alpha \times \nabla \beta$



Advantage


Induction equation

Disadvantage

$$
\frac{d \alpha}{d t}=0 ; \frac{d \beta}{d t}=0
$$

- mapping from initial->final particle distribution
- field cannot wind more than once around
- difficult to incorporate non-ideal MHD terms


## The Vector Potential $\quad \mathbf{B}=\nabla \times \mathbf{A}$

$$
\begin{gathered}
\quad \frac{\partial \mathbf{A}}{\partial t}=\mathbf{v} \times \mathbf{B}-\eta \mathbf{J}+\nabla \phi \\
\frac{d \mathbf{A}}{d t}=\mathbf{v} \times \nabla \times \mathbf{A}+(\mathbf{v} \cdot \nabla) \mathbf{A}+\mathbf{v} \times \mathbf{B}_{e x t}-\eta \mathbf{J}+\nabla \phi \\
\text { Use Gauge that gives } \quad \phi=\mathbf{v} \cdot \mathbf{A} \\
\text { Galilean invariance: }
\end{gathered}
$$

$\frac{d \mathbf{A}}{d t}=-\mathbf{A} \times(\nabla \times \mathbf{v})-(\mathbf{A} \cdot \nabla) \mathbf{v}+\mathbf{v} \times \mathbf{B}_{e x t}-\eta \mathbf{J}$.
Also correct low speed ( $\mathrm{v} \ll \mathrm{c}$ ) and magnetically dominated ( $\mathrm{E}<\mathrm{cB}$ ) limit for electromagnetism (de Montigny \& Rousseaux 2007, Am. J. Phys 75, 984)

## SPMHD with a vector potential

$$
L_{s p h}=\sum_{b} m_{b}\left[\frac{1}{2} \mathbf{v}_{b}^{2}-u_{b}\left(\rho_{b}, s_{b}\right)-\frac{1}{2 \mu_{0}} \frac{B_{b}^{2}}{\rho_{b}}\right]
$$

take $\delta L=0$,
Choose:

$$
\begin{gathered}
\mathbf{B}_{a}=(\nabla \times \mathbf{A})_{a}+\mathbf{B}_{e x t}=\frac{1}{\Omega_{a} \rho_{a}} \sum_{b} m_{b}\left(\mathbf{A}_{a}-\mathbf{A}_{b}\right) \times \nabla_{a} W_{a b}\left(h_{a}\right)+\mathbf{B}_{e x t}, \\
\frac{d A_{i}^{a}}{d t}=\frac{A_{j}^{a}}{\Omega_{a} \rho_{a}} \sum_{b} m_{b}\left(v_{a}^{j}-v_{b}^{j}\right) \frac{\partial W_{a b}\left(h_{a}\right)}{\partial x_{a}^{i}}+\epsilon_{i j k} v_{a}^{j} B_{e x t, a}^{k},
\end{gathered}
$$

## Perturbations upon perturbations...

$$
\begin{aligned}
\delta\left(\rho_{b} \mathbf{B}_{b}\right) & =\frac{1}{\Omega_{b}} \sum_{c} m_{c}\left(\mathbf{A}_{b}-\mathbf{A}_{c}\right) \times\left[\left(\delta \mathbf{x}_{b}-\delta \mathbf{x}_{c}\right) \cdot \nabla\right] \nabla_{b} W_{b c}\left(h_{b}\right) \\
& +\frac{1}{\Omega_{b}} \sum_{c} m_{c}\left(\delta \mathbf{A}_{b}-\delta \mathbf{A}_{c}\right) \times \nabla_{b} W_{b c}\left(h_{b}\right)+\mathbf{B}_{e x t} \delta \rho_{b} \\
& +\left[\mathbf{H}_{b}+\frac{\mathbf{B}_{b, \text { int }}}{\Omega_{b}} \zeta_{b}\right] \delta \rho_{b}+\frac{\mathbf{B}_{b, \text { int }} \rho_{b}}{\Omega_{b}} \frac{\partial h_{b}}{\partial \rho_{b}} \sum_{c} m_{c}\left[\left(\delta \mathbf{x}_{b}-\delta \mathbf{x}_{c}\right) \cdot \nabla_{b}\right] \frac{\partial W_{b c}\left(h_{b}\right)}{\partial h_{b}}, \\
\delta A_{k}^{b} & =\frac{A_{m}^{b}}{\Omega_{b} \rho_{b}} \sum_{d} m_{d}\left(\delta x_{b}^{m}-\delta x_{d}^{m}\right) \frac{\partial W_{b d}\left(h_{b}\right)}{\partial x_{b}^{k}}+\epsilon_{k m n} \delta x_{b}^{m} B_{e x t, b}^{n} .
\end{aligned}
$$

## several months of your life later...

$$
\begin{aligned}
\int\left\{-m_{a} \frac{d v_{a}^{i}}{d t}\right. & -\sum_{b} \frac{m_{b}}{\Omega_{b}}\left[\frac{P_{b}}{\rho_{b}^{2}}-\frac{3}{2 \mu_{0}}\left(\frac{B_{b}}{\rho_{b}}\right)^{2}+\frac{\xi_{b}}{\rho_{b}^{2}}\right] \sum_{c} m_{c} \frac{\partial W_{b c}\left(h_{b}\right)}{\partial x_{b}^{i}}\left(\delta_{b a}-\delta_{c a}\right) \\
& -\frac{\epsilon_{j k l}}{\mu_{0}} \sum_{b} \frac{m_{b}}{\Omega_{b}} \frac{B_{b}^{j}}{\rho_{b}^{2}} \sum_{c} m_{c}\left(A_{k}^{b}-A_{k}^{c} \frac{\partial^{2} W_{b c}\left(h_{b}\right)}{\partial x_{b}^{\partial x_{b}^{l}}\left(\delta_{b a}-\delta_{c a}\right)}\right. \\
& -\frac{1}{\mu_{0}} \sum_{b} \frac{m_{b}}{\Omega_{b}} \frac{B_{b}^{j} B_{i n t, b}^{j}}{\rho_{b}} \frac{\partial h_{b}}{\partial \rho_{b}} \sum_{c} m_{c}\left(\delta_{b a}-\delta_{c a}\right) \frac{\partial^{2} W_{b c}\left(h_{b}\right)}{\partial x_{b}^{i} \partial h_{b}} \\
& -\frac{1}{\mu_{0}} \sum_{b} \frac{m_{b}}{\Omega_{b}} \frac{B_{b}^{j}}{\rho_{b}^{2}}\left[2 \delta_{i}^{l} B_{e x t}^{j}-\delta_{i}^{j} B_{e x t}^{l}\right] \sum_{c} m_{c} \frac{\partial W_{b c}\left(h_{b}\right)}{\partial x_{b}^{l}}\left(\delta_{b a}-\delta_{c a}\right) \\
& -\frac{\epsilon_{j k l}}{\mu_{0}} \sum_{b} \frac{m_{b}}{\Omega_{b}} \frac{B_{b}^{j}}{\rho_{b}^{2}} \sum_{c} m_{c} \frac{A_{i}^{b}}{\Omega_{b} \rho_{b}}\left[\sum_{d} m_{d} \frac{\partial W_{b d}\left(h_{b}\right)}{\partial x_{b}^{k}}\left(\delta_{b a}-\delta_{d a}\right)\right] \frac{\partial W_{b c}\left(h_{b}\right)}{\partial x_{b}^{l}} \\
& \left.+\frac{\epsilon_{j k l}}{\mu_{0}} \sum_{b} \frac{m_{b}}{\Omega_{b}} \frac{B_{b}^{j}}{\rho_{b}^{2}} \sum_{c} m_{c} \frac{A_{i}^{c}}{\Omega_{c} \rho_{c}}\left[\sum_{d} m_{d} \frac{\partial W_{c d}\left(h_{c}\right)}{\partial x_{c}^{k}}\left(\delta_{c a}-\delta_{d a}\right)\right] \frac{\partial W_{b c}\left(h_{b}\right)}{\partial x_{b}^{l}}\right\} \delta x_{a}^{i} \mathrm{dt}=0,
\end{aligned}
$$

## Equations of motion

$$
\begin{array}{rlrl}
\frac{d v_{a}^{i}}{d t} & =-\sum_{b} m_{b}\left[\frac{P_{a}-\frac{3}{2 \mu_{0}} B_{a}^{2}+\xi_{a}}{\rho_{a}^{2} \Omega_{a}} \frac{\partial W_{a b}\left(h_{a}\right)}{\partial x_{a}^{i}}+\frac{P_{b}-\frac{3}{2 \mu_{0}} B_{b}^{2}+\xi_{b}}{\rho_{b}^{2} \Omega_{b}} \frac{\partial W_{a b}\left(h_{b}\right)}{\partial x_{a}^{i}}\right] & & \} \text { isotropic term } \\
& -\frac{\epsilon_{j k l}}{\mu_{0}} \sum_{b} m_{b}\left(A_{k}^{a}-A_{k}^{b}\right)\left[\frac{B_{a}^{j}}{\Omega_{a} \rho_{a}^{2}} \frac{\partial^{2} W_{a b}\left(h_{a}\right)}{\partial x_{a}^{i} \partial x_{a}^{l}}+\frac{B_{b}^{j}}{\Omega_{b} \rho_{b}^{2}} \frac{\partial^{2} W_{a b}\left(h_{b}\right)}{\partial x_{a}^{i} \partial x_{a}^{l}}\right] & \} 2 D \text { term } \\
& -\frac{1}{\mu_{0}} \sum_{b} m_{b}\left[\frac{B_{a}^{j} B_{i n t, a}^{j}}{\Omega_{a} \rho_{a}} \frac{\partial h_{a}}{\partial \rho_{a}} \frac{\partial^{2} W_{a b}\left(h_{a}\right)}{\partial x_{a}^{i} \partial h_{a}}+\frac{B_{b}^{j} B_{i n t, b}^{j}}{\Omega_{b} \rho_{b}} \frac{\partial h_{b}}{\partial \rho_{b}} \frac{\partial^{2} W_{a b}\left(h_{b}\right)}{\partial x_{a}^{i} \partial h_{b}}\right] \quad & \} 2 D \nabla h \text { term } \\
& -\frac{1}{\mu_{0}}\left[2 \delta_{i}^{l} B_{e x t}^{j}-\delta_{i}^{j} B_{e x t}^{l}\right] \sum_{b} m_{b}\left[\frac{B_{a}^{j}}{\Omega_{a} \rho_{a}^{2}} \frac{\partial W_{a b}\left(h_{a}\right)}{\partial x_{a}^{l}}+\frac{B_{b}^{j}}{\Omega_{b} \rho_{b}^{2}} \frac{\partial W_{a b}\left(h_{b}\right)}{\partial x_{a}^{l}}\right] & \} 2.5 D / \mathbf{B}_{e x t} \text { term } \\
& -\sum_{b} m_{b}\left[\frac{A_{i}^{a}}{\Omega_{a} \rho_{a}^{2}} J_{a}^{k} \frac{\partial W_{a b}\left(h_{a}\right)}{\partial x_{a}^{k}}+\frac{A_{i}^{b}}{\Omega_{b} \rho_{b}^{2}} J_{b}^{k} \frac{\partial W_{a b}\left(h_{b}\right)}{\partial x_{a}^{k}}\right], & \} \text { 3D term }
\end{array}
$$

## Equations of motion (simplified)

$$
\begin{gathered}
\frac{d v_{a}^{i}}{d t}=\sum_{b} m_{b}\left[\left(\frac{\mathcal{S}_{a}^{i j}}{\rho_{a}^{2} \Omega_{a}}+\frac{\left(A_{a b} \times B_{a}\right)^{j}}{\mu_{0} \rho_{a}^{2} \Omega_{a}} \frac{\partial}{\partial x_{a}^{i}}+\psi_{a} \delta_{j}^{i} \frac{\partial}{\partial h_{a}}\right) \frac{\partial W_{a b}\left(h_{a}\right)}{\partial x_{a}^{j}}+\left(\frac{\mathcal{S}_{b}^{i j}}{\rho_{b}^{2} \Omega_{b}}+\frac{\left(A_{a b} \times B_{b}\right)^{j}}{\mu_{0} \rho_{b}^{2} \Omega_{b}} \frac{\partial}{\partial x_{a}^{i}}+\psi_{b} \delta_{j}^{i} \frac{\partial}{\partial h_{b}}\right) \frac{\partial W_{a b}\left(h_{b}\right)}{\partial x_{a}^{j}}\right] \\
\mathcal{S}^{i j} \equiv-P \delta^{i j}+\frac{1}{\mu_{0}}\left[B^{i} B_{e x t}^{j}+\delta^{i j}\left(\frac{3}{2} B^{2}-2 \mathbf{B} \cdot \mathbf{B}_{e x t}-\xi\right)\right]-A^{i} J^{j},
\end{gathered}
$$

- conserves energy, momentum and entropy exactly and simultaneously


## Does it work?



## With some hacks...








## We can do OK








Circularly polarised Alfven wave, field loop advection (2D)


## What about all that divergence-free wonder?

- 2D test problem: Orszag-Tang Vortex

$$
\left[v_{x}, v_{y}\right]=v_{0}[-\sin (2 \pi y), \sin (2 \pi x)] \quad\left[B_{x}, B_{y}\right]=B_{0}[-\sin (2 \pi y), \sin (4 \pi x)]
$$



## 2D Orszag-Tang Vortex: Energy conservation



High(er) resolution version


## Field lines



## Conclusions

## On turbulence:

- We find good agreement between SPH and grid codes on the statistics of supersonic turbulence
- SPH does a good job of simulating highly compressible turbulence by placing resolution in high density regions.
- tracer particles have the possibility of dramatically improving the density resolution in grid-based simulations at little extra cost. A hybrid scheme?


## On SPMHD:

- vector potential is not a viable approach for MHD in SPH. Numerical instabilities are MUCH WORSE than in the standard approach.
- better to look at generalised versions of the Euler potentials

