Turbulence and Magnetic Field in the Intergalactic Medium of the Universe

Dongsu Ryu (Chungnam National U, Korea)
Hyesung Kang (Pusan National U, Korea)
Jungyeon Cho (Chungnam National U, Korea)

- Intergalactic turbulence in simulations
- Intergalactic magnetic field from simulations
- Implications of the intergalactic magnetic field

Cosmological shocks in the large scale structure of the universe

June 29 to July 3, 2009

Astronum 2009

Chamonix, France

Vorticity should have been generated at cosmological shocks

→ at postshock

$$\varpi_{\rm cs} \sim \frac{(\rho_2 - \rho_1)^2}{\rho_2 \rho_1} \frac{\vec{U} \times \vec{n}}{R}$$

 ho_1 preshock density ho_2 postshock density $ec{U}$ preshock flow speed $ec{n}$ unit normal to shock surf. ho_2 curvature radius of surf.

by the baroclinic term

$$\dot{\boldsymbol{\varpi}}_{bc} = \frac{1}{\rho^2} \vec{\nabla} \rho \times \vec{\nabla} p$$

baroclinity constant ρ constant pdue to entropy variation induced at shocks

June 29 to July 3, 2009

Astronum 2009

Chamonix, France

Vorticity in the large scale structure of the universe

Astronum 2009

June 29 to July 3, 2009

Chamonix, France

If $t/t_{turn-over}$ >~ a few, vorticity cascades to develop turbulence in the intergalactic medium.

Here, $t_{turn-over} \sim 1/\omega$.

- inside clusters and around (T > 10^7 K): $\langle \omega^* t_{age} \rangle \sim 20$
- in filaments (10⁵ K < T < 10⁷ K, or WHIM): $\langle \omega^* t_{age} \rangle \sim 10$
- in sheets (10⁴ K < T < 10⁵ K, or lukewarm): $\langle \omega^* t_{age} \rangle \sim 1$
- in voids (T < 10^4 K): $<\omega^* t_{age}> \sim 0.1$

It is likely that turbulence is well developed in clusters and filaments, but the flow is mostly non-turbulent in sheets and voids.

Development of turbulence and amplification of magnetic fields (Giacalone & Jokipii 2007) Warped Shock Front Vortices Transverse Flow Upstream Flow Enhanced Magnetic Field **lield Strength** $10^{2.5}$ Density Fluctuations 4 0 **10** x/L

Magnetic fields in the intergalactic medium

Origin of seeds for comic magnetic fields is uncertain. some suggestions:

- 1. generation in the early universe
 - e.g.) during the electroweak phase transition ($t\sim10^{-12}sec$)? during the quark-hadron transition ($t\sim10^{-5}sec$)?
- 2. generation just before cluster formation, eg. in shocks
- 3. magnetic fields from the first stars and active galaxies

It is difficult to produce strong coherent magnetic fields in the IGM before the formation of the large-scale structure of the universe, but it is reasonable to assume that week seed fields were created

turbulence amplifies magnetic fields

$$\longrightarrow$$
 $B_0 << \delta B$ in the IGM

very weak B field before structure formation

(while $B_0 \sim \delta B$ in the ISM)

3D distribution of magnetic field strength in (100 h-1 Mpc)3 box: concentrated in clusters and groups along filaments

-> "cosmic web of filaments"

volume filling factor: $f(B > 10 nG) \sim 0.01$

Magnetic field strength in the large scale structure of the universe

Astronum 2009

Chamonix, France

June 29 to July 3, 2009

Averaged magnetic field strength in the large-scale structure of the universe at z = 0

- inside clusters, $\langle B \rangle \sim a$ few μG
- around clusters (T > 10^7 K), $\langle B \rangle \sim 0.1 \,\mu G$
- in filaments (10^5 K < T < 10^7 K, or WHIM), ~ 10^5 nG

Average values of the intergalactic magnetic field

in filaments ($10^5 \text{ K} \cdot \text{T} \cdot 10^7 \text{ K}$, or WHIM) at present

-> relevant to the propagation of ultra-high-energy CRs

$$(B^2)^{1/2} = B_{rms} \sim a \text{ few } \times 10 \text{ nG}$$

$$\rho B^2 > 1/2 / \rho > 1/2 \sim a couple × 0.1 \mu G$$

-> relevant to synchrotron emission

$$(\rho B)^2 > 1/2 / (\rho^2 > 1/2) \sim a \text{ few } \times 0.1 \,\mu G$$

-> relevant to Faraday rotational measure

energy equipartition scale

Propagation of ultra-high-energy cosmic rays through the intergalactic magnetic field (Ryu, Das, Kang 2009,

Larmor radius:

$$r_L \approx \frac{1kpc}{Z} \left(\frac{E}{10^{18}eV}\right) \left(\frac{B}{1\mu G}\right)^{-1}$$

source

in preparation)

for Super-GZK protons,

weak deflection &

 $R_{GZK} \sim 100 \text{Mpc}$

→ anisotropic arrival direction

intergalactic space

intergalactic B

- clusters: 1 10 μG
- filaments: ~ 10-8 G
- voids: <~ 10-12 G

Milky Way

Galactic B

- disk: 5 10 μG
- halo: < 1 μG?

below ~ 10^{19.5}eV,

strong deflection &

 $R > 100 \,\mathrm{Mpc}$ and larger

→ isotropic arrival direction

observer

