MHD simulation for merger of binary neutron stars in numerical relativity

M. SHIBATA (Yukawa Institute for Theoretical Physics, Kyoto University)

In collaboration with K. Kiuchi, L. Baiotti, & Y. Sekiguchi

2009/07/02 Chamonix

I Binary neutron stars

- Binary system composed of two neutron stars; 6 observed systems in our Galaxy which will merge in $\sim 10^{10}$ yrs
- Formed after two supernovae, and then evolve by gravitational wave emission

• Eventually merge

Neutron stars always have B-field →
 Merger is subject to GRMHD

Why BNS is important ? 2 \rightarrow It may form central engine of short γ -ray burst

http://antwrp.gsfc.nasa.gov/apod/archivepix.html

How to study merger ?

- Neutron stars have strong, general relativistic gravity. Furthermore, black hole may be formed after merger
 → General relativistic study is necessary: The so-called numerical relativity is required
- → We solve Einstein equation & GRMHD equation in the ideal MHD approx.

II Basic equations

$$G_{\mu\nu} = 8\pi \frac{G}{c^4} T_{\mu\nu} \quad \text{.. Einstein equation}$$

$$\begin{cases} \nabla_{\mu} T_{\nu}^{\mu} = 0 \\ \nabla_{\mu} \left(\rho u^{\mu} \right) = 0 \end{cases} \quad \text{.. GR Hydro}$$

$$\nabla_{\mu}^{*} F^{\mu\nu} = 0 \quad \text{.. } \rightarrow \text{Induction equation}$$

- Einstein eqs. are solved by 3+1 BSSN formalism with 4th order finite difference.
- GR hydro by 3rd order central scheme (KT)
- Induction eq. by CT scheme.

Status of numerical relativity

- Einstein eqs. = Nonlinear hyperbolic eqs.
 → Nonlinearity induces high curvature (e.g. Black hole)
- For stable and accurate simulation, we need
- 1. Appropriate formulation
- 2. Appropriate coordinate conditions

After long research for ~ 10 years

Now, we have both and in principle, any globally hyperbolic spacetime can be evolved

III Evolution of BNS

Lapse

Differentially and rapidly rotating

Central density

Possible fate of hypermassive stars (if no GW)

Differential rotation

- →Angular momentum is redistributed by magnetic field (Winding and/or magnetorotational instability)
- \rightarrow Approaches to rigid rotation
- \rightarrow But, $M > M_{\text{max, rigid rot}}$
- \rightarrow Likely to collapse to a black hole
- HMNS may be even shorter lifetime in the presence of B-fields
- After collapse, BH + torus may form

Numerical simulation (PRL2006)

- EOS: Hybrid EOS \rightarrow can mimic realistic EOS
- Differentially and rapidly rotating NS; 3×10^{4} $P_{\rm c} \sim 0.2 \,{\rm ms} \,\&\, P_{\rm surface} \sim 1 \,{\rm ms}$ 10^{4} • Hypermassive: $M = 2.65M_{\text{sun}} >> 2M_{\text{sun}} = M_{\text{spherical}}$ 6 8 10 X (km) • Seed poloidal Magnetic field confined to the NS $(P_{\text{mag}}/P \sim 0.3\% \text{ at } t = 0)$ $A_{\varphi} = \begin{cases} A(P - P_{\text{cut}}) & P > P_{\text{cut}} \\ 0 & P < P_{\text{cut}} \end{cases} \qquad \lambda_{\text{MRI}} \sim 1 \text{ km}$

Time in units of central period (~0.2 ms)

simulation Axisymmetric

IV GRMHD simulation for binary neutron star (preliminary)

Density on the equatorial plane

5.1 - (1 1)pc 10

Density & B field on the equatorial plane

 B^z

The reason

- HMNS, in this case, dissipates angular momentum primarily by gravitational radiation
- The emission rate is higher when HMNS is more nonaxisymmetrically deformed
- The deformation is larger for higher degree of differential rotation, but magnetic field decreases this degree due to angular momentum transport
 - \rightarrow GW luminosity decreases
 - \rightarrow Life time increases

V Summary

- Relatively low-mass binary neutron star will form a hypermassive neutron star
- It evolves by emission of gravitational waves as well as by magnetorotational effects
- Magnetic effects may NOT accelerate the collapse of HMNS to black hole
- 3D simulation for merger + subsequent evolution is done, but currently accurate simulation for it is not feasible due to limit of computational resources

B-field increases lifetime of HMNS !

Apparent horizon Mass & mass of torus

