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M Space Weather Modeling Framework
M Multi-fluid and multi-ion MHD

M Equations

M Algorithms

M Space physics applications

M Conclusions
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S ML MHD Code: BATS-R-US
g‘“"‘ * Weathar podeling FAme*

M Classical, semi-relativistic and Hall MHD
M Multi-species and multi-fluid MHD
M Radiation hydrodynamics with gray diffusion

M Multi-material, non-ideal equation of state ANt i Bl B s ey
M Solar wind turbulence

M Conservative finite-volume discretization

I 1|_“

M Parallel block-adaptive grid

N
|

'|

M Cartesian and generalized coordinates

\

i

M Splitting the magnetic field into B, + B, 11—
M Divergence B control: 8-wave, CT, projection, parabollc/hyperbollc
M Shock-capturing TVD schemes: Rusanov, HLLE, AW, Roe, HLLD
M Explicit, point-implicit, semi-implicit, fully implicit time stepping

M 100,000+ lines of Fortran 90 code with MPI parallelization

Toth: Multi-lon MHD http://csem.engin.umich.edu
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NUMBER OF FROCESSORS

Grid: 4804 blocks with 8x8x8 cells (2.5 million cells) ranging

from 8 to 1/16 R.. Simulations done on an SGI Altix machine.
Toth: Multi-lon MHD http://csem.engin.umich.edu




BATS-R-US in the
Space Weather Modeling Framework

SWMF Control & Infrastructure
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The SWMEF is freely available at http://csem.engin.umich.edu
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M Multi-Fluid MHD has many space physics applications

@ jonospheric outflow, Earth magnetosphere, Martian ionosphere,
outer heliosphere interaction with interstellar medium, etc.

M BATS-R-US now contains a general multi-fluid solver with
arbitrary number of ion and neutral fluids.

M Each fluid has separate densities, velocities and temperatures.

M One ion fluid + neutrals can be solved as MHD for ions, and HD
for neutrals.

M |ons and neutrals are coupled by charge exchange and chemical
reactions.

M Neutrals are coupled by collisions and chemical reactions.

M Coupling source terms can be evaluated point-implicitly.

Toth: Multi-lon MHD http://csem.engin.umich.edu
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Momentum equations for ion fluids s with charge g, and electrons with charge —e

Opsug

+ V- (psusu, + Ips) = +neqs (E+us X B) + 5p, 0,

ot
Ue
%+ V- (Ne +1Ipe) = —nce (B +u. X B) + 5, 0,

Express electric field from electron momentum equation cting small terms:
1
E=—-u.xB- Vpe +nd
ENe

Obtain electron density from charge neutrality and electron velocity from current:

Ne — % Znsqs
J

. . . ZE RSQSuS
Ue = — + U4+ where the charge averaged ion velocity is w4 =
ENe €Ne
The electron pressure p,, is either a fixed fraction of total ion pressure, or we solve
Ope

En + V- (pette) = — (v — 1) peV - ue + Sp,

Toth: Multi-lon MHD http://csem.engin.umich.edu
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For each ion fluid s we obtain (neglecting resistive terms):

aps

Cannot be written in Gyration of ions arou
+ V. (p 3113 = Ps conservative form each other. Can be stlff

8 sUg sYs
’Oa: + V- (psusug + Ip,) = s

Ops
;1 +v'(psus):_(7_l)psv'us+ss

J:":B VPE +n*,Q‘: .‘i_u+ XB+SP‘.SUS

We can also solve for hydro energy density e, = psu?/2+ p/(y — 1)

Oeg
ot

Ngqs
NeE€

+ V- [(es + ps)us] = ug - [ (JxB—-Vp) +nsqs (us —uy) xB| + S,

Finally the induction equation with or without the Hall term becomes

%]? Vx(uxB)=0 or %B—V’x(mpr)—U

Toth: Multi-lon MHD http://csem.engin.umich.edu
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M Perpendicular ion velocities are coupled through the magnetic field
M Parallel ion velocities are not coupled by the multi-ion MHD equations.
M Two-stream instability restricts the velocity differences parallel to B

® We cannot resolve the two-stream instability

® Use a simple ad-hoc friction source term in the momentum equations:

riction |1_13—'I_1| =
SJaten = = 3 il o) g — ) (T

 q#s

® Using the minimum of the two densities makes the friction uniformly effective
In regions of low and high densities.

® t.is the time scale, u. is the cut-off velocity, o is the cut-off exponent
® Currently we use fixed parameters.
® We will explore physics based parameter setting and formulas in the future.

Toth: Multi-lon MHD http://csem.engin.umich.edu
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M Multi-ion MHD equations cannot be written in conservation form.
M \We would still like to maintain conservation for the total ion fluid.
M Density and the hydro part of the energy equations are in conservation form.
M Possible scheme for conserving total ion momentum:
® Solve for total ion fluid momentum using the following total ion pressure tensor:

P = ZIpS + ps(us —u)(u; —u)
5
® Use conservative equation for total ion momentum, and non-conservative
(there is no other choice) for the individual ion momenta.

® Distribute total momentum (if all ions move in the same direction) among the
lon fluids proportionally to the individual solutions:

(pu)™ "
L SHPERE

® For ion momentum components with mixed signs do the opposite:
n+1 *
(pll) = E :(Psus)

f-
Toth: Multi-lon MHD http://csem.engin.umich.edu 10
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M Positivity is difficult to maintain in empty regions where some of the
fluids do not occur.

M |[n some problems we can identify effectively single-ion regions
based on geometry and/or physical state.

® For example the solar wind has high Mach number.

M |n other problems we have to check after every time step if any of
the fluids have very small density or pressure relative to the total.

M For minor fluids
® Density is set to a small fraction (~10-4) of the total ion density.
® Velocity and temperature are set to the same as for the total ion fluid.

® This Is a physically meaningful state that can interact properly with the
truly multifluid regions.

Toth: Multi-lon MHD http://csem.engin.umich.edu
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M Naive explicit scheme is unconditionally unstable.
M Fully implicit scheme can be slow due to many variables.
M We can combine explicit scheme with point-implicit source terms:

(psus)”’+1 = (psu,)" — AtV - F" + AtS"

HELs

= (peus — pouy)" BT 4

At
* M, nre

J" xB" — Vp))
where Mg Is the mass of ion s.

® The linear equations can be solved in every grid cell independently.

® The unknowns are the momenta of the ion fluids.

® The three spatial components are coupled by the artificial friction term.

® We use an analytic Jacobian matrix for sake of efficiency and accuracy.

Toth: Multi-lon MHD http://csem.engin.umich.edu 12
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*ﬂ-c ———— (Glocer et al, submitted to JGR)

M Modeling two magnetic storms
& May 4, 1998
@ March 31, 2001
M Multi-fluid BATS-R-US running in the SWMF coupled with
® Polar Wind Outflow Model
® Ridley lonosphere-electrodynamics Model

® Rice Convection Model (inner magnetosphere)
M Comparison with

@ single fluid model

® global indexes (Dst, CPCP)

@ In situ satellite measurements

Toth: Multi-lon MHD http://csem.engin.umich.edu
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O*/H* Ratio for

March 31 Storm

M Multi-Fluid vs. Multi-species
® Similar near Earth
® Different further away

Toth: Multi-lon MHD
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Multi-fluid MHD with Ot outflow

Magnetic Field vs Goes 8 Satellite

Single-fluid MHD with no outflow
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M We have implemented a general multi-fluid MHD solver in BATS-R-US.

M [ssues of conservation, positivity and stability have been addressed.

M Two-stream instability is mimicked by an artificial friction term.

M Initial results in some space physics applications are promising
although there is a lot of room for improvement in matching the

observed data.

M Work in progress for the Mars ionosphere interaction with solar wind.

Toth: Multi-lon MHD http://csem.engin.umich.edu 18



	Multi-ion Magnetohydrodynamics
	Outline
	MHD Code: BATS-R-US� Block Adaptive Tree Solar-wind Roe Upwind Scheme
	Strong Parallel Scaling of BATS-R-US
	BATS-R-US in the �Space Weather Modeling Framework
	Multi-Fluid MHD
	Multi-Ion MHD Derived
	Multi-Ion MHD
	Two-Stream Instability
	Conservation
	Positivity
	Stability
	Initial Results�(Glocer et al, submitted to JGR)
	O+/H+ Ratio for �March 31 Storm
	Magnetic Field vs Goes 8 Satellite
	Velocities vs Cluster Satellite
	Velocity Differences and Magnetic Field
	Conclusions

